Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 67
Filter
1.
Infect Dis Poverty ; 13(1): 56, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39090685

ABSTRACT

BACKGROUND: Non-pharmaceutical measures and travel restrictions have halted the spread of coronavirus disease 2019 (COVID-19) and influenza. Nonetheless, with COVID-19 restrictions lifted, an unanticipated outbreak of the influenza B/Victoria virus in late 2021 and another influenza H3N2 outbreak in mid-2022 occurred in Guangdong, southern China. The mechanism underlying this phenomenon remains unknown. To better prepare for potential influenza outbreaks during COVID-19 pandemic, we studied the molecular epidemiology and phylogenetics of influenza A(H3N2) and B/Victoria that circulated during the COVID-19 pandemic in this region. METHODS: From January 1, 2018 to December 31, 2022, we collected throat swabs from 173,401 patients in Guangdong who had acute respiratory tract infections. Influenza viruses in the samples were tested using reverse transcription-polymerase chain reaction, followed by subtype identification and sequencing of hemagglutinin (HA) and neuraminidase (NA) genes. Phylogenetic and genetic diversity analyses were performed on both genes from 403 samples. A rigorous molecular clock was aligned with the phylogenetic tree to measure the rate of viral evolution and the root-to-tip distance within strains in different years was assessed using regression curve models to determine the correlation. RESULTS: During the early period of COVID-19 control, various influenza viruses were nearly undetectable in respiratory specimens. When control measures were relaxed in January 2020, the influenza infection rate peaked at 4.94% (39/789) in December 2021, with the influenza B/Victoria accounting for 87.18% (34/39) of the total influenza cases. Six months later, the influenza infection rate again increased and peaked at 11.34% (255/2248) in June 2022; influenza A/H3N2 accounted for 94.51% (241/255) of the total influenza cases in autumn 2022. The diverse geographic distribution of HA genes of B/Victoria and A/H3N2 had drastically reduced, and most strains originated from China. The rate of B/Victoria HA evolution (3.11 × 10-3, P < 0.05) was 1.7 times faster than before the COVID-19 outbreak (1.80 × 10-3, P < 0.05). Likewise, the H3N2 HA gene's evolution rate was 7.96 × 10-3 (P < 0.05), which is 2.1 times faster than the strains' pre-COVID-19 evolution rate (3.81 × 10-3, P < 0.05). CONCLUSIONS: Despite the extraordinarily low detection rate of influenza infection, concealed influenza transmission may occur between individuals during strict COVID-19 control. This ultimately leads to the accumulation of viral mutations and accelerated evolution of H3N2 and B/Victoria viruses. Monitoring the evolution of influenza may provide insights and alerts regarding potential epidemics in the future.


Subject(s)
COVID-19 , Influenza A Virus, H3N2 Subtype , Influenza B virus , Influenza, Human , Molecular Epidemiology , Phylogeny , SARS-CoV-2 , Humans , COVID-19/epidemiology , COVID-19/virology , COVID-19/transmission , Influenza A Virus, H3N2 Subtype/genetics , Influenza A Virus, H3N2 Subtype/isolation & purification , China/epidemiology , Influenza, Human/epidemiology , Influenza, Human/virology , Influenza B virus/genetics , Influenza B virus/isolation & purification , Influenza B virus/classification , SARS-CoV-2/genetics , Adult , Middle Aged , Male , Female , Pandemics , Young Adult , Aged , Hemagglutinin Glycoproteins, Influenza Virus/genetics , Adolescent , Neuraminidase/genetics , Child , Child, Preschool
2.
J Food Sci ; 2024 Aug 10.
Article in English | MEDLINE | ID: mdl-39126687

ABSTRACT

In this research, a novel kind of walnut (Juglans regia L.) peptides-zinc (Zn-WPs) chelate was obtained using the mass ratio of the walnut peptides (WPs) to ZnSO4.7H2O of 3.5:1 at pH 8.5 and 50°C for 84 min, with the chelation rate of 84.5%. In comparison to walnut peptides (WPs), the contents of aspartic acid and glutamic acid in Zn-WPs chelate are approximately 27%, indicating that hydrophilic amino acids predominantly bind with walnut peptides. Following chelation with zinc ions, the ultraviolet-visible (UV) characteristic absorption peak shifted from 213 nm to 210 nm, while the average particle size of the chelate increased to 8.0 ± 0.14 µm, presenting a loose spherical structure under scanning electron microscopy. These findings suggest the formation of new substances. Fourier-transform infrared spectroscopy (FTIR) revealed carboxyl, amino, and peptide bonds as the chelation sites of WPs and zinc. The IC50 of walnut peptides-zinc (Zn-WPs) chelate is 2.91 mg/mL, indicative of a favorable DPPH radical scavenging rate. Furthermore, Zn-WPs chelate microcapsules were produced via the spray drying method, achieving an encapsulation rate of 75.67 ± 0.83% under optimal conditions. These microcapsules demonstrate robust stability across diverse environmental conditions. This study underscores the potential of Zn-WPs and its chelate microcapsules to enhance stability and bioactivity under varying circumstances. PRACTICAL APPLICATION: In this study, a new walnut peptide-zinc (Zn-WPs) chelate was prepared. The presence of zinc ions changes the structure and properties of walnut peptides and improves its stability. The production of Zn-WPs chelate microcapsules enables Zn-WPs to have strong in vitro stability under different pH and simulated gastrointestinal digestion conditions. These results provide novel insights for developing the walnut peptides as bioactive ingredients in functional foods.

