Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 315
Filter
1.
Acta Pharmacol Sin ; 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38987389

ABSTRACT

Influenza A virus (IAV) is a widespread pathogen that poses a significant threat to human health, causing pandemics with high mortality and pathogenicity. Given the emergence of increasingly drug-resistant strains of IAV, currently available antiviral drugs have been reported to be inadequate to meet clinical demands. Therefore, continuous exploration of safe, effective and broad-spectrum antiviral medications is urgently required. Here, we found that the small molecule compound J1 exhibited low toxicity both in vitro and in vivo. Moreover, J1 exhibits broad-spectrum antiviral activity against enveloped viruses, including IAV, respiratory syncytial virus (RSV), severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), human coronavirus OC43 (HCoV-OC43), herpes simplex virus type 1 (HSV-1) and HSV-2. In this study, we explored the inhibitory effects and mechanism of action of J1 on IAV in vivo and in vitro. The results showed that J1 inhibited infection by IAV strains, including H1N1, H7N9, H5N1 and H3N2, as well as by oseltamivir-resistant strains. Mechanistic studies have shown that J1 blocks IAV infection mainly through specific interactions with the influenza virus hemagglutinin HA2 subunit, thereby blocking membrane fusion. BALB/c mice were used to establish a model of acute lung injury (ALI) induced by IAV. Treatment with J1 increased survival rates and reduced viral titers, lung index and lung inflammatory damage in virus-infected mice. In conclusion, J1 possesses significant anti-IAV effects in vitro and in vivo, providing insights into the development of broad-spectrum antivirals against future pandemics.

2.
Protein Pept Lett ; 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38910421

ABSTRACT

BACKGROUND: The six-helix bundle (6-HB) is a core structure formed during the membrane fusion process of viruses with the Class I envelope proteins. Peptide inhibitors, including the marketed Enfuvirtide, blocking the membrane fusion to exert inhibitory activity were designed based on the heptads repeat interactions in 6-HB. However, the drawbacks of Enfuvirtide, such as drug resistance and short half-life in vivo, have been confirmed in clinical applications. Therefore, novel design strategies are pivotal in the development of next-generation peptide-based fusion inhibitors. OBJECTIVE: The de novo design of α-helical peptides against MERS-CoV and IAVs has successfully expedited the development of fusion inhibitors. The reported sequences were completely nonhomologous with natural peptides, which can provide some inspirations for the antiviral design against other pathogenic viruses with class I fusion proteins. Here, we design a series of artificial C-peptides based on the similar mechanism of 6-HB formation and general rules of heptads repeat interaction. METHODS: The inhibitory activity of peptides against HIV-1 was assessed by HIV-1 Env-mediated cell-cell fusion assays. Interaction between artificial C-peptides and target peptides was evaluated by circular dichroism, polyacrylamide gel electrophoresis, size-exclusion chromatography, and sedimentation velocity analysis. Molecular docking studies were performed by using Schrödinger molecular modelling software. RESULTS: The best-performing artificial C-peptide, 1SR, was highly active against HIV-1 env-mediated cell-cell fusion. 1SR binds to the gp41 NHR region, assembling polymer to prevent endogenous 6-HB formation. CONCLUSION: We have found an artificial C-lipopeptide lead compound with inhibitory activity against HIV-1. Also, this paper enriched both N- and C-teminal heptads repeat interaction rules in 6-HB and provided an effective idea for next-generation peptide-based fusion inhibitors against HIV-1.

3.
Curr Med Chem ; 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38584558

ABSTRACT

BACKGROUND: Pathogenic viruses that cause large-scale global or regional outbreaks almost always contain class I fusion proteins. Although the viruses differ in morphology, they all require fusion protein-mediated virus-host cell membranes during the early stages of host cell invasion. METHOD: The CHR region and NHR region of fusion proteins can form the 6-HB structure to drive the fusion pore formation between viruses and host cells through metastable interactions. Here, we obtained bifunctional N-peptides with inhibitory activities against two viruses, HIV-1 and MERS-CoV, based on the sequences in the HIV-1 NHR region by constructing N-trimer conformation interacting with the CHR region. RESULT: This study demonstrates that N-peptides with the coiled triple helix structure obtained from the NHR region in 6-HB are able to target the CHR region and exhibit inhibitory activity against a variety of viruses. CONCLUSION: Moreover, this strategy can be used to investigate antivirals against unknown viruses for future outbreaks.

