Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 22
1.
Psychiatry Clin Neurosci ; 77(5): 273-281, 2023 May.
Article En | MEDLINE | ID: mdl-36579663

AIM: The authors applied natural language processing and machine learning to explore the disease-related language patterns that warrant objective measures for assessing language ability in Japanese patients with Alzheimer disease (AD), while most previous studies have used large publicly available data sets in Euro-American languages. METHODS: The authors obtained 276 speech samples from 42 patients with AD and 52 healthy controls, aged 50 years or older. A natural language processing library for Python was used, spaCy, with an add-on library, GiNZA, which is a Japanese parser based on Universal Dependencies designed to facilitate multilingual parser development. The authors used eXtreme Gradient Boosting for our classification algorithm. Each unit of part-of-speech and dependency was tagged and counted to create features such as tag-frequency and tag-to-tag transition-frequency. Each feature's importance was computed during the 100-fold repeated random subsampling validation and averaged. RESULTS: The model resulted in an accuracy of 0.84 (SD = 0.06), and an area under the curve of 0.90 (SD = 0.03). Among the features that were important for such predictions, seven of the top 10 features were related to part-of-speech, while the remaining three were related to dependency. A box plot analysis demonstrated that the appearance rates of content words-related features were lower among the patients, whereas those with stagnation-related features were higher. CONCLUSION: The current study demonstrated a promising level of accuracy for predicting AD and found the language patterns corresponding to the type of lexical-semantic decline known as 'empty speech', which is regarded as a characteristic of AD.


Alzheimer Disease , Language Disorders , Humans , East Asian People , Language , Language Disorders/etiology , Machine Learning , Speech , Middle Aged
2.
Front Psychiatry ; 13: 954703, 2022.
Article En | MEDLINE | ID: mdl-36532181

Introduction: Psychiatric disorders are diagnosed through observations of psychiatrists according to diagnostic criteria such as the DSM-5. Such observations, however, are mainly based on each psychiatrist's level of experience and often lack objectivity, potentially leading to disagreements among psychiatrists. In contrast, specific linguistic features can be observed in some psychiatric disorders, such as a loosening of associations in schizophrenia. Some studies explored biomarkers, but biomarkers have yet to be used in clinical practice. Aim: The purposes of this study are to create a large dataset of Japanese speech data labeled with detailed information on psychiatric disorders and neurocognitive disorders to quantify the linguistic features of those disorders using natural language processing and, finally, to develop objective and easy-to-use biomarkers for diagnosing and assessing the severity of them. Methods: This study will have a multi-center prospective design. The DSM-5 or ICD-11 criteria for major depressive disorder, bipolar disorder, schizophrenia, and anxiety disorder and for major and minor neurocognitive disorders will be regarded as the inclusion criteria for the psychiatric disorder samples. For the healthy subjects, the absence of a history of psychiatric disorders will be confirmed using the Mini-International Neuropsychiatric Interview (M.I.N.I.). The absence of current cognitive decline will be confirmed using the Mini-Mental State Examination (MMSE). A psychiatrist or psychologist will conduct 30-to-60-min interviews with each participant; these interviews will include free conversation, picture-description task, and story-telling task, all of which will be recorded using a microphone headset. In addition, the severity of disorders will be assessed using clinical rating scales. Data will be collected from each participant at least twice during the study period and up to a maximum of five times at an interval of at least one month. Discussion: This study is unique in its large sample size and the novelty of its method, and has potential for applications in many fields. We have some challenges regarding inter-rater reliability and the linguistic peculiarities of Japanese. As of September 2022, we have collected a total of >1000 records from >400 participants. To the best of our knowledge, this data sample is one of the largest in this field. Clinical Trial Registration: Identifier: UMIN000032141.