3.
Nutrients ; 16(13)2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38999895

ABSTRACT

Excessive alcohol consumption has led to the prevalence of gastrointestinal ailments. Alleviating gastric disorders attributed to alcohol-induced thinning of the mucus layer has centered on enhancing mucin secretion as a pivotal approach. In this study, foxtail millet bran polyphenol BPIS was divided into two components with MW < 200 D and MW > 200 D by molecular interception technology. Combined with MTT, cell morphology observation, and trypan blue staining, isoferulic acid (IFA) within the MW < 200 D fraction was determined as the effective constituent to mitigate ethanol-induced damage of gastric epithelial cells. Furthermore, a Wistar rat model with similar clinical features to alcohol-induced gastric mucosal injury was established. Then, gastric morphological observation, H&E staining, and assessments of changes in gastric hexosamine content and gastric wall binding mucus levels were carried out, and the results revealed that IFA (10 mg/Kg) significantly ameliorated alcohol-induced gastric mucosal damage. Finally, we applied techniques including Co-IP, molecular docking, and fluorescence spectroscopy and found that IFA inhibited the alcohol-induced downregulation of N-acetylgalactosamintransferase 2 (GALNT2) activity related to mucus synthesis through direct interaction with GALNT2 in gastric epithelial cells, thus promoting mucin synthesis. Our study lays a foundation for whole grain dietary intervention tailored to individuals suffering from alcoholic gastric mucosal injury.


Subject(s)
Ethanol , Gastric Mucosa , Rats, Wistar , Animals , Gastric Mucosa/drug effects , Gastric Mucosa/pathology , Rats , Male , Setaria Plant , Plant Extracts/pharmacology , Humans , Epithelial Cells/drug effects , Molecular Docking Simulation , Disease Models, Animal
4.
Heliyon ; 10(13): e33236, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39027570

ABSTRACT

Given that cities are the major contributors to carbon emissions, studying urban compactness (UC) and its impact on carbon emissions from energy consumption (CEECs) is crucial. This study calculated Hangzhou's township-level urban UC and CEECs using a hybrid subjective-objective weighted regression model on integrated panel datasets. By employing a geographically weighted regression (GWR) model, the spatio-temporal heterogeneity of the UC-CEEC relationship from 2006 to 2019 was uncovered. The results indicated an overall increase in UC, with significant variations across different counties. CEECs were higher in the central region, shifting eastward due to distinct urban development levels and policies. Moreover, the effects of various UC factors exhibited significant spatiotemporal inconsistency, with the impact intensity gradually diminishing. Additionally, the explanatory power of these factors declined and diversified over time. These findings emphasize the need for a comprehensive understanding of the relationship between UC and CEECs within the complex metropolitan environment and the importance of regulating their coordinated development. The research not only offers a more scientific approach to managing the growth of county-level cities and supporting balanced urbanization but also presents policy recommendations.

5.
China CDC Wkly ; 6(21): 469-477, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38854464

ABSTRACT

Introduction: The Omicron variant of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) demonstrates increased transmissibility compared to earlier strains, contributing to a significant number of fatalities in Hong Kong Special Administrative Region (HKSAR), China. Adequate medical resources and medications are essential in mitigating these deaths. This study evaluates the effects of supplementary resources from the Chinese mainland during the fifth wave of the pandemic in HKSAR. Methods: Vector autoregression (VAR) was employed to analyze data from the Oxford coronavirus disease 2019 (COVID-19) Government Response Tracker to assess the effectiveness of control measures during five waves of the pandemic in HKSAR. Additionally, a transmission dynamics model was created to investigate the influence of supplementary medical resources from the Chinese mainland and oral medications on mortality. Results: In the initial four waves, workplace closures, restrictions on public events, international travel bans, and shielding the elderly significantly influenced pandemic management. Contrarily, during the fifth wave, these measures showed no notable effects. When comparing a situation without extra medical resources or COVID-19 oral medication, there was a 17.7% decrease in COVID-19 fatalities with mainland medical resources and an additional 10.2% reduction with oral medications. Together, they contributed to a 26.6% decline in fatalities. Discussion: With the rapid spread of the virus, regional reallocation of medical resources may reduce mortality even when the local healthcare system is overstretched.