4.
Int Immunopharmacol ; 131: 111689, 2024 Apr 20.
Article in English | MEDLINE | ID: mdl-38471364

ABSTRACT

OBJECTIVE: This study aimed to investigate the role of FOXA1 in acute kidney injury (AKI) induced by radiotherapy in colorectal cancer. Although FOXA1 is known to be aberrantly expressed in malignant tumors, its contribution to AKI remains unclear. This study aimed to explore the involvement of FOXA1 in AKI induced by radiotherapy in colorectal cancer and its influence on the regulation of downstream target genes. METHODS: Firstly, a transcriptome analysis was performed on mice to establish a radiation-induced AKI model, and qPCR was used to determine the expression of FOXA1 in renal cell injury models induced by X-ray irradiation. Additionally, FOXA1 was silenced using lentiviral vectors to investigate its effects on the apoptosis of mice with radiation-induced AKI and HK-2 cells. Next, bioinformatics analysis and various experimental validation methods such as ChIP assays, co-immunoprecipitation, and dual-luciferase reporter assays were employed to explore the relationship between FOXA1 and the downstream regulatory factors ITCH promoter and the ubiquitin ligase-degradable TXNIP. Finally, lentiviral overexpression or knockout techniques were used to investigate the impact of the FOXA1/ITCH/TXNIP axis on oxidative stress and the activation of inflammatory body NLRP3. RESULTS: This study revealed that FOXA1 was significantly upregulated in the renal tissues of mice with radiation-induced AKI and in the injured HK-2 cells. Furthermore, in vitro cell experiments and animal experiments demonstrated that FOXA1 suppressed the transcription of the E3 ubiquitin ligase ITCH, thereby promoting apoptosis of renal tubular cells and causing renal tissue damage. Further in vivo animal experiments confirmed that TXNIP, a protein degraded by ITCH ubiquitination, could inhibit oxidative stress and the activation of NLRP3 inflammasome in the AKI mouse model. CONCLUSION: FOXA1 enhances oxidative stress, cell apoptosis, and NLRP3 inflammasome activation by regulating the ITCH/TXNIP axis, thereby exacerbating radiotherapy-induced AKI.


Subject(s)
Acute Kidney Injury , Colorectal Neoplasms , Mice , Animals , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Inflammasomes/metabolism , Kidney/pathology , Acute Kidney Injury/genetics , Acute Kidney Injury/chemically induced , Apoptosis , Colorectal Neoplasms/genetics , Colorectal Neoplasms/radiotherapy , Colorectal Neoplasms/pathology
5.
Front Cell Infect Microbiol ; 14: 1327780, 2024.
Article in English | MEDLINE | ID: mdl-38505291