3.
Front Psychiatry ; 13: 1025517, 2022.
Article En | MEDLINE | ID: mdl-36620664

Introduction: Few biomarkers can be used clinically to diagnose and assess the severity of depression. However, a decrease in activity and sleep efficiency can be observed in depressed patients, and recent technological developments have made it possible to measure these changes. In addition, physiological changes, such as heart rate variability, can be used to distinguish depressed patients from normal persons; these parameters can be used to improve diagnostic accuracy. The proposed research will explore and construct machine learning models capable of detecting depressive episodes and assessing their severity using data collected from wristband-type wearable devices. Methods and analysis: Patients with depressive symptoms and healthy subjects will wear a wristband-type wearable device for 7 days; data on triaxial acceleration, pulse rate, skin temperature, and ultraviolet light will be collected. On the seventh day of wearing, the severity of depressive episodes will be assessed using Structured Clinical Interview for DSM-5 (SCID-5), Hamilton Depression Rating Scale (HAMD), and other scales. Data for up to five 7-day periods of device wearing will be collected from each subject. Using wearable device data associated with clinical symptoms as supervisory data, we will explore and build a machine learning model capable of identifying the presence or absence of depressive episodes and predicting the HAMD scores for an unknown data set. Discussion: Our machine learning model could improve the clinical diagnosis and management of depression through the use of a wearable medical device. Clinical trial registration: [https://jrct.niph.go.jp/latest-detail/jRCT1031210478], identifier [jRCT1031210478].

4.
BMC Bioinformatics ; 22(Suppl 6): 427, 2021 Jun 02.
Article En | MEDLINE | ID: mdl-34078257

BACKGROUND: The increasing use of whole metagenome sequencing has spurred the need to improve de novo assemblers to facilitate the discovery of unknown species and the analysis of their genomic functions. MetaVelvet-SL is a short-read de novo metagenome assembler that partitions a multi-species de Bruijn graph into single-species sub-graphs. This study aimed to improve the performance of MetaVelvet-SL by using a deep learning-based model to predict the partition nodes in a multi-species de Bruijn graph. RESULTS: This study showed that the recent advances in deep learning offer the opportunity to better exploit sequence information and differentiate genomes of different species in a metagenomic sample. We developed an extension to MetaVelvet-SL, which we named MetaVelvet-DL, that builds an end-to-end architecture using Convolutional Neural Network and Long Short-Term Memory units. The deep learning model in MetaVelvet-DL can more accurately predict how to partition a de Bruijn graph than the Support Vector Machine-based model in MetaVelvet-SL can. Assembly of the Critical Assessment of Metagenome Interpretation (CAMI) dataset showed that after removing chimeric assemblies, MetaVelvet-DL produced longer single-species contigs, with less misassembled contigs than MetaVelvet-SL did. CONCLUSIONS: MetaVelvet-DL provides more accurate de novo assemblies of whole metagenome data. The authors believe that this improvement can help in furthering the understanding of microbiomes by providing a more accurate description of the metagenomic samples under analysis.


Deep Learning , Metagenome , Algorithms , Genomics , High-Throughput Nucleotide Sequencing , Metagenomics , Sequence Analysis, DNA , Software
5.
Contemp Clin Trials Commun ; 19: 100649, 2020 Sep.
Article En | MEDLINE | ID: mdl-32913919

INTRODUCTION: Depressive and neurocognitive disorders are debilitating conditions that account for the leading causes of years lived with disability worldwide. However, there are no biomarkers that are objective or easy-to-obtain in daily clinical practice, which leads to difficulties in assessing treatment response and developing new drugs. New technology allows quantification of features that clinicians perceive as reflective of disorder severity, such as facial expressions, phonic/speech information, body motion, daily activity, and sleep. METHODS: Major depressive disorder, bipolar disorder, and major and minor neurocognitive disorders as well as healthy controls are recruited for the study. A psychiatrist/psychologist conducts conversational 10-min interviews with participants ≤10 times within up to five years of follow-up. Interviews are recorded using RGB and infrared cameras, and an array microphone. As an option, participants are asked to wear wrist-band type devices during the observational period. Various software is used to process the raw video, voice, infrared, and wearable device data. A machine learning approach is used to predict the presence of symptoms, severity, and the improvement/deterioration of symptoms. DISCUSSION: The overall goal of this proposed study, the Project for Objective Measures Using Computational Psychiatry Technology (PROMPT), is to develop objective, noninvasive, and easy-to-use biomarkers for assessing the severity of depressive and neurocognitive disorders in the hopes of guiding decision-making in clinical settings as well as reducing the risk of clinical trial failure. Challenges may include the large variability of samples, which makes it difficult to extract the features that commonly reflect disorder severity. TRIAL REGISTRATION: UMIN000021396, University Hospital Medical Information Network (UMIN).