6.
Food Chem ; 452: 139424, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-38754167

ABSTRACT

This study explores the influence of incorporating L-cysteine (L-Cys), chitosan (CTS), and citric acid (CA) on the enzymatic modification of potato starch (EPS) films to enhance anti-browning properties. Four types of EPS composite films were evaluated for preserving fresh-cut potato slices at low temperatures to inhibit browning. Their thermal, physiochemical, mechanical, and digestibility properties were assessed. Results indicate that the addition of CTS, CA, and L-Cys improved the anti-browning activity of the EPS films by increasing film thickness and reducing water vapor permeability (WVP), oxygen transmission rate (OTR), ultraviolet (UV) transmittance, and tensile strength (TS). Furthermore, these additives improved the film's microstructure, resulting in reinforced intermolecular interactions, increased elongation at break, heightened crystallinity, enhanced thermal stability, and favorable gastrointestinal digestibility. Overall, EPS/CTS/L-Cys/CA composite films show promise as edible packaging materials with effective anti-browning properties.


Subject(s)
Chitosan , Citric Acid , Cysteine , Solanum tuberosum , Starch , Solanum tuberosum/chemistry , Chitosan/chemistry , Starch/chemistry , Citric Acid/chemistry , Cysteine/chemistry , Tensile Strength , Food Packaging/instrumentation , Permeability
7.
Nano Lett ; 24(12): 3768-3776, 2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38477579

ABSTRACT

The reduced dimensionality and interfacial effects in magnetic nanostructures open the feasibility to tailor magnetic ordering. Here, we report the synthesis of ultrathin metallic Co2Si nanoplates with a total thickness that is tunable to 2.2 nm. The interfacial magnetism coupled with the highly anisotropic nanoplate geometry leads to strong perpendicular magnetic anisotropy and robust hard ferromagnetism at room temperature, with a Curie temperature (TC) exceeding 950 K and a coercive field (HC) > 4.0 T at 3 K and 8750 Oe at 300 K. Theoretical calculations suggest that ferromagnetism originates from symmetry breaking and undercoordinated Co atoms at the Co2Si and SiO2 interface. With protection by the self-limiting intrinsic oxide, the interfacial ferromagnetism of the Co2Si nanoplates exhibits excellent environmental stability. The controllable growth of ambient stable Co2Si nanoplates as 2D hard ferromagnets could open exciting opportunities for fundamental studies and applications in Si-based spintronic devices.

8.
Front Cell Infect Microbiol ; 14: 1347710, 2024.
Article in English | MEDLINE | ID: mdl-38500506

ABSTRACT

Background: Influenza A virus have a distinctive ability to exacerbate SARS-CoV-2 infection proven by in vitro studies. Furthermore, clinical evidence suggests that co-infection with COVID-19 and influenza not only increases mortality but also prolongs the hospitalization of patients. COVID-19 is in a small-scale recurrent epidemic, increasing the likelihood of co-epidemic with seasonal influenza. The impact of co-infection with influenza virus and SARS-CoV-2 on the population remains unstudied. Method: Here, we developed an age-specific compartmental model to simulate the co-circulation of COVID-19 and influenza and estimate the number of co-infected patients under different scenarios of prevalent virus type and vaccine coverage. To decrease the risk of the population developing severity, we investigated the minimum coverage required for the COVID-19 vaccine in conjunction with the influenza vaccine, particularly during co-epidemic seasons. Result: Compared to the single epidemic, the transmission of the SARS-CoV-2 exhibits a lower trend and a delayed peak when co-epidemic with influenza. Number of co-infection cases is higher when SARS-CoV-2 co-epidemic with Influenza A virus than that with Influenza B virus. The number of co-infected cases increases as SARS-CoV-2 becomes more transmissible. As the proportion of individuals vaccinated with the COVID-19 vaccine and influenza vaccines increases, the peak number of co-infected severe illnesses and the number of severe illness cases decreases and the peak time is delayed, especially for those >60 years old. Conclusion: To minimize the number of severe illnesses arising from co-infection of influenza and COVID-19, in conjunction vaccinations in the population are important, especially priority for the elderly.