ABSTRACT

Tibet orbivirus (TIBOV) was first isolated from Anopheles maculatus mosquitoes in Xizang, China, in 2009. In recent years, more TIBOV strains have been isolated in several provinces across China, Japan, East Asia, and Nepal, South Asia. Furthermore, TIBOVs have also been isolated from Culex mosquitoes, and several midge species. Additionally, TIBOV neutralizing antibodies have been detected in serum specimens from several mammals, including cattle, sheep, and pigs. All of the evidence suggests that the geographical distribution of TIBOVs has significantly expanded in recent years, with an increased number of vector species involved in its transmission. Moreover, the virus demonstrated infectivity towards a variety of animals. Although TIBOV is considered an emerging orbivirus, detailed reports on its genome and molecular evolution are currently lacking. Thus, this study performed the whole-genome nucleotide sequencing of three TIBOV isolates from mosquitoes and midges collected in China in 2009, 2011, and 2019. Furthermore, the genome and molecular genetic evolution of TIBOVs isolated from different countries, periods, and hosts (mosquitoes, midges, and cattle) was systematically analyzed. The results revealed no molecular specificity among TIBOVs isolated from different countries, periods, and vectors. Meanwhile, the time-scaled phylogenetic analysis demonstrated that the most recent common ancestor (TMRCA) of TIBOV appeared approximately 797 years ago (95% HPD: 16-2347) and subsequently differentiated at least three times, resulting in three distinct genotypes. The evolutionary rate of TIBOVs was about 2.12 × 10-3 nucleotide substitutions per site per year (s/s/y) (95% HPD: 3.07 × 10-5, 9.63 × 10-3), which is similar to that of the bluetongue virus (BTV), also in the Orbivirus genus. Structural analyses of the viral proteins revealed that the three-dimensional structures of the outer capsid proteins of TIBOV and BTV were similar. These results suggest that TIBOV is a newly discovered and rapidly evolving virus transmitted by various blood-sucking insects. Given the potential public health burden of this virus and its high infectious rate in a wide range of animals, it is significant to strengthen research on the genetic variation of TIBOVs in blood-feeding insects and mammals in the natural environment and the infection status in animals.


Subject(s)
Anopheles , Orbivirus , Reoviridae Infections , Cattle , Animals , Sheep/genetics , Swine , Orbivirus/genetics , Tibet , Phylogeny , Mosquito Vectors , Mammals/genetics , Nucleotides , Genome, Viral , Reoviridae Infections/veterinary , Reoviridae Infections/genetics
6.
Nat Ecol Evol ; 8(5): 947-959, 2024 May.
Article in English | MEDLINE | ID: mdl-38519631

ABSTRACT

Mosquito transmitted viruses are responsible for an increasing burden of human disease. Despite this, little is known about the diversity and ecology of viruses within individual mosquito hosts. Here, using a meta-transcriptomic approach, we determined the viromes of 2,438 individual mosquitoes (81 species), spanning ~4,000 km along latitudes and longitudes in China. From these data we identified 393 viral species associated with mosquitoes, including 7 (putative) species of arthropod-borne viruses (that is, arboviruses). We identified potential mosquito species and geographic hotspots of viral diversity and arbovirus occurrence, and demonstrated that the composition of individual mosquito viromes was strongly associated with host phylogeny. Our data revealed a large number of viruses shared among mosquito species or genera, enhancing our understanding of the host specificity of insect-associated viruses. We also detected multiple virus species that were widespread throughout the country, perhaps reflecting long-distance mosquito dispersal. Together, these results greatly expand the known mosquito virome, linked viral diversity at the scale of individual insects to that at a country-wide scale, and offered unique insights into the biogeography and diversity of viruses in insect vectors.


Subject(s)
Culicidae , Mosquito Vectors , Virome , Animals , Culicidae/virology , China , Mosquito Vectors/virology , Metagenomics , Arboviruses/genetics , Arboviruses/classification , Phylogeny , Biodiversity
7.
Article in English | MEDLINE | ID: mdl-38551054

ABSTRACT

Acquired Immune Deficiency Syndrome (AIDS) is a devastating infectious disease caused by the Human Immunodeficiency Virus type 1 (HIV-1). Enfuvirtide(T20) is the first HIV-1 fusion inhibitor for marketing, which plays an important role in AIDS treatment. However, in the clinical application process, T20 has several drawbacks, such as a high level of development of drug resistance, a short half-life in vivo, and rapid renal clearance, which severely limits the clinical application. Therefore, the development of novel fusion inhibitors to address T20 shortcomings has long been the research hotspot. Short peptides have a long half-life through modification and a high barrier to drug resistance, which is expected to solve the current fusion inhibitors dilemma. In this paper, we summarized six emerging R&D strategies for short peptide-based fusion inhibitors against HIV-1. We hope that this review will provide fresh insights into the development of novel fusion inhibitors, as well as ideas for other viral fusion inhibitor discoveries based on the common membrane fusion 6-HB core structure.

