Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 117
Filter
Add more filters











Publication year range
1.
Genomics ; 116(5): 110933, 2024 Aug 30.
Article in English | MEDLINE | ID: mdl-39218165

ABSTRACT

Yaks are crucial genetic resources in the Tibetan Plateau and surrounding regions. Throughout the long process of domestication, natural and artificial selection pressures have enabled yaks to demonstrate adaptive characteristics to the environment in terms of physiological structure and genetic molecules, but no systematic cell analysis has been carried out on this phenomenon of yaks. Here, the population structure and genetic diversity of yak were studied by WGRS, and the genes related to yak adaptability were excavated. Combined with scRNA-seq method, the transcription map of yak lung tissue and skin tissue was constructed, which provided a new comprehensive insight into yak adaptability. The analysis of yak population structure showed that there was obvious genetic differentiation between TZ _ yak and other seven yak populations, while there was significant genetic exchange between PL _ yak and SB _ yak at high altitude. WGRS and scRNA-seq analysis revealed that the gene HIF1A related to high altitude adaptation was expressed in various cell types, while EPAS1 was predominantly expressed in epithelial and endothelial cells of yak lung tissue. Endothelial cells play a critical role in hypoxia-adapted VEGF signaling, which correlates closely with the high expression of KDR and VEGFA genes in endothelial cells and monocytes. Furthermore, in the selection signal of High _ yak vs Low _ yak, 19.8 % of the genes overlapped with the genes screened by skin scRNA-seq, including genes related to coat color such as RORA, BNC2, and KIT. Notably, BNC2 is a gene associated with melanin deposition and shows high expression levels in HS cells. Additionally, GRN in melanocytes and SORT1 in IRS play an important role in cell communication between melanocytes and IRS. These findings offer new insights into the natural polymorphism of yaks and provide a valuable reference for future research on high-altitude mammals, and potentially even human genetics.

2.
Foods ; 13(16)2024 Aug 14.
Article in English | MEDLINE | ID: mdl-39200454

ABSTRACT

Energy feed can provide animals with balanced nutrition, thereby enhancing their growth performance. This study aimed to evaluate the effects of dietary energy levels on the growth performance, serum metabolites, and meat quality of Jersey cattle-yaks. A total of 24 male Jersey cattle-yaks were randomly divided into three groups. Each group was fed diets with metabolizable energy levels of 8.21 MJ/kg (LE), 9.50 MJ/kg (ME), and 10.65 MJ/kg (HE), respectively. The HE and ME groups showed significantly higher final body weight, average daily gain (ADG), and feed efficiency compared to the LE group (p < 0.05). The glucose (GLU) and total cholesterol (TC) concentrations were significantly increased in the serum of the ME and HE groups (p < 0.05). The low-density lipoprotein cholesterol (LDL-C) and alanine aminotransferase (ALT) levels were significantly higher in the serum of the HE group than in the ME group (p < 0.05). Blood urea nitrogen (BUN) levels exhibited a significant decrease with increasing metabolizable energy levels in the diet (p < 0.05). Increasing dietary energy levels enhances the eye muscle area and intramuscular fat content of Jersey cattle-yaks (p < 0.05), with no effect on pH45 min, pH24 h, and shear force. In the HE group, the levels of heneicosanoic acid (C21:0), palmitoleic acid (C16:1), elaidic acid (C18:1n9t), and eicosadienoic acid (C20:2n6) were notably elevated (p < 0.05) when compared to the LE group. We concluded that a higher dietary energy level enhanced the growth performance and meat quality traits of male Jersey cattle-yaks.