Subject(s)
COVID-19 , Coinfection , Influenza A virus , Influenza Vaccines , Influenza, Human , Aged , Humans , Middle Aged , Influenza, Human/epidemiology , Influenza, Human/prevention & control , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19 Vaccines , Vaccine Efficacy , Coinfection/epidemiology , SARS-CoV-2 , Vaccination
9.
Emerg Infect Dis ; 30(4): 826-828, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38526372

ABSTRACT

In 2022, we assessed avian influenza A virus subtype H5N6 seroprevalence among the general population in Guangdong Province, China, amid rising numbers of human infections. Among the tested samples, we found 1 to be seropositive, suggesting that the virus poses a low but present risk to the general population.


Subject(s)
Influenza in Birds , Influenza, Human , Animals , Humans , Influenza in Birds/epidemiology , Seroepidemiologic Studies , Influenza, Human/epidemiology , China/epidemiology , Birds
10.
Biomed Pharmacother ; 173: 116377, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38442671

ABSTRACT

Glycogen synthase kinase-3(GSK-3) is a protein kinase that can phosphorylate over a hundred substrates and regulate cell differentiation, proliferation, and death. Researchers have acknowledged the pivotal role of abnormal activation of GSK-3 in the progression of various diseases over the past few decades. Recent studies have mostly concentrated on investigating the function of GSK-3 in the tumor microenvironment, specifically examining the interaction between TAM, NK cells, B cells, and T cells. Furthermore, GSK-3 exhibits a strong association with immunological checkpoints, such as programmed cell death protein 1. Novel GSK-3 inhibitors have potential in tumor immunotherapy, exerting beneficial effects on hematologic diseases and solid tumors. Nevertheless, there is a lack of reviews about the correlation between tumor-associated immune cells and GSK-3. This study intends to analyze the function and mechanism of GSK-3 comprehensively and systematically in the tumor microenvironment, with a special focus on its influence on various immune cells. The objective is to present novel perspectives for GSK-3 immunotherapy.


Subject(s)
Glycogen Synthase Kinase 3 , Neoplasms , Humans , Tumor Microenvironment , Neoplasms/therapy , T-Lymphocytes , Immunotherapy , Glycogen Synthase Kinase 3 beta
11.
Lancet Infect Dis ; 24(5): 535-545, 2024 May.
Article in English | MEDLINE | ID: mdl-38330975

ABSTRACT

BACKGROUND: Onradivir (ZSP1273) is a novel anti-influenza A virus inhibitor. Preclinical studies show that onradivir can inhibit influenza A H1N1 and H3N2 replication and increase the survival rate of infected animals. In this study, we aimed to evaluate the safety and efficacy of three onradivir dosing regimens versus placebo in outpatients with acute uncomplicated influenza A virus infection. METHODS: We did a multicentre, double-blind, randomised, placebo-controlled, phase 2 trial at 20 clinical sites in China. Eligible participants were adults (18-65 years) with an influenza-like illness screened by rapid antigen testing at the first clinical visit, had the presence of a fever (axillary temperature ≥38·0°C), and had the presence of at least one moderate systemic and one respiratory symptom within 48 h of symptom onset. Patients were excluded if they were pregnant, allergic to onradivir, or had received any influenza antiviral medication within 7 days before enrolment. Participants were randomly assigned (1:1:1:1) into four groups by an interactive web response system: onradivir 200 mg twice per day group, onradivir 400 mg twice per day group, onradivir 600 mg once per day group, and a matching placebo group. A 5-day oral treatment course was initiated within 48 h after symptoms onset. The primary outcome was the time to alleviate influenza symptoms in the modified intention-to-treat population. Safety was a secondary outcome. We evaluated the patients' self-assessed severity of seven influenza symptoms on a 4-point ordinal scale, and the treatment-emergent adverse events in all patients. This trial is registered with ClinicalTrials.gov, number NCT04024137. FINDINGS: Between Dec 7, 2019, and May 18, 2020, a total of 205 patients were screened; of whom, 172 (84%) were randomly assigned to receive onradivir (n=43 in the 200 mg twice per day group; n=43 in the 400 mg twice per day group; and n=43 in the 600 mg once per day group), or placebo (n=42). Median age was 22 years (IQR 20-26). All three onradivir groups showed decreased median time to alleviate influenza symptoms (46·92 h [IQR 24·00-81·38] in the 200 mg twice per day group, 54·87 h [23·67-110·62] in the 400 mg twice per day group, and 40·05 h [17·70-65·82] in the 600 mg once per day) compared with the placebo group (62·87 h [36·40-113·25]). The median difference between the onradivir 600 mg once per day group and the placebo group was -22·82 h (p=0·0330). The most frequently reported treatment-emergent adverse event was diarrhoea (71 [42%] of 171), ranging from 33-65% of the patients in onradivir-treated groups compared with 10% in the placebo group; no serious adverse events were observed. INTERPRETATION: Onradivir showed a safety profile comparable to placebo, as well as higher efficacy than placebo in ameliorating influenza symptoms and lowering the viral load in adult patients with uncomplicated influenza infection, especially the onradivir 600 mg once per day regimen. FUNDING: National Multidisciplinary Innovation Team Project of Traditional Chinese Medicine, National Natural Science Foundation of China, Guangdong Science and Technology Foundation, Guangzhou Science and Technology Planning Project, Emergency Key Program of Guangzhou Laboratory, Macao Science and Technology Development Fund, and Guangdong Raynovent Biotech.