6.
PLoS One ; 15(9): e0238726, 2020.
Article En | MEDLINE | ID: mdl-32915846

BACKGROUND: There are no reliable and validated objective biomarkers for the assessment of depression severity. We aimed to investigate the association between depression severity and timing-related speech features using speech recognition technology. METHOD: Patients with major depressive disorder (MDD), those with bipolar disorder (BP), and healthy controls (HC) were asked to engage in a non-structured interview with research psychologists. Using automated speech recognition technology, we measured three timing-related speech features: speech rate, pause time, and response time. The severity of depression was assessed using the Hamilton Depression Rating Scale 17-item version (HAMD-17). We conducted the current study to answer the following questions: 1) Are there differences in speech features among MDD, BP, and HC? 2) Do speech features correlate with depression severity? 3) Do changes in speech features correlate with within-subject changes in depression severity? RESULTS: We collected 1058 data sets from 241 individuals for the study (97 MDD, 68 BP, and 76 HC). There were significant differences in speech features among groups; depressed patients showed slower speech rate, longer pause time, and longer response time than HC. All timing-related speech features showed significant associations with HAMD-17 total scores. Longitudinal changes in speech rate correlated with changes in HAMD-17 total scores. CONCLUSIONS: Depressed individuals showed longer response time, longer pause time, and slower speech rate than healthy individuals, all of which were suggestive of psychomotor retardation. Our study suggests that speech features could be used as objective biomarkers for the assessment of depression severity.


Bipolar Disorder/physiopathology , Depressive Disorder, Major/physiopathology , Speech , Artificial Intelligence , Case-Control Studies , Female , Humans , Male , Middle Aged , Time Factors
7.
Sensors (Basel) ; 20(12)2020 Jun 26.
Article En | MEDLINE | ID: mdl-32604728

Loss of cognitive ability is commonly associated with dementia, a broad category of progressive brain diseases. However, major depressive disorder may also cause temporary deterioration of one's cognition known as pseudodementia. Differentiating a true dementia and pseudodementia is still difficult even for an experienced clinician and extensive and careful examinations must be performed. Although mental disorders such as depression and dementia have been studied, there is still no solution for shorter and undemanding pseudodementia screening. This study inspects the distribution and statistical characteristics from both dementia patient and depression patient, and compared them. It is found that some acoustic features were shared in both dementia and depression, albeit their correlation was reversed. Statistical significance was also found when comparing the features. Additionally, the possibility of utilizing machine learning for automatic pseudodementia screening was explored. The machine learning part includes feature selection using LASSO algorithm and support vector machine (SVM) with linear kernel as the predictive model with age-matched symptomatic depression patient and dementia patient as the database. High accuracy, sensitivity, and specificity was obtained in both training session and testing session. The resulting model was also tested against other datasets that were not included and still performs considerably well. These results imply that dementia and depression might be both detected and differentiated based on acoustic features alone. Automated screening is also possible based on the high accuracy of machine learning results.


Dementia/diagnosis , Depressive Disorder, Major/diagnosis , Speech , Support Vector Machine , Adult , Aged , Aged, 80 and over , Algorithms , Dementia/classification , Depression/diagnosis , Depressive Disorder, Major/classification , Female , Humans , Male , Middle Aged
8.
J ECT ; 36(3): 205-210, 2020 Sep.
Article En | MEDLINE | ID: mdl-32118692