3.
Int J Mol Sci ; 25(15)2024 Aug 02.
Article in English | MEDLINE | ID: mdl-39126002

ABSTRACT

Male reproductive health is largely determined already in the early development of the testis. Although much work has been carried out to study the mechanisms of testicular development and spermatogenesis, there was previously no information on the differences in the protein composition of yak testicles during early development. In this study, the protein profiles in the testicles of 6- (M6), 18- (M18), and 30-month-old (M30) yaks were comparatively analyzed using TMT proteomics. A total of 5521 proteins were identified, with 13, 1295, and 1397 differentially expressed proteins (DEPs) in 30- vs. 18-, 18- vs. 6-, and 30- vs. 6-month-old testes, respectively. Gene Ontology (GO) annotation and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis showed that DEPs were mainly involved in signaling pathways related to testicular development and spermatogenesis, including the MAPK, PI3K-Akt, Wnt, mTOR, TGF-ß, and AMPK signaling pathways. Furthermore, we also identified eight potential proteins (TEX101, PDCL2, SYCP2, SYCP3, COL1A1, COL1A2, ADAM10, and ATF1) that may be related to the testicular development and spermatogenesis of yaks. This study may provide new insights into the molecular mechanisms of the testicular development and spermatogenesis of yaks.


Subject(s)
Proteomics , Spermatogenesis , Testis , Animals , Male , Cattle , Testis/metabolism , Testis/growth & development , Proteomics/methods , Proteome/metabolism , Gene Ontology , Signal Transduction , Protein Interaction Maps
4.
Genomics ; 116(4): 110872, 2024 07.
Article in English | MEDLINE | ID: mdl-38849017

ABSTRACT

Cattle-yak is a hybrid offspring resulting from the crossbreeding of yak and cattle, and it exhibits substantial heterosis in production performance. However, male sterility in cattle-yak remains a concern. Reports suggest that noncoding RNAs are involved in the regulation of spermatogenesis. Therefore, in this study, we comprehensively compared testicular transcription profiles among cattle, yak, and cattle-yak. Numerous differentially expressed genes (DEGs), differentially expressed circRNAs (DECs), and differentially expressed miRNAs (DEMs) were identified in the intersection of two comparison groups, namely cattle versus cattle-yak and yak versus cattle-yak, with the number of DEGs, DECs, and DEMs being 4968, 360, and 59, respectively. The DEGs in cattle-yaks, cattle, and yaks were mainly associated with spermatogenesis, male gamete generation, and sexual reproduction. Concurrently, GO and KEGG analyses indicated that DEC host genes and DEM source genes were involved in the regulation of spermatogenesis. The construction of a potential competing endogenous RNA network revealed that some differentially expressed noncoding RNAs may be involved in regulating the expression of genes related to testicular spermatogenesis, including miR-423-5p, miR-449b, miR-34b/c, and miR-15b, as well as previously unreported miR-6123 and miR-1306, along with various miRNA-circRNA interaction pairs. This study serves as a valuable reference for further investigations into the mechanisms underlying male sterility in cattle-yaks.


Subject(s)
Gene Regulatory Networks , MicroRNAs , RNA, Circular , RNA, Messenger , Testis , Cattle/genetics , Cattle/metabolism , Animals , Male , Testis/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , RNA, Circular/genetics , RNA, Circular/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Spermatogenesis/genetics , Transcriptome , RNA, Competitive Endogenous
5.
Foods ; 13(11)2024 May 22.
Article in English | MEDLINE | ID: mdl-38890842

ABSTRACT

A single-nucleotide polymorphism (SNP) is a genome-level trait that arises from a variation in a single nucleotide, leading to diversity in DNA sequences. SNP screening is commonly used to provide candidate genes for yak breeding efforts. Integrin Subunit Alpha 9 (ITGA9) is an integrin protein. It plays an important role in cell adhesion, signalling, and other processes. The aim of this study was to discuss the association between genetic polymorphisms in the ITGA9 gene and milk quality traits and to identify potential molecular marker loci for yak breeding quality. We genotyped 162 yaks using an Illumina Yak cGPS 7K liquid chip and identified the presence of polymorphisms at nine SNP loci in the ITGA9 gene of yaks. The results showed that the mutant genotypes in the loci g.285,808T>A, g.306,600T>C, and g.315,413C>T were positively correlated with the contents of casein, protein, total solids (TS), and solid nonfat (SNF) in yak milk. In other loci, heterozygous genotypes had a positive correlation with nutrient content in yak milk. Then, two ITGA9 haplotype blocks were constructed based on linkage disequilibrium, which facilitated a more accurate screening of ITGA9 as a candidate gene for yak milk quality improvement. In conclusion, we identified SNPs and haplotype blocks related to yak milk quality traits and provided genetic resources for marker-assisted selection in yak breeding.