Subject(s)
Antiviral Agents , Influenza, Human , Humans , Influenza, Human/drug therapy , Adult , Male , Double-Blind Method , Female , Middle Aged , Antiviral Agents/therapeutic use , Antiviral Agents/administration & dosage , Antiviral Agents/adverse effects , Young Adult , Adolescent , Aged , Treatment Outcome , China , Influenza A Virus, H1N1 Subtype/drug effects , Influenza A Virus, H3N2 Subtype/drug effects
12.
Polymers (Basel) ; 16(3)2024 Jan 31.
Article in English | MEDLINE | ID: mdl-38337280

ABSTRACT

In this study, gold nanoparticles (AuNPs) were synthesized in situ using chitin nanogels (CNGs) as templates to prepare composites (CNGs@AuNPs) with good photothermal properties, wherein their drug release properties in response to stimulation by near-infrared (NIR) light were investigated. AuNPs with particle sizes ranging from 2.5 nm to 90 nm were prepared by varying the reaction temperature and chloroauric acid concentration. The photothermal effect of different materials was probed by near-infrared light. Under 1 mg/mL of chloroauric acid at 120 °C, the prepared CNGs@AuNPs could increase the temperature by 32 °C within 10 min at a power of 2 W/cm2. The Adriamycin hydrochloride (DOX) was loaded into the CNGs@AuNPs to investigate their release behaviors under different pH values, temperatures, and near-infrared light stimulations. The results showed that CNGs@AuNPs were pH- and temperature-responsive, suggesting that low pH and high temperature could promote drug release. In addition, NIR light stimulation accelerated the drug release. Cellular experiments confirmed the synergistic effect of DOX-loaded CNGs@AuNPs on chemotherapy and photothermal therapy under NIR radiation.

13.
Small ; 20(28): e2309620, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38294996

ABSTRACT

2D A 2 III B 3 VI ${\mathrm{A}}_2^{{\mathrm{III}}}{\mathrm{B}}_3^{{\mathrm{VI}}}$ compounds (A = Al, Ga, In, and B = S, Se, and Te) with intrinsic structural defects offer significant opportunities for high-performance and functional devices. However, obtaining 2D atomic-thin nanoplates with non-layered structure on SiO2/Si substrate at low temperatures is rare, which hinders the study of their properties and applications at atomic-thin thickness limits. In this study, the synthesis of ultrathin, non-layered α-In2Te3 nanoplates is demonstrated using a BiOCl-assisted chemical vapor deposition method at a temperature below 350 °C on SiO2/Si substrate. Comprehensive characterization results confirm the high-quality single crystal is the low-temperature cubic phase α-In2Te3 , possessing a noncentrosymmetric defected ZnS structure with good second harmonic generation. Moreover, α-In2Te3 is revealed to be a p-type semiconductor with a direct and narrow bandgap value of 0.76 eV. The field effect transistor exhibits a high mobility of 18 cm2 V-1 s-1, and the photodetector demonstrates stable photoswitching behavior within a broadband photoresponse from 405 to 1064 nm, with a satisfactory response time of τrise = 1 ms. Notably, the α-In2Te3 nanoplates exhibit good stability against ambient environments. Together, these findings establish α-In2Te3 nanoplates as promising candidates for next-generation high-performance photonics and electronics.