OBJECTIVE: To identify important clinical or imaging features predictive of an individual's response to electroconvulsive therapy (ECT) by utilizing a machine learning approach. METHODS: Twenty-seven depressed patients who received ECT were recruited. Clinical demographics and pretreatment structural magnetic resonance imaging (MRI) data were used as candidate features to build models to predict remission and post-ECT Hamilton Depression Rating Scale scores. Support vector machine and support vector regression with elastic-net regularization were used to build models using (i) only clinical features, (ii) only MRI features, and (iii) both clinical and MRI features. Consistently selected features across all individuals were identified through leave-one-out cross-validation. RESULTS: Compared with models that include only clinical variables, the models including MRI data improved the prediction of ECT remission: the prediction accuracy improved from 70% to 93%. Features selected consistently across all individuals included volumes in the gyrus rectus, the right anterior lateral temporal lobe, the cuneus, and the third ventricle, as well as 2 clinical features: psychotic features and family history of mood disorder. CONCLUSIONS: Pretreatment structural MRI data improved the individual predictive accuracy of ECT remission, and only a small subset of features was important for prediction.


Brain/diagnostic imaging , Depressive Disorder, Major/therapy , Electroconvulsive Therapy , Machine Learning , Magnetic Resonance Imaging/methods , Aged , Female , Humans , Male , Middle Aged , Predictive Value of Tests , Remission Induction
9.
Compr Psychiatry ; 98: 152169, 2020 Feb 20.
Article En | MEDLINE | ID: mdl-32145559

BACKGROUND: Mood disorders have long been known to affect motor function. While methods to objectively assess such symptoms have been used in experiments, those same methods have not yet been applied in clinical practice because the methods are time-consuming, labor-intensive, or invasive. METHODS: We videotaped the upper body of each subject using a Red-Green-Blue-Depth (RGB-D) sensor during a clinical interview setting. We then examined the relationship between depressive symptoms and body motion by comparing the head motion of patients with major depressive disorders (MDD) and bipolar disorders (BD) to the motion of healthy controls (HC). Furthermore, we attempted to predict the severity of depressive symptoms by using machine learning. RESULTS: A total of 47 participants (HC, n = 16; MDD, n = 17; BD, n = 14) participated in the study, contributing to 144 data sets. It was found that patients with depression move significantly slower compared to HC in the 5th percentile and 50th percentile of motion speed. In addition, Hamilton Depression Rating Scale (HAMD)-17 scores correlated with 5th percentile, 50th percentile, and mean speed of motion. Moreover, using machine learning, the presence and/or severity of depressive symptoms based on HAMD-17 scores were distinguished by a kappa coefficient of 0.37 to 0.43. LIMITATIONS: Limitations include the small number of subjects, especially the number of severe cases and young people. CONCLUSIONS: The RGB-D sensor captured some differences in upper body motion between depressed patients and controls. If much larger samples are accumulated, machine learning may be useful in identifying objective measures for depression in the future.

10.
Heliyon ; 6(2): e03274, 2020 Feb.
Article En | MEDLINE | ID: mdl-32055728

OBJECTIVE: We aimed to develop a machine learning algorithm to screen for depression and assess severity based on data from wearable devices. METHODS: We used a wearable device that calculates steps, energy expenditure, body movement, sleep time, heart rate, skin temperature, and ultraviolet light exposure. Depressed patients and healthy volunteers wore the device continuously for the study period. The modalities were compared hourly between patients and healthy volunteers. XGBoost was used to build machine learning models and 10-fold cross-validation was applied for the validation. RESULTS: Forty-five depressed patients and 41 healthy controls participated, creating a combined 5,250 days' worth of data. Heart rate, steps, and sleep were significantly different between patients and healthy volunteers in some comparisons. Similar differences were also observed longitudinally when patients' symptoms improved. Based on seven days' data, the model identified symptomatic patients with 0.76 accuracy and predicted Hamilton Depression Rating Scale-17 scores with a 0.61 correlation coefficient. Skin temperature, sleep time-related features, and the correlation of those modalities were the most significant features in machine learning. LIMITATIONS: The small number of subjects who participated in this study may have weakened the statistical significance of the study. There are differences in the demographic data among groups although we performed a correction for multiple comparisons. Validation in independent datasets was not performed, although 10-fold cross validation with the internal data was conducted. CONCLUSION: The results indicated that utilizing wearable devices and machine learning may be useful in identifying depression as well as assessing severity.