8.
Front Cell Infect Microbiol ; 14: 1302314, 2024.
Article in English | MEDLINE | ID: mdl-38343888

ABSTRACT

Background: Japanese encephalitis (JE) is a notifiable infectious disease in China. Information on every case of JE is reported to the superior health administration department. However, reported cases include both laboratory-confirmed and clinically diagnosed cases. This study aimed to differentiate between clinical and laboratory-confirmed cases of Japanese encephalitis virus (JEV) infection, and improve the accuracy of reported JE cases by analyzing the acute-phase serum and cerebrospinal fluid of all reported JE cases in the Sichuan province from 2012 to 2022. Methods: All acute-phase serum and/or cerebrospinal fluid samples of the reported JE cases were screened for IgM(ImmunoglobulinM)to JEV using the enzyme-linked immunosorbent assay (ELISA), and the detection of the viral genes of JEV and 9 other pathogens including enterovirus (EV), using reverse transcription PCR was attempted. Epidemiological analyses of JE and non-JE cases based on sex, age, onset time, and geographical distribution were also performed. Results: From 2012 to 2022, 1558 JE cases were reported in the Sichuan province. The results of serological (JEV-specific IgM) and genetic testing for JEV showed that 81% (1262/1558) of the reported cases were confirmed as JEV infection cases (laboratory-confirmed cases). Among the 296 cases of non-JEV infection, 6 viruses were detected in the cerebrospinal fluid in 62 cases, including EV and the Epstein-Barr virus (EBV), constituting 21% (62/296) of all non-JE cases. Among the 62 non-JEV infection cases with confirmed pathogens, infections with EV and EBV included 17 cases each, herpes simplex virus (HSV-1/2) included 14 cases, varicella- zoster virus included 6 cases, mumps virus included 2 cases, and human herpes viruses-6 included 1 case. Additionally, there were five cases involving mixed infections (two cases of EV/EBV, one case of HSV-1/HSV-2, one case of EBV/HSV-1, and one case of EV/herpes viruses-6). The remaining 234 cases were classified as unknown viral encephalitis cases. Our analysis indicated that those aged 0-15 y were the majority of the patients among the 1558 reported JE cases. However, the incidence of laboratory-confirmed JE cases in the >40 y age group has increased in recent years. The temporal distribution of laboratory-confirmed cases of JE revealed that the majority of cases occurred from May to September each year, with the highest incidence in August. Conclusion: The results of this study indicate that there is a certain discrepancy between clinically diagnosed and laboratory-confirmed cases of JE. Each reported case should be based on laboratory detection results, which is of great importance in improving the accuracy of case diagnosis and reducing misreporting. Our results are not only important for addressing JE endemic to the Sichuan province, but also provide a valuable reference for the laboratory detection of various notifiable infectious diseases in China and other regions outside China.


Subject(s)
Encephalitis Virus, Japanese , Encephalitis, Japanese , Enterovirus Infections , Enterovirus , Epstein-Barr Virus Infections , Herpesvirus 1, Human , Adult , Female , Humans , Male , Antibodies, Viral , Encephalitis Virus, Japanese/genetics , Encephalitis, Japanese/diagnosis , Encephalitis, Japanese/epidemiology , Enterovirus Infections/diagnosis , Enterovirus Infections/epidemiology , Herpesvirus 2, Human , Herpesvirus 4, Human , Immunoglobulin M , Infant, Newborn , Infant , Child, Preschool , Child , Adolescent
9.
Adv Mater ; 36(16): e2312439, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38281100

ABSTRACT

Afterglow materials featuring long emission durations ranging from milliseconds to hours have garnered increasing interest owing to their potential applications in sensing, bioimaging, and anti-counterfeiting. Unfortunately, polymeric materials rarely exhibit afterglow properties under ambient conditions because of the rapid nonradiative decay rate of triplet excitons. In this study, hour-long afterglow (HLA) polymer films are fabricated using a facile molecular doping strategy. Flexible and transparent polymer films emitted a bright afterglow lasting over 11 h at room temperature in air, which is one of the best performances among the organic afterglow materials reported to date. Intriguingly, HLA polymer films can be activated by sunlight, and their cyan afterglow in air can be readily observed by the naked eye. Moreover, the HLA color of the polymer films could be tuned from cyan to red through the Förster resonance energy transfer mechanism. Their application in flexible displays and information storage has also been demonstrated. With remarkable advantages, including an hour-long and bright afterglow, tunable afterglow colors, superior flexibility and transparency, and ease of fabrication, the HLA polymer paves the way for the practical application of afterglow materials in the engineering sector.

