Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
MedComm (2020) ; 5(9): e661, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39156767

ABSTRACT

In the past, hydrogen sulfide (H2S) was recognized as a toxic and dangerous gas; in recent years, with increased research, we have discovered that H2S can act as an endogenous regulatory transmitter. In mammals, H2S-catalyzing enzymes, such as cystathionine-ß-synthase, cystathionine-γ-lyase, and 3-mercaptopyruvate sulfurtransferase, are differentially expressed in a variety of tissues and affect a variety of biological functions, such as transcriptional and posttranslational modification of genes, activation of signaling pathways in the cell, and metabolic processes in tissues, by producing H2S. Various preclinical studies have shown that H2S affects physiological and pathological processes in the body. However, a detailed systematic summary of these roles in health and disease is lacking. Therefore, this review provides a thorough overview of the physiological roles of H2S in different systems and the diseases associated with disorders of H2S metabolism, such as ischemia-reperfusion injury, hypertension, neurodegenerative diseases, inflammatory bowel disease, and cancer. Meanwhile, this paper also introduces H2S donors and novel release modes, as well as the latest preclinical experimental results, aiming to provide researchers with new ideas to discover new diagnostic targets and therapeutic options.

2.
Front Med (Lausanne) ; 11: 1420848, 2024.
Article in English | MEDLINE | ID: mdl-39139792

ABSTRACT

Background: Myopia, strabismus, and ptosis are common pediatric eye diseases, which have a negative impact on children and adolescents in terms of visual function, mental health, and health-related quality of life (HRQoL). Therefore, this study focused on those pediatric eye diseases by analyzing their risk factors and HRQoL for the comprehensive management of myopia, strabismus, and ptosis. Methods: A total of 363 participants (2-18 years old) were included in this study for risk factors analysis of myopia, strabismus, and ptosis. We collected demographic characteristics, lifestyle habits and eye care habits of these children and analyzed them by using univariable and multivariable logistic regression. In addition, we applied the Chinese version of Pediatric Quality of Life Inventory-Version 4.0 (PedsQL 4.0) to assess HRQoL in 256 children with strabismus and ptosis. Univariable and multivariable linear regression models were applied to evaluate potential influencing factors of HRQoL. Results: Of all the participants, 140 had myopia, 127 had strabismus, and 145 had ptosis. Based on the multivariable logistic regression analysis model, we found that the history of parental myopia and daily average near-distance eye usage time were risk factors for myopia, and increased body mass index (BMI) was identified as a risk factor for strabismus and ptosis. Individuals with ptosis possessed decreased HRQoL. The multivariable linear regression model suggested that daily average near-distance eye usage time, light intensity during visual tasks, and daily average sleep duration had potential influences on HRQoL. Conclusion: This is the first study to assess the risk factors and HRQoL of myopia, strabismus, and ptosis together. We identified risk factors for these common pediatric eye diseases to help doctors, parents, and teachers better manage them. Our study discovered that children with eye disorders exhibit a notably diminished HRQoL. Consequently, it emphasizes the necessity for increased social attention and mental health assistance for these children.

3.
JAMA Netw Open ; 7(8): e2425124, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39106068

ABSTRACT

IMPORTANCE: Identifying pediatric eye diseases at an early stage is a worldwide issue. Traditional screening procedures depend on hospitals and ophthalmologists, which are expensive and time-consuming. Using artificial intelligence (AI) to assess children's eye conditions from mobile photographs could facilitate convenient and early identification of eye disorders in a home setting. OBJECTIVE: To develop an AI model to identify myopia, strabismus, and ptosis using mobile photographs. DESIGN, SETTING, AND PARTICIPANTS: This cross-sectional study was conducted at the Department of Ophthalmology of Shanghai Ninth People's Hospital from October 1, 2022, to September 30, 2023, and included children who were diagnosed with myopia, strabismus, or ptosis. MAIN OUTCOMES AND MEASURES: A deep learning-based model was developed to identify myopia, strabismus, and ptosis. The performance of the model was assessed using sensitivity, specificity, accuracy, the area under the curve (AUC), positive predictive values (PPV), negative predictive values (NPV), positive likelihood ratios (P-LR), negative likelihood ratios (N-LR), and the F1-score. GradCAM++ was utilized to visually and analytically assess the impact of each region on the model. A sex subgroup analysis and an age subgroup analysis were performed to validate the model's generalizability. RESULTS: A total of 1419 images obtained from 476 patients (225 female [47.27%]; 299 [62.82%] aged between 6 and 12 years) were used to build the model. Among them, 946 monocular images were used to identify myopia and ptosis, and 473 binocular images were used to identify strabismus. The model demonstrated good sensitivity in detecting myopia (0.84 [95% CI, 0.82-0.87]), strabismus (0.73 [95% CI, 0.70-0.77]), and ptosis (0.85 [95% CI, 0.82-0.87]). The model showed comparable performance in identifying eye disorders in both female and male children during sex subgroup analysis. There were differences in identifying eye disorders among different age subgroups. CONCLUSIONS AND RELEVANCE: In this cross-sectional study, the AI model demonstrated strong performance in accurately identifying myopia, strabismus, and ptosis using only smartphone images. These results suggest that such a model could facilitate the early detection of pediatric eye diseases in a convenient manner at home.