11.
J Psychiatr Res ; 117: 135-141, 2019 10.
Article En | MEDLINE | ID: mdl-31419618

Electroconvulsive therapy (ECT) is the most effective antidepressant treatment. Biological predictors of clinical outcome to ECT are valuable. We aimed to examine multimodal magnetic resonance imaging (MRI) data that correlates to the efficacy of ECT. Structural and resting-state functional MRI data were acquired from 46 individuals (25 depressed individuals who received ECT, and 21 healthy controls). Whole-brain grey matter volume (GMV) and fractional amplitude of low frequency fluctuations (fALFF) were investigated to identify brain regions associated with post-ECT Hamilton Depression Rating Scale (HAM-D) total scores. GMV and fALFF values were compared with those in healthy controls using analysis of covariance (ANCOVA). Remission was defined by HAM-D ≤7. A multiple regression analysis revealed that pretreatment smaller GMV in the left thalamus was associated with worse response to ECT (i.e. higher post-ECT HAM-D). Pretreatment higher fALFF in the right anterior insula, and lower fALFF in the left thalamus and the cerebellum were associated with worse outcomes. The left thalamus was identified in both GMV and fALFF analyses. Nonremitters showed significantly smaller thalamic GMV compared to remitters and controls. We found that pretreatment thalamic volume and resting-state activity were associated with the efficacy of ECT. Our results highlight the importance of the thalamus as a possible biological predictor and its role in the underlying mechanisms of ECT action.


Brain Mapping , Depressive Disorder, Major/therapy , Electroconvulsive Therapy , Gray Matter , Magnetic Resonance Imaging , Nerve Net , Outcome Assessment, Health Care , Thalamus , Aged , Depressive Disorder, Major/diagnostic imaging , Depressive Disorder, Major/pathology , Depressive Disorder, Major/physiopathology , Female , Gray Matter/diagnostic imaging , Gray Matter/pathology , Gray Matter/physiopathology , Humans , Male , Middle Aged , Nerve Net/diagnostic imaging , Nerve Net/pathology , Nerve Net/physiopathology , Prospective Studies , Thalamus/diagnostic imaging , Thalamus/pathology , Thalamus/physiopathology
12.
Eye Contact Lens ; 44 Suppl 2: S297-S301, 2018 Nov.
Article En | MEDLINE | ID: mdl-29944492

PURPOSE: The assessment of anterior eye diseases and the understanding of psychological functions of blinking can benefit greatly from a validated blinking detection technology. In this work, we proposed an algorithm based on facial recognition built on current video processing technologies to automatically filter and analyze blinking movements. We compared electrooculography (EOG), the gold standard of blinking measurement, with manual video tape recording counting (mVTRc) and our proposed automated video tape recording analysis (aVTRa) in both static and dynamic conditions to validate our aVTRa method. METHODS: We measured blinking in both static condition, where the subject was sitting still with chin fixed on the table, and dynamic condition, where the subject's face was not fixed and natural communication was taking place between the subject and interviewer. We defined concordance of blinks between measurement methods as having less than 50 ms difference between eyes opening and closing. RESULTS: The subjects consisted of seven healthy Japanese volunteers (3 male, four female) without significant eye disease with average age of 31.4±7.2. The concordance of EOG vs. aVTRa, EOG vs. mVTRc, and aVTRa vs. mVTRc (average±SD) were found to be 92.2±10.8%, 85.0±16.5%, and 99.6±1.0% in static conditions and 32.6±31.0%, 28.0±24.2%, and 98.5±2.7% in dynamic conditions, respectively. CONCLUSIONS: In static conditions, we have found a high blink concordance rate between the proposed aVTRa versus EOG, and confirmed the validity of aVTRa in both static and dynamic conditions.