10.
Front Cell Infect Microbiol ; 13: 1292693, 2023.
Article in English | MEDLINE | ID: mdl-38076463

ABSTRACT

The Japanese encephalitis virus (JEV) is classified into five distinct genotypes, with genotypes 1 and 3 historically showing higher activity. These genotypes are the primary agents of viral encephalitis in the Asian continent. Genotypes 4 and 5 have remained silent in low-latitude tropical regions since their discovery. From 2009, the hidden genotype 5 suddenly emerged simultaneously in mosquitoes from the Tibetan region of China and those from South Korea in East Asia. The detection of genotype 5 of JEV in these mosquitoes was associated with cases of viral encephalitis in the local population. Similarly, in 2022, the long-silent genotype 4 of JEV emerged in Australia, resulting in a local outbreak of viral encephalitis that primarily affected adults and caused fatalities. The emergence and outbreaks of genotypes 4 and 5 of JEV present new challenges for the prevention and control of Japanese encephalitis (JE). This study not only analyzes the recent emergence of these new genotypes but also discusses their implications in the development of JE vaccines and laboratory tests for newly emerging JEV infections.


Subject(s)
Culicidae , Encephalitis Virus, Japanese , Encephalitis, Japanese , Adult , Animals , Humans , Encephalitis Virus, Japanese/genetics , Genotype , Disease Outbreaks
11.
Curr Med Chem ; 2023 Nov 24.
Article in English | MEDLINE | ID: mdl-38018192

ABSTRACT

SARS-CoV-2 has swept the world in recent years, triggering a global COVID-19 with a tremendous impact on human health and public safety. Similar to other coronaviruses, the six-helix bundle(6-HB) is not only a core structure driving the fusion of the SARS-CoV-2 envelope with the host cell membrane, but also the target of fusion inhibitors. The sequences from the HR1 or HR2 regions composing 6-HB are thus the original primary structures for the development of peptide-based fusion inhibitors. This review summarized the structure-activity relationship of the SARS-CoV-2 6- HB, analyzed the design methods and functional characteristics of peptide-based fusion inhibitors that contain different regions of HRs, and provided an outlook on the cutting- edge approaches for optimal modification of lead compounds (pan-coronavirization, chemical modification, superhelical construction, etc). We hope that this review will provide researchers with a comprehensive understanding of the state-of-art research progress on both 6-HB and peptide-based fusion inhibitors of SARS-CoV-2, and provide some new insights for the development of antiviral drugs.

12.
Front Cell Infect Microbiol ; 13: 1193184, 2023.
Article in English | MEDLINE | ID: mdl-38029255

ABSTRACT

In July 2018, a virus (JXLC1806-2) was isolated from Culicoides biting midges collected in Lichuan County, Jiangxi Province, China. The virus isolate showed significant cytopathic effects within 48 hours after inoculation with mammalian cells (BHK-21). JXLC1806-2 virus could form plaques in BHK-21 cells, and the virus titer was 1×105.6 pfu/mL. After inoculation with the virus, suckling mice developed disease and died. The nucleotide and amino sequence analysis showed that the JXLC1806-2 virus genome was composed of S, M and L segments. Phylogenetic analysis showed that the S, M and L genes of JXLC1806-2 virus belonged to the Tete serogroup, Orthobunyavirus, but formed an independent evolutionary branch from the other members of the Tete serogroup. The results showed that the JXLC1806-2 virus, which was named as Lichuan virus, is a new member of Tete serogroup, and this is the first time that a Tete serogroup virus has been isolated in China.