14.
EClinicalMedicine ; 67: 102359, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38188690

ABSTRACT

Background: Leritrelvir is a novel α-ketoamide based peptidomimetic inhibitor of SARS-CoV-2 main protease. A preclinical study has demonstrated leritrelvir poses similar antiviral activities towards different SARS-CoV-2 variants compared with nirmatrelvir. A phase 2 clinical trial has shown a comparable antiviral efficacy and safety between leritrelvir with and without ritonavir co-administration. This trial aims to test efficacy and safety of leritrelvir monotherapy in adults with mild-to-moderate COVID-19. Methods: This was a randomised, double-blind, placebo-controlled, multicentre phase 3 trial at 29 clinical sites in China. Enrolled patients were from 18 to 75 years old, diagnosed with mild or moderate COVID-19 and not requiring hospitalization. Patients had a positive SARS-CoV-2 nucleic acid test (NAT) and at least one of the COVID-19 symptoms within 48 h before randomization, and the interval between the first positive SARS-CoV-2 NAT and randomization was ≤120 h (5 days). Patients were randomly assigned in a 1:1 ratio to receive a 5-day course of either oral leritrelvir 400 mg TID or placebo. The primary efficacy endpoint was the time from the first dose to sustained clinical recovery of all 11 symptoms (stuffy or runny nose, sore throat, shortness of breath or dyspnea, cough, muscle or body aches, headache, chills, fever ≥37 °C, nausea, vomiting, and diarrhea). The safety endpoint was the incidence of adverse events (AE). Primary and safety analyses were performed in the intention-to-treat (ITT) population. This study is registered with ClinicalTrials.gov, NCT05620160. Findings: Between Nov 12 and Dec 30, 2022 when the zero COVID policy was abolished nationwide, a total of 1359 patients underwent randomization, 680 were assigned to leritrelvir group and 679 to placebo group. The median time to sustained clinical recovery in leritrelvir group was significantly shorter (251.02 h [IQR 188.95-428.68 h]) than that of Placebo (271.33 h [IQR 219.00-529.63 h], P = 0.0022, hazard ratio [HR] 1.20, 95% confidence interval [CI], 1.07-1.35). Further analysis of subgroups for the median time to sustained clinical recovery revealed that (1) subgroup with positive viral nucleic acid tested ≤72 h had a 33.9 h difference in leritrelvir group than that of placebo; (2) the subgroup with baseline viral load >8 log 10 Copies/mL in leritrelvir group had 51.3 h difference than that of placebo. Leritrelvir reduced viral load by 0.82 log10 on day 4 compared to placebo. No participants in either group progressed to severe COVID-19 by day 29. Adverse events were reported in two groups: leritrelvir 315 (46.46%) compared with placebo 292 (43.52%). Treatment-relevant AEs were similar 218 (32.15%) in the leritrelvir group and 186 (27.72%) in placebo. Two cases of COVID-19 pneumonia were reported in placebo group, and one case in leritrelvir group, none of them were considered by the investigators to be leritrelvir related. The most frequently reported AEs (occurring in ≥5% of participants in at least one group) were laboratory finding: hypertriglyceridemia (leritrelvir 79 [11.7%] vs. placebo 70 [10.4%]) and hyperlipidemia (60 [8.8%] vs. 52 [7.7%]); all of them were nonserious. Interpretation: Leritrelvir monotherapy has good efficacy for mild-to-moderate COVID-19 and without serious safety concerns. Funding: This study was funded by the National Multidisciplinary Innovation Team Project of Traditional Chinese Medicine, Guangdong Science and Technology Foundation, Guangzhou Science and Technology Planning Project and R&D Program of Guangzhou Laboratory.

15.
J Colloid Interface Sci ; 656: 504-512, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38007942

ABSTRACT

Due to the limited exploitation and utilization of fossil energy resources in recent years, it is imperative to explore and develop new energy materials. As an electrode material for batteries, MnCO3 has the advantages of safety, non-toxicity, and wide availability of raw materials. But it also has some disadvantages, such as short cycle period and low conductivity. In order to improve these deficiencies, we designed a MnCO3@Mn3O4 heterostructure material by a simple solvothermal method, which possessed a microstructure of "butterfly-tie". Owing to the introduction of Mn3O4 and the layered structure of "butterfly-tie", MnCO3@Mn3O4 possessed a discharge capacity of 165 mAh/g when the current density was 0.2 A/g and exhibited satisfactory rate performance. The MnCO3@Mn3O4 heterostructure was optimized by density functional theory (DFT), and the deformation charge density was calculated. It was found that the MnCO3@Mn3O4 heterostructure is stable owing to the molecular interaction between the O atoms from MnCO3 and the Mn atoms from Mn3O4 at the interface of heterojunction. Therefore, the MnCO3@Mn3O4 heterostructure material has promising applications as safe and efficient cathode material for energy batteries.