Blinking/physiology , Diagnostic Techniques, Ophthalmological , Facial Recognition/physiology , Adult , Algorithms , Diagnostic Techniques, Ophthalmological/instrumentation , Electrooculography , Female , Humans , Male , Video Recording , Young Adult
13.
J Affect Disord ; 235: 506-512, 2018 08 01.
Article En | MEDLINE | ID: mdl-29684865

BACKGROUNDS: The intestinal microbiota is considered as a potential common underpinning pathophysiology of Functional Gastrointestinal Disorders (FGIDs) and psychiatric disorders such as depression and anxiety. Fecal Microbiota Transplantation (FMT) has been reported to have therapeutic effects on diseases related to dysbiosis, but few studies have evaluated its effect on psychiatric symptoms. METHODS: We followed 17 patients with either Irritable Bowel Syndrome (IBS), Functional Diarrhea (FDr) or Functional Constipation (FC) who underwent FMT for the treatment of gastrointestinal symptoms and observation of psychiatric symptoms. Changes in Hamilton Rating Scale for Depression (HAM-D) and subscale of sleep-related items, Hamilton Rating Scale for Anxiety (HAM-A) and Quick Inventory for Depressive Symptoms (QIDS) between baseline and 4 weeks after FMT, and relationship with the intestinal microbiota were measured. RESULTS: At baseline, 12 out of 17 patients were rated with HAM-D ≥ 8. Significant improvement in HAM-D total and sleep subscale score, HAM-A and QIDS were observed (p = 0.007, p = 0.007, p = 0.01, p = 0.007, respectively). Baseline Shannon index indicated that microbiota showed lower diversity in patients with HAM-D ≥ 8 compared to those of healthy donors and patients with HAM-D < 8. There was a significant correlation between baseline Shannon index and HAM-D score, and a correlation between Shannon index change and HAM-D improvement after FMT. LIMITATIONS: The small sample size with no control group. CONCLUSIONS: Our results suggest that depression and anxiety symptoms may be improved by FMT regardless of gastrointestinal symptom change in patients with IBS, FDr and FC, and the increase of microbiota diversity may help to improve patient's mood.


Anxiety Disorders/psychology , Constipation/therapy , Depressive Disorder/psychology , Diarrhea/therapy , Fecal Microbiota Transplantation , Feces/microbiology , Irritable Bowel Syndrome/therapy , Adult , Constipation/psychology , Diarrhea/psychology , Female , Gastrointestinal Diseases , Gastrointestinal Microbiome , Humans , Irritable Bowel Syndrome/psychology , Male , Middle Aged
14.
Br J Psychiatry ; 212(1): 19-26, 2018 01.
Article En | MEDLINE | ID: mdl-29433612

BACKGROUND: Electroconvulsive therapy (ECT) is one of the most effective treatments for depression, although the underlying mechanisms remain unclear. Animal studies have shown that electroconvulsive shock induced neuroplastic changes in the hippocampus. Aims To summarise volumetric magnetic resonance imaging studies investigating the effects of ECT on limbic brain structures. METHOD: A systematic review and meta-analysis was conducted to assess volumetric changes of each side of the hippocampus and amygdala before and after ECT. Standardised mean difference (SMD) was calculated. RESULTS: A total of 8 studies (n = 193) were selected for our analyses. Both right and left hippocampal and amygdala volumes increased after ECT. Meta-regression analyses revealed that age, percentage of those responding and percentage of those in remission were negatively associated with volume increases in the left hippocampus. CONCLUSIONS: ECT increased brain volume in the limbic structures. The clinical relevance of volume increase needs further investigation. Declaration of interest None.


Amygdala/pathology , Electroconvulsive Therapy/statistics & numerical data , Hippocampus/pathology , Mental Disorders/therapy , Outcome Assessment, Health Care/statistics & numerical data , Amygdala/diagnostic imaging , Hippocampus/diagnostic imaging , Humans , Mental Disorders/diagnostic imaging , Mental Disorders/pathology
15.
PLoS One ; 10(9): e0137222, 2015.
Article En | MEDLINE | ID: mdl-26348038

