Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Curr Med Sci ; 43(3): 478-488, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37243806

ABSTRACT

OBJECTIVE: We previously reported that mutations in inner mitochondrial membrane peptidase 2-like (Immp2l) increase infarct volume, enhance superoxide production, and suppress mitochondrial respiration after transient cerebral focal ischemia and reperfusion injury. The present study investigated the impact of heterozygous Immp2l mutation on mitochondria function after ischemia and reperfusion injury in mice. METHODS: Mice were subjected to middle cerebral artery occlusion for 1 h followed by 0, 1, 5, and 24 h of reperfusion. The effects of Immp2l+/- on mitochondrial membrane potential, mitochondrial respiratory complex III activity, caspase-3, and apoptosis-inducing factor (AIF) translocation were examined. RESULTS: Immp2l+/- increased ischemic brain damage and the number of TUNEL-positive cells compared with wild-type mice. Immp2l+/- led to mitochondrial damage, mitochondrial membrane potential depolarization, mitochondrial respiratory complex III activity suppression, caspase-3 activation, and AIF nuclear translocation. CONCLUSION: The adverse impact of Immp2l+/- on the brain after ischemia and reperfusion might be related to mitochondrial damage that involves depolarization of the mitochondrial membrane potential, inhibition of the mitochondrial respiratory complex III, and activation of mitochondria-mediated cell death pathways. These results suggest that patients with stroke carrying Immp2l+/- might have worse and more severe infarcts, followed by a worse prognosis than those without Immp2l mutations.


Subject(s)
Ischemic Attack, Transient , Reperfusion Injury , Animals , Mice , Caspase 3/genetics , Caspase 3/metabolism , Electron Transport Complex III/metabolism , Infarction, Middle Cerebral Artery/genetics , Infarction, Middle Cerebral Artery/metabolism , Ischemic Attack, Transient/metabolism , Mitochondrial Membranes/metabolism , Mutation , Reperfusion Injury/metabolism
2.
J Med Virol ; 95(1): e28407, 2023 01.
Article in English | MEDLINE | ID: mdl-36519597

ABSTRACT

To control the ongoing COVID-19 pandemic, a variety of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccines have been developed. However, the rapid mutations of SARS-CoV-2 spike (S) protein may reduce the protective efficacy of the existing vaccines which is mainly determined by the level of neutralizing antibodies targeting S. In this study, we screened prevalent S mutations and constructed 124 pseudotyped lentiviral particles carrying these mutants. We challenged these pseudoviruses with sera vaccinated by Sinovac CoronaVac and ZF2001 vaccines, two popular vaccines designed for the initial strain of SARS-CoV-2, and then systematically assessed the susceptivity of these SARS-CoV-2 variants to the immune sera of vaccines. As a result, 14 S mutants (H146Y, V320I + S477N, V382L, K444R, L455F + S477N, L452M + F486L, F486L, Y508H, P521R, A626S, S477N + S698L, A701V, S477N + T778I, E1144Q) were found to be significantly resistant to neutralization, indicating reduced protective efficacy of the vaccines against these SARS-CoV-2 variants. In addition, F486L and Y508H significantly enhanced the utilization of human angiotensin-converting enzyme 2, suggesting a potentially elevated infectivity of these two mutants. In conclusion, our results show that some prevalent S mutations of SARS-CoV-2 reduced the protective efficacy of current vaccines and enhance the infectivity of the virus, indicating the necessity of vaccine renewal and providing direction for the development of new vaccines.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , COVID-19/prevention & control , Antibodies, Viral , Neutralization Tests , Spike Glycoprotein, Coronavirus , Virus Internalization , Pandemics , Antibodies, Neutralizing , Mutation
SELECTION OF CITATIONS
SEARCH DETAIL