6.
Int J Mol Sci ; 25(11)2024 Jun 02.
Article in English | MEDLINE | ID: mdl-38892330

ABSTRACT

In this study, our primary aim was to explore the genomic landscape of Barka cattle, a breed recognized for high milk production in a semi-arid environment, by focusing on genes with known roles in milk production traits. We employed genome-wide analysis and three selective sweep detection methods (ZFST, θπ ratio, and ZHp) to identify candidate genes associated with milk production and composition traits. Notably, ACAA1, P4HTM, and SLC4A4 were consistently identified by all methods. Functional annotation highlighted their roles in crucial biological processes such as fatty acid metabolism, mammary gland development, and milk protein synthesis. These findings contribute to understanding the genetic basis of milk production in Barka cattle, presenting opportunities for enhancing dairy cattle production in tropical climates. Further validation through genome-wide association studies and transcriptomic analyses is essential to fully exploit these candidate genes for selective breeding and genetic improvement in tropical dairy cattle.


Subject(s)
Genome-Wide Association Study , Milk , Animals , Cattle/genetics , Genome-Wide Association Study/methods , Milk/metabolism , Female , Polymorphism, Single Nucleotide , Quantitative Trait Loci , Lactation/genetics , Genome , Phenotype
7.
Foods ; 13(12)2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38928854

ABSTRACT

Yak milk, known as the "liquid gold", is a nutritious food with extensive consumption. Compared with cow milk, yak milk contains higher levels of nutrients such as dry matter, milk fat, and milk protein, which demonstrates great potential for exploitation and utilization. Protein kinase cGMP-dependent 1 (PRKG1) is an important functional molecule in the cGMP signaling pathway, and its significant influence on milk fatty acids has been discovered. The aim of this study is to explore the correlation between single nucleotide polymorphisms (SNPs) in the PRKG1 gene and the quality traits of Gannan yak milk in order to identify candidate molecular markers for Gannan yak breeding. In this study, genotyping was performed on 172 healthy, 4-5-year-old lactating Gannan yaks with similar body types, naturally grazed, and two to three parity. Three SNPs (g.404195C>T, g.404213C>T, and g.760138T>C) were detected in the PRKG1 gene of Gannan yaks, which were uniformly distributed in the yak population. Linkage disequilibrium analysis was conducted, revealing complete linkage disequilibrium between g.404195C>T and g.404213C>T. After conducting a correlation analysis between SNPs in the PRKG1 gene and milk quality in Gannan yaks, we found that PRKG1 SNPs significantly increased the content of casein, protein, and SNFs in yak milk. Among them, the TT homozygous genotype at the PRKG1 g.404195C>T loci exhibited higher casein and protein contents compared to the CC and CT genotypes (p < 0.05). The SNP g.760138T>C locus was associated with casein, protein, SNFs, and TS traits (p < 0.05). The CC genotype had higher casein and protein contents than the TT and TA genotypes (p < 0.05). However, there were no significant differences in milk fat, lactose, and acidity among the three genotypes (p > 0.05). In summary, PRKG1 gene polymorphism can serve as a candidate molecular marker for improving milk quality in Gannan yaks.

8.
Sci Data ; 11(1): 584, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38839789

ABSTRACT

Indigenous animal genetic resources play a crucial role in preserving global genetic diversity and supporting the livelihoods of millions of people. In Ethiopia, the majority of the cattle population consists of indigenous breeds. Understanding the genetic architecture of these cattle breeds is essential for effective management and conservation efforts. In this study, we sequenced DNA samples from 70 animals from seven indigenous cattle breeds, generating about two terabytes of pair-end reads with an average coverage of 14X. The sequencing data were pre-processed and mapped to the cattle reference genome (ARS-UCD1.2) with an alignment rate of 99.2%. Finally, the variant calling process produced approximately 35 million high-quality SNPs. These data provide a deeper understanding of the genetic landscape, facilitate the identification of causal mutations, and enable the exploration of evolutionary patterns to assist cattle improvement and sustainable utilization, particularly in the face of unpredictable climate changes.