Subject(s)
Ceratopogonidae , Orthobunyavirus , Animals , Mice , Orthobunyavirus/genetics , Ceratopogonidae/genetics , Phylogeny , Genome, Viral , China , Mammals/genetics
13.
Int J Biol Macromol ; 253(Pt 8): 127615, 2023 Dec 31.
Article in English | MEDLINE | ID: mdl-37879574

ABSTRACT

Exposure to lead can have harmful effects on the intestines and gut microbiota, leading to toxicity. This study aimed to explore the protective role of Sparassis latifolia polysaccharide (SLP) in safeguarding the intestinal barrier of Kunming mice exposed to lead. The findings indicated that SLP effectively alleviates intestinal lesions, increases the density of cupped cells in the intestine, and reduces inflammation in both serum and the small intestine. Furthermore, SLP maintains the expression of key genes such as ZO-1, Occludin, Claudin-1, Lyz, Ang4, and ZO-2, as well as proteins like claudin-1 and Occludin-1. Furthermore, SLP positively impacts the diversity and richness of microorganisms in the mouse gut microbiota at both the genus and gate levels. It also increases the levels of short-chain fatty acids (SCFAs), including acetic acid, butyric acid, and propionic acid, to varying degrees. In summary, SLP plays a role in alleviating the impaired small intestinal barrier in lead-exposed mice by modulating the intestinal flora, which is consistent with reduced lead absorption. This modulation enhances the integrity of the intestinal barrier, suppresses inflammation, and facilitates the excretion of lead.


Subject(s)
Inflammation , Lead , Mice , Animals , Occludin/genetics , Claudin-1/metabolism , Lead/metabolism , Inflammation/drug therapy , Inflammation/metabolism , Polysaccharides/pharmacology , Polysaccharides/metabolism , Intestinal Mucosa/metabolism
14.
Heliyon ; 9(9): e19862, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37809785

ABSTRACT

Objective: As an important factor tumor regulator,long non-coding RNAs (lncRNAs) have aroused extensive attention via the diverse functional mechanisms that were associated with the pathological and physiological processes of HCC. Here, the main purpose of this study was to provide a clear understanding about the expression, functions and potential mechanism of lncRNA CECR7 (Cat Eye Syndrome Chromosome Region, Candidate 7) in HCC. Methods: RT-qPCR analysis and TCGA database analysis were applied to investigate the expression of CECR7 in HCC cell lines and tissues. Chi-squared Test was employed to explore the correlation between CECR7 expression and HCC clinicopathological features. Besides, Kaplan-Meier curves were constructed to test the effects of CECR7 expression on the prognosis of HCC patients. Transwell assays, MTT assay EdU assay and animal experiments were applied to explore the effects of CECR7 expression on HCC cells migration, invasion, and growth. Furthermore, RNA-seq analysis, luciferase reporter assay and mRNA decay rates assessment were utilized to investigate the mechanism whereby CECR7 regulated EXO1 mRNA. And, rescue experiments were used to determine whether EXO1 was an essential mediator for CECR7 to accelerate HCC cells migration, invasion, and growth. Results: CECR7 was determined to be significantly overexpressed in HCC cell lines and tissues. CECR7 expression was closely correlated with the tumor size, venous infiltration, TNM stage, 5-year overall survival and disease-free survival of HCC. And, CECR7 played a catalytic role in HCC cells migration, invasion, and growth. Furthermore, CECR7 enhanced the stability of EXO1 mRNA by recruiting RNA binding protein U2AF2. And, EXO1 was determined to be an essential mediator for CECR7 to accelerate HCC cells migration, invasion, and growth. Conclusion: In a word, our findings demonstrates that the cancer-promoting gene lncRNA CECR7 motivates HCC metastasis and growth through enhanced mRNA stability of EXO1 mediated by U2AF2, proposing a new insight for targeted therapy of HCC.