The use of pathways and gene interaction networks for the analysis of differential expression experiments has allowed us to highlight the differences in gene expression profiles between samples in a systems biology perspective. The usefulness and accuracy of pathway analysis critically depend on our understanding of how genes interact with one another. That knowledge is continuously improving due to advances in next generation sequencing technologies and in computational methods. While most approaches treat each of them as independent entities, pathways actually coordinate to perform essential functions in a cell. In this work, we propose a methodology based on a sparse regression approach to find genes that act as intermediary to and interact with two pathways. We model each gene in a pathway using a set of predictor genes, and a connection is formed between the pathway gene and a predictor gene if the sparse regression coefficient corresponding to the predictor gene is non-zero. A predictor gene is a shared neighbor gene of two pathways if it is connected to at least one gene in each pathway. We compare the sparse regression approach to Weighted Correlation Network Analysis and a correlation distance based approach using time-course RNA-Seq data for dendritic cell from wild type, MyD88-knockout, and TRIF-knockout mice, and a set of RNA-Seq data from 60 Caucasian individuals. For the sparse regression approach, we found overrepresented functions for shared neighbor genes between TLR-signaling pathway and antigen processing and presentation, apoptosis, and Jak-Stat pathways that are supported by prior research, and compares favorably to Weighted Correlation Network Analysis in cases where the gene association signals are weak.


Gene Regulatory Networks , Oligonucleotide Array Sequence Analysis , Signal Transduction/genetics , Systems Biology , Animals , Dendritic Cells/metabolism , Epistasis, Genetic , Gene Expression Regulation , High-Throughput Nucleotide Sequencing , Humans , Mice , Mice, Knockout
16.
Gene ; 537(1): 29-40, 2014 Mar 01.
Article En | MEDLINE | ID: mdl-24389500

Change in transcription start site (TSS) usage is an important mechanism for the control of transcription process, and has a significant effect on the isoforms being transcribed. One of the goals in the study of TSS is the understanding of how and why their usage differs in different tissues or under different conditions. In light of recent efforts in the mapping of transcription start site landscape using high-throughput sequencing approaches, a quantitative and automated method is needed to process all the data that are being produced. In this work we propose a statistical approach that will classify changes in TSS distribution between different samples into several categories of changes that may have biological significance. Genes selected by the classifiers can then be analyzed together with additional supporting data to determine their biological significance. We use a set of time-course TSS data from mouse dendritic cells stimulated with lipopolysaccharide (LPS) to demonstrate the usefulness of our method.


Gene Expression Regulation , Immunity, Innate/genetics , Toll-Like Receptors/metabolism , Transcription Initiation Site , Animals , Data Interpretation, Statistical , Databases, Genetic , Dendritic Cells/drug effects , Dendritic Cells/physiology , Gene Ontology , Humans , Lipopolysaccharides/pharmacology , Mice , Promoter Regions, Genetic , Proto-Oncogene Mas , Signal Transduction/genetics , Toll-Like Receptors/genetics
17.
PLoS Comput Biol ; 9(11): e1003323, 2013.
Article En | MEDLINE | ID: mdl-24244133

The innate immune response is primarily mediated by the Toll-like receptors functioning through the MyD88-dependent and TRIF-dependent pathways. Despite being widely studied, it is not yet completely understood and systems-level analyses have been lacking. In this study, we identified a high-probability network of genes activated during the innate immune response using a novel approach to analyze time-course gene expression profiles of activated immune cells in combination with a large gene regulatory and protein-protein interaction network. We classified the immune response into three consecutive time-dependent stages and identified the most probable paths between genes showing a significant change in expression at each stage. The resultant network contained several novel and known regulators of the innate immune response, many of which did not show any observable change in expression at the sampled time points. The response network shows the dominance of genes from specific functional classes during different stages of the immune response. It also suggests a role for the protein phosphatase 2a catalytic subunit α in the regulation of the immunoproteasome during the late phase of the response. In order to clarify the differences between the MyD88-dependent and TRIF-dependent pathways in the innate immune response, time-course gene expression profiles from MyD88-knockout and TRIF-knockout dendritic cells were analyzed. Their response networks suggest the dominance of the MyD88-dependent pathway in the innate immune response, and an association of the circadian regulators and immunoproteasomal degradation with the TRIF-dependent pathway. The response network presented here provides the most probable associations between genes expressed in the early and the late phases of the innate immune response, while taking into account the intermediate regulators. We propose that the method described here can also be used in the identification of time-dependent gene sub-networks in other biological systems.