Subject(s)
Cattle , Genome , Polymorphism, Single Nucleotide , Whole Genome Sequencing , Animals , Cattle/genetics , Breeding , Ethiopia
9.
Animals (Basel) ; 14(10)2024 May 07.
Article in English | MEDLINE | ID: mdl-38791618

ABSTRACT

The yak is a unique species of livestock found in the Qinghai-Tibet Plateau and its surrounding areas. Due to factors such as late sexual maturity and a low rate of estrus, its reproductive efficiency is relatively low. The process of estrus synchronization in yaks plays a crucial role in enhancing their reproductive success and ensuring the continuation of their species. In order to clarify the characteristics of the serum metabolites of yak estrus synchronization, the yaks with inactive ovaries were compared with the estrus synchronization yaks. In this study, yaks were divided into the inactive ovaries group (IO), gonarelin-induced yak estrus group (GnRH), and chloprostenol sodium-induced yak estrus group (PGF). After the completion of the estrus synchronization treatment, blood samples were collected from the jugular veins of the non-estrus yaks in the control group and the yaks with obvious estrus characteristics in the GnRH and PGF groups. Metabolites were detected by ultra-high performance liquid chromatography-mass spectrometry, and differential metabolites were screened by multivariate statistical analysis. The results showed that a total of 70 significant differential metabolites were screened and identified in the GnRH vs. IO group, and 77 significant differential metabolites were screened and identified in the PGF vs. IO group. Compared with non-estrus yaks, 36 common significant differential metabolites were screened out after the induction of yak estrus by gonarelin (GnRH) and cloprostenol sodium (PGF), which were significantly enriched in signaling pathways such as the beta oxidation of very long chain fatty acids, bile acid biosynthesis, oxidation of branched chain fatty acids, steroidogenesis, steroid biosynthesis, and arginine and proline metabolism. This study analyzed the effects of gonadotropin releasing hormone (GnRH) and prostaglandin F (PGF) on the reproductive performance of yaks treated with estrus synchronization, which provides a theoretical basis for the optimization and application of yak estrus synchronization technology and promotes the healthy development of the yak industry.

10.
BMC Genomics ; 25(1): 498, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38773419

ABSTRACT

BACKGROUND: The hair follicle development process is regulated by sophisticated genes and signaling networks, and the hair grows from the hair follicle. The Tianzhu white yak population exhibits differences in hair length, especially on the forehead and shoulder region. However, the genetic mechanism is still unclear. Isoform sequencing (Iso-seq) technology with advantages in long reads sequencing. Hence, we combined the Iso-seq and RNA-seq methods to investigate the transcript complexity and difference between long-haired yak (LHY) and normal-haired yak (NHY). RESULTS: The hair length measurement result showed a significant difference between LHY and NHY on the forehead and the shoulder (P-value < 0.001). The skin samples from the forehead and the shoulder of LHY and NHY were pooled for isoform sequencing (Iso-seq). We obtained numerous long transcripts, including novel isoforms, long non-coding RNA, alternative splicing events, and alternative polyadenylation events. Combined with RNA-seq data, we performed differential isoforms (DEIs) analysis between LHY and NHY. We found that some hair follicle and skin development-related DEIs, like BMP4, KRT2, IGF2R, and COL1A2 in the forehead skin; BMP1, KRT1, FGF5, COL2A1, and IGFBP5 in the shoulder skin. Enrichment analysis revealed that DEIs in both two comparable groups significantly participated in skin and hair follicle development-related pathways, like ECM-receptor interaction, focal adhesion, and PI3K-Akt signaling pathways. The results indicated that the hair follicle development of Tianzhu white yak may influence the hair length difference. Besides, the protein-protein interaction (PPI) network of DEIs showed COL2A1 and COL3A1 exhibited a high degree of centrality, and these two genes were suggested as potential candidates for the hair length growth of Tianzhu white yak. CONCLUSIONS: The results provided a comprehensive analysis of the transcriptome complexity and identified differential transcripts that enhance our understanding of the molecular mechanisms underlying the variation in hair length growth in Tianzhu white yak.