Subject(s)
Artificial Intelligence , Early Diagnosis , Photography , Humans , Female , Male , Cross-Sectional Studies , Child , Child, Preschool , Photography/methods , Myopia/diagnosis , Deep Learning , Strabismus/diagnosis , Blepharoptosis/diagnosis , Sensitivity and Specificity , China/epidemiology , Eye Diseases/diagnosis , Adolescent
4.
Nitric Oxide ; 150: 18-26, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38971520

ABSTRACT

Hydrogen sulfide (H2S), together with carbon monoxide (CO) and nitric oxide (NO), is recognized as a vital gasotransmitter. H2S is biosynthesized by enzymatic pathways in the skin and exerts significant physiological effects on a variety of biological processes, such as apoptosis, modulation of inflammation, cellular proliferation, and regulation of vasodilation. As a major health problem, dermatological diseases affect a large proportion of the population every day. It is urgent to design and develop effective drugs to deal with dermatological diseases. Dermatological diseases can arise from a multitude of etiologies, including neoplastic growth, infectious agents, and inflammatory processes. The abnormal metabolism of H2S is associated with many dermatological diseases, such as melanoma, fibrotic diseases, and psoriasis, suggesting its therapeutic potential in the treatment of these diseases. In addition, therapies based on H2S donors are being developed to treat some of these conditions. In the review, we discuss recent advances in the function of H2S in normal skin, the role of altering H2S metabolism in dermatological diseases, and the therapeutic potential of diverse H2S donors for the treatment of dermatological diseases.


Subject(s)
Hydrogen Sulfide , Skin Diseases , Hydrogen Sulfide/metabolism , Humans , Skin Diseases/drug therapy , Skin Diseases/metabolism , Animals , Skin/metabolism
5.
Article in English | MEDLINE | ID: mdl-39041626

ABSTRACT

Significance: Ferroptosis, a form of regulated cell death characterized by a large amount of lipid peroxidation-mediated membrane damage, joins the evolution of multisystem diseases, for instance, neurodegenerative diseases, chronic obstructive pulmonary disease, acute respiratory distress syndrome, osteoporosis, osteoarthritis, and so forth. Since being identified as the third gasotransmitter in living organisms, the intricate role of hydrogen sulfide (H2S) in ferroptosis has emerged at the forefront of research. Recent Advances: Novel targets in the relevant metabolic pathways have been found, including transferrin receptor 1, cystine/glutamate antiporter, and others, coupled with the exploration of new signaling pathways, particularly the p53 signaling pathway, the nitric oxide/nuclear factor erythroid 2-related factor 2 signaling pathway, and so on. Many diseases such as emphysema and airway inflammation, myocardial diseases, endothelial dysfunction in aging arteries, and traumatic brain injury have recently been found to be alleviated directly by H2S inhibition of ferroptosis. Safe, effective, and tolerable novel H2S donors have been developed and have shown promising results in phase I clinical trials. Critical Issues: Complicated cross talk between the ferroptosis signaling pathway and oncogenic factors results in the risk of cancer when inhibiting ferroptosis. Notably, targeted delivery of H2S is still a challenging task. Future Directions: Discovering more reliable and stable novel H2S donors and achieving their targeted delivery will enable further clinical trials for diseases associated with ferroptosis inhibition by H2S, determining their safety, efficacy, and tolerance.