15.
bioRxiv ; 2023 Sep 05.
Article in English | MEDLINE | ID: mdl-37732272

ABSTRACT

Mosquito transmitted viruses are responsible for an increasing burden of human disease. Despite this, little is known about the diversity and ecology of viruses within individual mosquito hosts. Using a meta-transcriptomic approach, we analysed the virome of 2,438 individual mosquitos (79 species), spanning ~4000 km along latitudes and longitudes in China. From these data we identified 393 core viral species associated with mosquitos, including seven (putative) arbovirus species. We identified potential species and geographic hotspots of viral richness and arbovirus occurrence, and demonstrated that host phylogeny had a strong impact on the composition of individual mosquito viromes. Our data revealed a large number of viruses shared among mosquito species or genera, expanding our knowledge of host specificity of insect-associated viruses. We also detected multiple virus species that were widespread throughout the country, possibly facilitated by long-distance mosquito migrations. Together, our results greatly expand the known mosquito virome, linked the viral diversity at the scale of individual insects to that at a country-wide scale, and offered unique insights into the ecology of viruses of insect vectors.

16.
Nat Commun ; 14(1): 4079, 2023 07 10.
Article in English | MEDLINE | ID: mdl-37429936

ABSTRACT

Bats are reservoir hosts for many zoonotic viruses. Despite this, relatively little is known about the diversity and abundance of viruses within individual bats, and hence the frequency of virus co-infection and spillover among them. We characterize the mammal-associated viruses in 149 individual bats sampled from Yunnan province, China, using an unbiased meta-transcriptomics approach. This reveals a high frequency of virus co-infection (simultaneous infection of bat individuals by multiple viral species) and spillover among the animals studied, which may in turn facilitate virus recombination and reassortment. Of note, we identify five viral species that are likely to be pathogenic to humans or livestock, based on phylogenetic relatedness to known pathogens or in vitro receptor binding assays. This includes a novel recombinant SARS-like coronavirus that is closely related to both SARS-CoV and SARS-CoV-2. In vitro assays indicate that this recombinant virus can utilize the human ACE2 receptor such that it is likely to be of increased emergence risk. Our study highlights the common occurrence of co-infection and spillover of bat viruses and their implications for virus emergence.


Subject(s)
COVID-19 , Chiroptera , Coinfection , Severe acute respiratory syndrome-related coronavirus , Animals , Humans , Phylogeny , SARS-CoV-2 , Virome , China/epidemiology , Severe acute respiratory syndrome-related coronavirus/genetics
17.
Microbiol Spectr ; 11(4): e0512222, 2023 08 17.
Article in English | MEDLINE | ID: mdl-37306586

ABSTRACT

Nelson Bay reovirus (NBV) is an emerging zoonotic virus that can cause acute respiratory disease in humans. These viruses are mainly discovered in Oceania, Africa, and Asia, and bats have been identified as their main animal reservoir. However, despite recent expansion of diversity for NBVs, the transmission dynamics and evolutionary history of NBVs are still unclear. This study successfully isolated two NBV strains (MLBC1302 and MLBC1313) from blood-sucking bat fly specimens (Eucampsipoda sundaica) and one (WDBP1716) from the spleen specimen of a fruit bat (Rousettus leschenaultii), which were collected at the China-Myanmar border area of Yunnan Province. Syncytia cytopathic effects (CPE) were observed in BHK-21 and Vero E6 cells infected with the three strains at 48 h postinfection. Electron micrographs of ultrathin sections showed numerous spherical virions with a diameter of approximately 70 nm in the cytoplasm of infected cells. The complete genome nucleotide sequence of the viruses was determined by metatranscriptomic sequencing of infected cells. Phylogenetic analysis demonstrated that the novel strains were closely related to Cangyuan orthoreovirus, Melaka orthoreovirus, and human-infecting Pteropine orthoreovirus HK23629/07. Simplot analysis revealed the strains originated from complex genomic reassortment among different NBVs, suggesting the viruses experienced a high reassortment rate. In addition, strains successfully isolated from bat flies also implied that blood-sucking arthropods might serve as potential transmission vectors. IMPORTANCE Bats are the reservoir of many viral pathogens with strong pathogenicity, including NBVs. Nevertheless, it is unclear whether arthropod vectors are involved in transmitting NBVs. In this study, we successfully isolated two NBV strains from bat flies collected from the body surface of bats, which implies that they may be vectors for virus transmission between bats. While the potential threat to humans remains to be determined, evolutionary analyses involving different segments revealed that the novel strains had complex reassortment histories, with S1, S2, and M1 segments highly similar to human pathogens. Further experiments are required to determine whether more NBVs are vectored by bat flies, their potential threat to humans, and transmission dynamics.