Subject(s)
Hair , Protein Isoforms , RNA-Seq , Skin , Transcriptome , Animals , Cattle/genetics , Skin/metabolism , Hair/metabolism , Hair/growth & development , Protein Isoforms/genetics , Protein Isoforms/metabolism , Hair Follicle/metabolism , Hair Follicle/growth & development , Gene Expression Profiling , Alternative Splicing , Sequence Analysis, RNA
11.
BMC Genomics ; 25(1): 481, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38750421

ABSTRACT

BACKGROUND: There is no consensus as to the origin of the domestic yak (Bos grunniens). Previous studies on yak mitochondria mainly focused on mitochondrial displacement loop (D-loop), a region with low phylogenetic resolution. Here, we analyzed the entire mitochondrial genomes of 509 yaks to obtain greater phylogenetic resolution and a comprehensive picture of geographical diversity. RESULTS: A total of 278 haplotypes were defined in 509 yaks from 21 yak breeds. Among them, 28 haplotypes were shared by different varieties, and 250 haplotypes were unique to specific varieties. The overall haplotype diversity and nucleotide diversity of yak were 0.979 ± 0.0039 and 0.00237 ± 0.00076, respectively. Phylogenetic tree and network analysis showed that yak had three highly differentiated genetic branches with high support rate. The differentiation time of clades I and II were about 0.4328 Ma, and the differentiation time of clades (I and II) and III were 0.5654 Ma. Yushu yak is shared by all haplogroups. Most (94.70%) of the genetic variation occurred within populations, and only 5.30% of the genetic variation occurred between populations. The classification showed that yaks and wild yaks were first clustered together, and yaks were clustered with American bison as a whole. Altitude had the highest impact on the distribution of yaks. CONCLUSIONS: Yaks have high genetic diversity and yak populations have experienced population expansion and lack obvious phylogeographic structure. During the glacial period, yaks had at least three or more glacial refugia.


Subject(s)
Genetic Variation , Genome, Mitochondrial , Haplotypes , Phylogeny , Phylogeography , Animals , Cattle/genetics , Maternal Inheritance , Female , DNA, Mitochondrial/genetics
12.
Int J Biol Macromol ; 271(Pt 1): 132400, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38759851

ABSTRACT

Alternative splicing is a prevalent phenomenon in testicular tissues. Due to the low assembly accuracy of short-read RNA sequencing technology in analyzing post-transcriptional regulatory events, full-length (FL) transcript sequencing is highly demanded to accurately determine FL splicing variants. In this study, we performed FL transcriptome sequencing of testicular tissues from 0.5, 1.5, 2.5, and 4-year-old yaks and 4-year-old cattle-yaks using Oxford Nanopore Technologies. The obtained sequencing data were predicted to have 47,185 open reading frames (ORFs), including 26,630 complete ORFs, detected 7645 fusion transcripts, 15,355 alternative splicing events, 25,798 simple sequence repeats, 7628 transcription factors, and 35,503 long non-coding RNAs. A total of 40,038 novel transcripts were obtained from the sequencing data, and the proportion was almost close to the number of known transcripts identified. Structural analysis and functional annotation of these novel transcripts resulted in the successful annotation of 9568 transcripts, with the highest and lowest annotation numbers in the Nr and KOG databases, respectively. Weighted gene co-expression network analysis revealed the key regulatory pathways and hub genes at various stages of yak testicular development. Our findings enhance our comprehension of transcriptome complexity, contribute to genome annotation refinement, and provide foundational data for further investigations into male sterility in cattle-yaks.


Subject(s)
Molecular Sequence Annotation , Testis , Transcriptome , Animals , Male , Cattle , Testis/metabolism , Testis/growth & development , Transcriptome/genetics , Open Reading Frames/genetics , Gene Expression Profiling/methods , Alternative Splicing , RNA, Long Noncoding/genetics , Gene Regulatory Networks , Sequence Analysis, RNA/methods
13.
Anim Biotechnol ; 35(1): 2344213, 2024 Nov.
Article in English | MEDLINE | ID: mdl-38669244