Dendritic Cells/immunology , Gene Expression/immunology , Gene Regulatory Networks/immunology , Immunity, Innate/immunology , Adaptor Proteins, Vesicular Transport/analysis , Adaptor Proteins, Vesicular Transport/genetics , Adaptor Proteins, Vesicular Transport/metabolism , Animals , Cells, Cultured , Computational Biology , Gene Knockout Techniques , Lipopolysaccharides/immunology , Mice , Mice, Inbred C57BL , Myeloid Differentiation Factor 88/analysis , Myeloid Differentiation Factor 88/genetics , Myeloid Differentiation Factor 88/metabolism , Protein Interaction Maps/immunology
18.
Ann N Y Acad Sci ; 1158: 302-13, 2009 Mar.
Article En | MEDLINE | ID: mdl-19348651

This paper describes the technique designated best performer in the 2nd conference on Dialogue for Reverse Engineering Assessments and Methods (DREAM2) Challenge 5 (unsigned genome-scale network prediction from blinded microarray data). Existing algorithms use the pairwise correlations of the expression levels of genes, which provide valuable but insufficient information for the inference of regulatory interactions. Here we present a computational approach based on the recently developed context likelihood of related (CLR) algorithm, extracting additional complementary information using the information theoretic measure of synergy and assigning a score to each ordered pair of genes measuring the degree of confidence that the first gene regulates the second. When tested on a set of publicly available Escherichia coli gene-expression data with known assumed ground truth, the synergy augmented CLR (SA-CLR) algorithm had significantly improved prediction performance when compared to CLR. There is also enhanced potential for biological discovery as a result of the identification of the most likely synergistic partner genes involved in the interactions.


Algorithms , Gene Expression Regulation , Gene Regulatory Networks , Escherichia coli/genetics , Gene Expression Profiling , Models, Genetic , Oligonucleotide Array Sequence Analysis , Reproducibility of Results
19.
BMC Bioinformatics ; 10: 15, 2009 Jan 11.
Article En | MEDLINE | ID: mdl-19134222

BACKGROUND: Time-course gene expression analysis has become important in recent developments due to the increasingly available experimental data. The detection of genes that are periodically expressed is an important step which allows us to study the regulatory mechanisms associated with the cell cycle. RESULTS: In this work, we present the Laplace periodogram which employs the least absolute deviation criterion to provide a more robust detection of periodic gene expression in the presence of outliers. The Laplace periodogram is shown to perform comparably to existing methods for the Sacharomyces cerevisiae and Arabidopsis time-course datasets, and to outperform existing methods when outliers are present. CONCLUSION: Time-course gene expression data are often noisy due to the limitations of current technology, and may include outliers. These artifacts corrupt the available data and make the detection of periodicity difficult in many cases. The Laplace periodogram is shown to perform well for both data with and without the presence of outliers, and also for data that are non-uniformly sampled.


Gene Expression Profiling/methods , Gene Expression , Algorithms , Arabidopsis/genetics , Saccharomyces cerevisiae/genetics
20.
Article En | MEDLINE | ID: mdl-18584050

The inference of gene regulatory network from expression data is an important area of research that provides insight to the inner workings of a biological system. The relevance-network-based approaches provide a simple and easily-scalable solution to the understanding of interaction between genes. Up until now, most works based on relevance network focus on the discovery of direct regulation using correlation coefficient or mutual information. However, some of the more complicated interactions such as interactive regulation and co-regulation are not easily detected. In this work, we propose a relevance network model for gene regulatory network inference which employs both mutual information and conditional mutual information to determine the interactions between genes. For this purpose, we propose a conditional mutual information estimator based on adaptive partitioning which allows us to condition on both discrete and continuous random variables. We provide experimental results that demonstrate that the proposed regulatory network inference algorithm can provide better performance when the target network contains coregulated and interactively regulated genes.

...