16.
Front Public Health ; 11: 1259084, 2023.
Article in English | MEDLINE | ID: mdl-38106897

ABSTRACT

Background: As China amends its "zero COVID" strategy, a sudden increase in the number of infections may overwhelm medical resources and its impact has not been quantified. Specific mitigation strategies are needed to minimize disruption to the healthcare system and to prepare for the next possible epidemic in advance. Method: We develop a stochastic compartmental model to project the burden on the medical system (that is, the number of fever clinic visits and admission beds) of China after adjustment to COVID-19 policy, which considers the epidemiological characteristics of the Omicron variant, age composition of the population, and vaccine effectiveness against infection and severe COVD-19. We also estimate the effect of four-dose vaccinations (heterologous and homologous), antipyretic drug supply, non-pharmacological interventions (NPIs), and triage treatment on mitigating the domestic infection peak. Result: As to the impact on the medical system, this epidemic is projected to result in 398.02 million fever clinic visits and 16.58 million hospitalizations, and the disruption period on the healthcare system is 18 and 30 days, respectively. Antipyretic drug supply and booster vaccination could reduce the burden on emergency visits and hospitalization, respectively, while neither of them could not reduce to the current capacity. The synergy of several different strategies suggests that increasing the heterologous booster vaccination rate for older adult to over 90% is a key measure to alleviate the bed burden for respiratory diseases on the basis of expanded healthcare resource allocation. Conclusion: The Omicron epidemic followed the adjustment to COVID-19 policy overloading many local health systems across the country at the end of 2022. The combined effect of vaccination, antipyretic drug supply, triage treatment, and PHSMs could prevent overwhelming medical resources.


Subject(s)
Antipyretics , COVID-19 , Humans , Aged , Antipyretics/therapeutic use , COVID-19/epidemiology , COVID-19/prevention & control , SARS-CoV-2 , China/epidemiology , Fever , Policy
17.
J Neuroinflammation ; 20(1): 247, 2023 Oct 25.
Article in English | MEDLINE | ID: mdl-37880726

ABSTRACT

BACKGROUND: The astrocytes in the central nervous system (CNS) exhibit morphological and functional diversity in brain region-specific pattern. Functional alterations of reactive astrocytes are commonly present in human temporal lobe epilepsy (TLE) cases, meanwhile the neuroinflammation mediated by reactive astrocytes may advance the development of hippocampal epilepsy in animal models. Nuclear factor I-A (NFIA) may regulate astrocyte diversity in the adult brain. However, whether NFIA endows the astrocytes with regional specificity to be involved in epileptogenesis remains elusive. METHODS: Here, we utilize an interference RNA targeting NFIA to explore the characteristics of NFIA expression and its role in astrocyte reactivity in a 4-aminopyridine (4-AP)-induced seizure model in vivo and in vitro. Combined with the employment of a HA-tagged plasmid overexpressing NFIA, we further investigate the precise mechanisms how NIFA facilitates epileptogenesis. RESULTS: 4-AP-induced NFIA upregulation in hippocampal region is astrocyte-specific, and primarily promotes detrimental actions of reactive astrocyte. In line with this phenomenon, both NFIA and vanilloid transient receptor potential 4 (TRPV4) are upregulated in hippocampal astrocytes in human samples from the TLE surgical patients and mouse samples with intraperitoneal 4-AP. NFIA directly regulates mouse astrocytic TRPV4 expression while the quantity and the functional activity of TRPV4 are required for 4-AP-induced astrocyte reactivity and release of proinflammatory cytokines in the charge of NFIA upregulation. NFIA deficiency efficiently inhibits 4-AP-induced TRPV4 upregulation, weakens astrocytic calcium activity and specific astrocyte reactivity, thereby mitigating aberrant neuronal discharges and neuronal damage, and suppressing epileptic seizure. CONCLUSIONS: Our results uncover the critical role of NFIA in astrocyte reactivity and illustrate how epileptogenic brain injury initiates cell-specific signaling pathway to dictate the astrocyte responses.


Subject(s)
Epilepsy, Temporal Lobe , Epilepsy , NFI Transcription Factors , TRPV Cation Channels , Animals , Humans , Mice , 4-Aminopyridine/adverse effects , Astrocytes/metabolism , Brain/metabolism , Central Nervous System/metabolism , Epilepsy/metabolism , Epilepsy, Temporal Lobe/chemically induced , Epilepsy, Temporal Lobe/metabolism , NFI Transcription Factors/genetics , NFI Transcription Factors/metabolism , TRPV Cation Channels/metabolism , Up-Regulation
18.
Pediatr Infect Dis J ; 42(12): 1035-1040, 2023 12 01.
Article in English | MEDLINE | ID: mdl-37820276