ABSTRACT

Lysozyme like 4 (LYZL4), lysozyme like 6 (LYZL6) and proliferating cell nuclear antigen (PCNA) are implicated in the regulation of testicular function, but there was no research reported available on the expression patterns of LYZL4, LYZL6 and PCNA genes at different developmental stages of yak testes. In this study, we used the qRT-PCR, western blotting and immunohistochemistry estimated the LYZL4, LYZL6 and PCNA gene expression and protein lo-calization at different developmental stages of yak testes. The qPCR results showed that the mRNA expression of LYZL4, LYZL6 and PCNA genes significantly increased with age in the testes of yaks. Western blot results showed that the protein abundance of LYZL4, LYZL6 and PCNA in yak testes was significantly higher after puberty than before puberty. Furthermore, the results of immunohistochemistry indicated that LYZL4, LYZL6 and PCNA may be involved in the regulation of spermatogonia proliferation and Leydig cell function in immature testis. In adult yak testes, LYZL4, LYZL6 and PCNA may involve in the development of round spermatids and primary spermatocytes during testicular development. Our results indicated that LYZL4, LYZL6 and PCNA may be involved in the development of Sertoli cells, Leydig cells and gonocytes in yak testes.


Subject(s)
Proliferating Cell Nuclear Antigen , Testis , Animals , Male , Testis/growth & development , Testis/metabolism , Proliferating Cell Nuclear Antigen/genetics , Proliferating Cell Nuclear Antigen/metabolism , Cattle/genetics , Cattle/growth & development , Gene Expression Regulation, Developmental , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Aging , Leydig Cells/metabolism
14.
Foods ; 13(5)2024 Mar 02.
Article in English | MEDLINE | ID: mdl-38472894

ABSTRACT

Protein kinase D1 (PRKD1) functions primarily in normal mammary cells, and the potassium voltage-gated channel subfamily Q member 3 (KCNQ3) gene plays an important role in controlling membrane potential and neuronal excitability, it has been found that this particular gene is linked to the percentage of milk fat in dairy cows. The purpose of this study was to investigate the relationship between nucleotide polymorphisms (SNPs) of PRKD1 and KCNQ3 genes and the milk quality of Gannan yak and to find molecular marker sites that may be used for milk quality breeding of Gannan yak. Three new SNPs were detected in the PRKD1 (g.283,619T>C, g.283,659C>A) and KCNQ3 gene (g.133,741T>C) of 172 Gannan lactating female yaks by Illumina yak cGPS 7K liquid-phase microarray technology. Milk composition was analyzed using a MilkoScanTM milk composition analyzer. We found that the mutations of these three loci significantly improved the lactose, milk fat, casein, protein, non-fat milk solid (SNF) content and acidity of Gannan yaks. The lactose content of the TC heterozygous genotype population at g.283,619T>C locus was significantly higher than that of the TT wild-type population (p < 0.05); the milk fat content of the CA heterozygous genotype population at g.283,659C>A locus was significantly higher than that of the CC wild-type and AA mutant populations (p < 0.05); the casein, protein and acidity of the CC mutant and TC heterozygous groups at the g.133,741T>C locus were significantly higher than those of the wild type (p < 0.05), and the SNF of the TC heterozygous group was significantly higher than that of the mutant group (p < 0.05). The results showed that PRKD1 and KCNQ3 genes could be used as candidate genes affecting the milk traits of Gannan yak.

15.
Animals (Basel) ; 14(5)2024 Feb 23.
Article in English | MEDLINE | ID: mdl-38473080

ABSTRACT

Yak meat is nutritionally superior to beef cattle but has a low fat content and is slow-growing. The liver plays a crucial role in lipid metabolism, and in order to determine whether different feeding modes affect lipid metabolism in yaks and how it is regulated, we employed RNA sequencing (RNA-seq) technology to analyze the genome-wide differential gene expression in the liver of yaks maintained under different raising systems. A total of 1663 differentially expressed genes (DEGs) were identified (|log2FC| ≥ 0 and p-value ≤ 0.05), including 698 down-regulated and 965 up-regulated genes. According to gene ontology (GO) and KEGG enrichment analyses, these DEGs were significantly enriched in 13 GO terms and 26 pathways (p < 0.05). Some DEGs were enriched in fatty acid degradation, PPAR, PI3K-Akt, and ECM receptor pathways, which are associated with lipid metabolism. A total of 16 genes are well known to be related to lipid metabolism (e.g., APOA1, FABP1, EHHADH, FADS2, SLC27A5, ACADM, CPT1B, ACOX2, HMGCS2, PLIN5, ACAA1, IGF1, FGFR4, ALDH9A1, ECHS1, LAMA2). A total of 11 of the above genes were significantly enriched in the PPAR signaling pathway. The reliability of the transcriptomic data was verified using qRT-PCR. Our findings provide new insights into the mechanisms regulating yak meat quality. It shows that fattening improves the expression of genes that regulate lipid deposition in yaks and enhances meat quality. This finding will contribute to a better understanding of the various factors that determine yak meat quality and help develop strategies to improve yield and quality.