Subject(s)
Arthropods , Orthoreovirus , Animals , Humans , China , Genome, Viral , Orthoreovirus/genetics , Phylogeny
18.
Adv Sci (Weinh) ; 10(24): e2301902, 2023 08.
Article in English | MEDLINE | ID: mdl-37357144

ABSTRACT

Organic type-I photosensitizers (PSs) which produce aggressive reactive oxygen species (ROS) with less oxygen-dependent exhibit attractive curative effect for photodynamic therapy (PDT), as they adapt better to hypoxia microenvironment in tumors. However, the reported type-I PSs are limited and its exacted mechanism of oxygen dependence is still unclear. Herein, new selenium-containing type-I PSs of Se6 and Se5 with benzoselenadiazole acceptor has been designed and possessed aggregation-induced emission characteristic. Benefited from double heavy-atom-effect of selenium and bromine, Se6 shows a smaller energy gap (ΔEST ) of 0.03 eV and improves ROS efficiency. Interestingly, type-I radicals of both long-lived superoxide anion (O2 •‾ ) and short-lived hydroxyl (• OH) are generated from them upon irradiation. This may provide a switch-hitter of dual-radical with complementary lifetimes for PDT. More importantly, simultaneous processes to produce • OH are revealed, including disproportionation of O2 •‾ and reaction between excited PS and water. Actually, Se6 displays superior in-vitro PDT performance to commercial chlorin e6 (Ce6), under normoxia or hypoxia. After intravenous injection, a significantly in-vivo PDT performance is demonstrated on Se6, where tumor growth inhibition rates of 99% is higher than Ce6. These findings offer new insights about both molecular design and mechanism study of type-I PSs.


Subject(s)
Neoplasms , Photochemotherapy , Selenium , Humans , Photosensitizing Agents/therapeutic use , Reactive Oxygen Species , Superoxides , Hydroxyl Radical , Neoplasms/drug therapy , Oxygen , Hypoxia , Tumor Microenvironment
19.
Emerg Infect Dis ; 29(6): 1254-1257, 2023 06.
Article in English | MEDLINE | ID: mdl-37209692

ABSTRACT

We isolated a new orthonairovirus from Dermacentor silvarum ticks near the China-North Korea border. Phylogenetic analysis showed 71.9%-73.0% nucleic acid identity to the recently discovered Songling orthonairovirus, which causes febrile illness in humans. We recommend enhanced surveillance for infection by this new virus among humans and livestock.


Subject(s)
Dermacentor , Viruses , Humans , Animals , Democratic People's Republic of Korea/epidemiology , Phylogeny , China/epidemiology
20.
Curr Pharm Biotechnol ; 24(14): 1774-1783, 2023.
Article in English | MEDLINE | ID: mdl-37005549

ABSTRACT

Viral infection has become one of the worst human lethal diseases. In recent years, major gains have been made in the research of peptide-based antiviral agents on account of the mechanism of viral membrane fusion, among which the peptide Enfuvirtide has been listed for the treatment of AIDS. This paper reviewed a new way to design peptide-based antiviral agents by "bundling" superhelix with isopeptide bonds to construct the active advanced structure. It can solve the problem that peptide precursor compounds derived from the natural sequence of viral envelope protein tend to aggregate and precipitate under physiological conditions and low activity and endow the peptide agents with the feature of thermal stability, protease stability and in vitro metabolic stability. This approach is also providing a new way of thinking for the research and development of broad-spectrum peptide-based antiviral agents.


Subject(s)
Virus Diseases , Viruses , Humans , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Antiviral Agents/chemistry , Enfuvirtide/therapeutic use , Peptides/pharmacology , Peptides/chemistry , Virus Diseases/drug therapy
SELECTION OF CITATIONS
SEARCH DETAIL
...