ABSTRACT

OBJECTIVE: To identify the difference in clinical characteristics between viral pneumonia and Mycoplasma pneumoniae , providing cues on their differential diagnosis for primary hospitals with the insufficient pathogen detection capacity. METHODS: We retrospectively reviewed the medical records of hospitalized children with acute respiratory tract infections, and pathogenic microbes test results were analyzed. Clinical characteristics, routine blood parameters and hospitalization duration and fee were compared between M. pneumoniae and viral pneumonia. We used in the multivariable logistic regression to predict the probability of children with M. pneumoniae and graphically represented by a dynamic nomogram. The discrimination and clinical utility of the model were confirmed by receiver operating characteristic and decision curve analysis curves. RESULT: A total of 375 children with community-acquired pneumonia were included. Mycoplasma infection accounted for the largest proportion (22.13%). The incidence of both hypothermia and vomiting was lower in M. pneumoniae compared to viral pneumonia (hypothermia: 10.50% vs. 0.00%; vomiting: 7.90% vs. 0.00%). The prevalence of hyperthermia was higher in M. pneumoniae (hyperthermia: 89.5% vs. 100%). Procalcitonin, peripheral blood white blood cell count and lymphocyte levels were higher in the viral pneumonia group, and eosinophil levels were conversely lower. As for the duration of illness, the mean length of stay was 5.20 ± 2.12 (viral pneumonia) and 6.27 ± 2.48 days ( M. pneumoniae ). Children with M. pneumoniae had higher overall hospital costs and required more medical treatment. The above were all statistically significant with a P < 0.05. The scoring system was established based on the above results. Receiver operating characteristic curves showed good model-discrimination ability with 0.844 of the area under the curve in the training set and 0.778 in the test set. Decision curve analysis curves demonstrated the discriminative superiority of this model. The web-based dynamic nomogram calculator is accessible at https://zhxylxy0160128.shinyapps.io/Nomogram/ . CONCLUSION: Nomograms have satisfactory discrimination, and clinical utility may benefit in predicting the probability of developing M. pneumoniae in children. Children with M. pneumoniae have a higher burden than those with viral pneumonia and may require more intensive in-hospital monitoring.


Subject(s)
Community-Acquired Infections , Hypothermia , Pneumonia, Mycoplasma , Pneumonia, Viral , Child , Humans , Mycoplasma pneumoniae , Pneumonia, Mycoplasma/diagnosis , Pneumonia, Mycoplasma/epidemiology , Pneumonia, Mycoplasma/drug therapy , Retrospective Studies , Nomograms , Hospitals , Vomiting , Community-Acquired Infections/diagnosis , Community-Acquired Infections/epidemiology
19.
Chemosphere ; 340: 139899, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37611769

ABSTRACT

In this study, a green zero-valent iron-loaded carbon composite (ZVI-SCG) was synthesized using coffee grounds and FeCl3 solution through two-steps method, and the synthesized ZVI-SCG was used in the activation of peroxydisulfate (PDS) to degrade Levofloxacin (LEX). Results revealed that ZVI-SCG exhibited a great potential for LEX removal by adsorption and catalytic degradation in the ZVI-SCG/PDS system, and 99% of LEX was removed in the ZVI-SCG/PDS system within 60 min. ZVI-SCG/PDS system showed a high reactivity toward LEX degradation under realistic environmental conditions. Also, the ZVI-SCG/PDS system could effectively degrade several quinolone antibiotics including gatifloxacin, ciprofloxacin and LEX in single and simultaneous removal modes. A potential reaction mechanism of LEX degradation by ZVI-SCG/PDS system was proposed, SO4•-, HO•, O2•- and 1O2 involved in radical and non-radical pathways took part in catalytic degradation of LEX by ZVI-SCG/PDS system, but HO• might be the main reactive species for LEX degradation. The possible degradation pathway of LEX was also proposed based on the identified ten intermediate products, LEX degradation was successfully achieved through decarboxylation, opening ring and hydroxylation processes. The potential toxicity of LEX and its oxidation products decreased significantly after treatment. This study provides a promising strategy of water treatment for the antibiotics-containing wastewater.


Subject(s)
Anti-Bacterial Agents , Levofloxacin , Adsorption , Carbon , Iron
20.
Membranes (Basel) ; 13(7)2023 Jul 24.
Article in English | MEDLINE | ID: mdl-37505054

ABSTRACT

To explore the application of forward osmosis (FO) technology in the organic solvent recovery field, we prepared a new solvent-resistant triple layer thin film composite (TFC) membrane on the PI (polyimide) substrate. The deep eutectic supramolecular polymers (DESPs) interlayer was constructed on the substrate to improve the separation performance and solvent resistance. DESPs interlayer was formed by mixing and heating with cyclodextrin as the hydrogen bond acceptor and L-malic acid as the hydrogen bond donor. The chemical changes, surface property and morphology of the composite membrane with DESPs interlayer were characterized. The separation performance and stability of the triple layer composite membrane in organic solvent FO were studied. For the monascorubrin-ethanol system, the permeation flux of TFC/DESPs5-PI membrane could reach 9.51 LMH while the rejection rate of monascorubrin was 98.4% (1.0 M LiCl/ethanol as draw solution), which was better than the pristine membrane. Therefore, this solvent-resistant triple layer composite FO membrane has good potential for the recovery of organic solvents.

SELECTION OF CITATIONS
SEARCH DETAIL