16.
Int J Biol Macromol ; 262(Pt 1): 129985, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38342263

ABSTRACT

Cattle-yak, which is the hybrid F1 generation of cattle and yak, demonstrates better production performance compared to yak. However, there is limited research on the molecular mechanisms responsible for the muscle development of cattle-yak. To address this knowledge gap, a comprehensive transcriptomic survey of the longissimus dorsi muscle in cattle-yak was conducted. Three transcript types, namely lncRNAs, miRNAs, and circRNAs, along with protein-coding genes were characterized at two developmental stages (6 m, 18 m) of cattle-yak. The results revealed significant enrichment of these transcripts into pathways related to myoblast differentiation and muscle development signaling. Additionally, the study identified the TCONS00024465/circHIPK3-bta-miR-499-ADAMTS6 regulatory network, which may play a crucial role in the muscle development of cattle-yak by combining the transcriptome data of yak and constructing the ceRNA co-expression network. HEK 293 T cells were used to validate that TCONS00024465 and circHIPK3 are located upstream of bta-miR-499, and can competitively bind to bta-miR-499 as ceRNA. The study also verified that ADAMTS6 regulates skeletal muscle development by inhibiting myoblast proliferation, promoting myoblast differentiation, and positively regulating the apoptosis of myoblasts. Taken together, this study provides new insights into the advantages of cattle-yak production performance and offers a molecular basis for further research on muscle development.


Subject(s)
Gene Expression Profiling , MicroRNAs , Animals , Cattle , Humans , HEK293 Cells , MicroRNAs/genetics , Myoblasts/metabolism , Muscle, Skeletal/metabolism
17.
Animals (Basel) ; 14(3)2024 Jan 26.
Article in English | MEDLINE | ID: mdl-38338049

ABSTRACT

Jersey-yak is a hybrid offspring of Jersey cattle and yak (Bos grunniens). Changing the feeding system of Jersey-yak can significantly improve its growth performance. In this study, tandem mass tag (TMT) proteomics technology was used to determine the differentially expressed proteins (DEPs) of the longissimus lumborum (LL) muscle of Jersey-yak fed different protein levels of diet. The results showed that compared with the traditional grazing feeding, the growth performance of Jersey-yaks was significantly improved by crude protein supplementation after grazing. A total of 3368 proteins were detected in these muscle samples, of which 3365 were quantified. A total of 434 DEPs were identified. Through analyses, it was found that some pathways related to muscle growth and development were significantly enriched, such as Rap1 signaling pathway, mTOR signaling pathway, and TGF-beta signaling pathway. A number of DEPs enriched in these pathways are related to muscle cell development, differentiation, and muscle development, including integrin subunit alpha 7 (ITGA7), myosin heavy chain 8 (MYH8), and collagen type XII alpha 1 chain (COL12A1). In conclusion, the results of this study provide insights into the proteomics of different feeding patterns of Jersey-yak, providing a stronger basis for further understanding the biological mechanism of hybrid varieties.

18.
BMC Vet Res ; 20(1): 67, 2024 Feb 24.
Article in English | MEDLINE | ID: mdl-38395831

ABSTRACT

BACKGROUND: Yaks (Bos grunniens), prized for their ability to thrive in high-altitude environments, are indispensable livestock in the plateau region. Modifying their feeding systems holds significant promise for improving their growth and meat quality. Tenderness, a key determinant of yak meat quality and consumer appeal, is demonstrably influenced by dietary regimen. Indoor feeding regimes have been shown to enhance tenderness by lowering shear stress and optimizing pH values. CircRNAs, well-known modulators of circulatory function, also play a crucial role in skeletal muscle development across various animal species. However, their functional significance in yak skeletal muscle remains largely unexplored. RESULTS: In this study, we identified a total of 5,534 circRNAs within the longissimus dorsi muscle, and we found 51 differentially expressed circRNAs (20 up-regulated and 31 down-regulated) between the two feeding groups. Constructing a comprehensive ceRNA network illuminated intricate regulatory mechanisms, with PGP and circRNA_0617 converging on bta-miR-2285q, mirrored by KLF15/circRNA_0345/bta-miR-20b and CTSF/circRNA_0348/bta-miR-146a. These findings shed light on the potential of circRNAs to influence yak muscle development and meat quality, offering valuable insights for future research. CONCLUSIONS: This investigation unraveled a complex interaction network between circRNAs、mRNAs and miRNAs in yak skeletal muscle. We further elucidated the target genes regulated by these target genes within the network, offering valuable insights into the potential regulatory mechanisms governing muscle development and meat quality-related traits in yaks.


Subject(s)
MicroRNAs , RNA, Circular , Cattle/genetics , Animals , RNA, Circular/genetics , RNA, Competitive Endogenous , MicroRNAs/genetics , RNA, Messenger/genetics , Meat/analysis
19.
Int J Biol Macromol ; 261(Pt 1): 129715, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38281519

ABSTRACT

In mammals, epigenetic modifications involving DNA methylation are necessary for the completion of the cell differentiation process. However, the global DNA methylation landscape and its dynamics during yak adipocyte differentiation remain unexplored. Here, we performed whole-genome bisulfite sequencing (WGBS) to asses DNA methylation in yak preadipocytes and adipocytes, combining these results with those of our previous studies on changes in chromatin accessibility and gene expression during yak adipogenesis. The results showed that CG methylation levels were lower in promoter than in exon and intron, and gradually decreasing from the distal regions to transcription start site (TSS). There was a significant negative correlation between CG methylation levels located in promoter and gene expression levels. The 46 genes shared by CG differentially methylated regions (DMRs) and differential chromatin accessibility were significantly enriched in Hedgehog and PI3K-Akt signaling pathways. ATAC-seq peaks with high chromatin accessibility located in both promoter (≤ 2 kb from TSS) and distal (> 2 kb from TSS) regions corresponded to low methylation levels. Taken together, these findings demonstrated that DNA methylation and its interactions with chromatin accessibility regulate gene expression during yak adipocyte differentiation, contributing to the understanding of mechanisms of various epigenetic modifications and their interactions in adipogenesis.


Subject(s)
DNA Methylation , Phosphatidylinositol 3-Kinases , Animals , Cattle , DNA Methylation/genetics , Phosphatidylinositol 3-Kinases/genetics , Phosphatidylinositol 3-Kinases/metabolism , Cell Differentiation/genetics , Chromatin/genetics , Chromatin/metabolism , Adipocytes , Mammals/genetics
20.
Anim Biotechnol ; 35(1): 2294785, 2024 Nov.
Article in English | MEDLINE | ID: mdl-38193799

ABSTRACT

Yak is an important dominant livestock species at high altitude, and the growth performance of yak has obvious differences under different feeding methods. This experiment was conducted to compare the effects of different feeding practices on growth performance and meat quality of yaks through combined transcriptomic and metabolomic analyses. In terms of yak growth performance, compared with traditional grazing, in-house feeding can significantly improve the average daily weight gain, carcass weight and net meat weight of yaks; in terms of yak meat quality, in-house feeding can effectively improve the quality of yak meat. A combined transcriptomic and metabolomic analysis revealed 31 co-enriched pathways, among which arginine metabolism, proline metabolism and glycerophospholipid metabolism may be involved in the development of the longissimus dorsi muscle of yak and the regulation of meat quality-related traits. The experimental results increased our understanding of yak meat quality and provided data materials for subsequent deep excavation of the mechanism of yak meat quality.


Subject(s)
Gene Expression Profiling , Transcriptome , Cattle/genetics , Animals , Gene Expression Profiling/veterinary , Muscle, Skeletal/metabolism , Meat/analysis
SELECTION OF CITATIONS
SEARCH DETAIL