6.
Proc Natl Acad Sci U S A ; 121(20): e2321711121, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38713624

ABSTRACT

During development, neural stem cells in the cerebral cortex, also known as radial glial cells (RGCs), generate excitatory neurons, followed by production of cortical macroglia and inhibitory neurons that migrate to the olfactory bulb (OB). Understanding the mechanisms for this lineage switch is fundamental for unraveling how proper numbers of diverse neuronal and glial cell types are controlled. We and others recently showed that Sonic Hedgehog (Shh) signaling promotes the cortical RGC lineage switch to generate cortical oligodendrocytes and OB interneurons. During this process, cortical RGCs generate intermediate progenitor cells that express critical gliogenesis genes Ascl1, Egfr, and Olig2. The increased Ascl1 expression and appearance of Egfr+ and Olig2+ cortical progenitors are concurrent with the switch from excitatory neurogenesis to gliogenesis and OB interneuron neurogenesis in the cortex. While Shh signaling promotes Olig2 expression in the developing spinal cord, the exact mechanism for this transcriptional regulation is not known. Furthermore, the transcriptional regulation of Olig2 and Egfr has not been explored. Here, we show that in cortical progenitor cells, multiple regulatory programs, including Pax6 and Gli3, prevent precocious expression of Olig2, a gene essential for production of cortical oligodendrocytes and astrocytes. We identify multiple enhancers that control Olig2 expression in cortical progenitors and show that the mechanisms for regulating Olig2 expression are conserved between the mouse and human. Our study reveals evolutionarily conserved regulatory logic controlling the lineage switch of cortical neural stem cells.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors , Cerebral Cortex , ErbB Receptors , Hedgehog Proteins , Nerve Tissue Proteins , Neural Stem Cells , Neurogenesis , Oligodendrocyte Transcription Factor 2 , PAX6 Transcription Factor , Animals , Neurogenesis/physiology , Cerebral Cortex/metabolism , Cerebral Cortex/cytology , Basic Helix-Loop-Helix Transcription Factors/metabolism , Basic Helix-Loop-Helix Transcription Factors/genetics , ErbB Receptors/metabolism , ErbB Receptors/genetics , Mice , Oligodendrocyte Transcription Factor 2/metabolism , Oligodendrocyte Transcription Factor 2/genetics , Nerve Tissue Proteins/metabolism , Nerve Tissue Proteins/genetics , Hedgehog Proteins/metabolism , Hedgehog Proteins/genetics , PAX6 Transcription Factor/metabolism , PAX6 Transcription Factor/genetics , Neural Stem Cells/metabolism , Neural Stem Cells/cytology , Homeodomain Proteins/metabolism , Homeodomain Proteins/genetics , Zinc Finger Protein Gli3/metabolism , Zinc Finger Protein Gli3/genetics , Eye Proteins/metabolism , Eye Proteins/genetics , Repressor Proteins/metabolism , Repressor Proteins/genetics , Paired Box Transcription Factors/metabolism , Paired Box Transcription Factors/genetics , Neuroglia/metabolism , Neuroglia/cytology , Gene Expression Regulation, Developmental , Signal Transduction , Olfactory Bulb/metabolism , Olfactory Bulb/cytology , Cell Lineage , Humans
7.
Pharmacol Res ; 203: 107172, 2024 May.
Article in English | MEDLINE | ID: mdl-38583685

ABSTRACT

Although anti-TNF antibodies are extensively used to treat Crohn's disease (CD), a significant proportion of patients, up to 40%, exhibit an inadequate response to this therapy. Our objective was to identify potential targets that could improve the effectiveness of anti-TNF therapy in CD. Through the integration and analysis of transcriptomic data from various CD databases, we found that the expression of AQP9 was significantly increased in anti-TNF therapy-resistant specimens. The response to anti-TNF therapy in the CD mouse model was significantly enhanced by specifically inhibiting AQP9. Further experiments found that the blockade of AQP9, which is dominantly expressed in macrophages, decreased inflamed macrophage functions and cytokine expression. Mechanistic studies revealed that AQP9 transported glycerol into macrophages, where it was metabolized to LPA, which was further metabolized to LPA, resulting in the activation of the LPAR2 receptor and downstream hippo pathway, finally promoting the expression of cytokines, especially IL23 and IL1ß⊡ Taken together, the expansion of AQP9+ macrophages is associated with resistance to anti-TNF therapy in Crohn's disease. These findings indicated that AQP9 could be a potential target for enhancing anti-TNF therapy in Crohn's disease.


Subject(s)
Aquaporins , Crohn Disease , Hippo Signaling Pathway , Lysophospholipids , Macrophages , Animals , Humans , Male , Mice , Aquaporins/metabolism , Aquaporins/genetics , Aquaporins/antagonists & inhibitors , Crohn Disease/drug therapy , Crohn Disease/metabolism , Cytokines/metabolism , Hippo Signaling Pathway/drug effects , Lysophospholipids/metabolism , Macrophages/metabolism , Macrophages/drug effects , Mice, Inbred C57BL , Protein Serine-Threonine Kinases/antagonists & inhibitors , Protein Serine-Threonine Kinases/metabolism , Receptors, Lysophosphatidic Acid/antagonists & inhibitors , Receptors, Lysophosphatidic Acid/metabolism , Signal Transduction/drug effects , Tumor Necrosis Factor Inhibitors/therapeutic use , Tumor Necrosis Factor Inhibitors/pharmacology , Tumor Necrosis Factor-alpha/antagonists & inhibitors , Tumor Necrosis Factor-alpha/metabolism
8.
Cell Death Discov ; 10(1): 114, 2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38448410

ABSTRACT

For a long time, hydrogen sulfide (H2S) has been considered a toxic compound, but recent studies have found that H2S is the third gaseous signaling molecule which plays a vital role in physiological and pathological conditions. Currently, a large number of studies have shown that H2S mediates apoptosis through multiple signaling pathways to participate in cancer occurrence and development, for example, PI3K/Akt/mTOR and MAPK signaling pathways. Therefore, the regulation of the production and metabolism of H2S to mediate the apoptotic process of cancer cells may improve the effectiveness of cancer treatment. In this review, the role and mechanism of H2S in cancer cell apoptosis in mammals are summarized.

SELECTION OF CITATIONS
SEARCH DETAIL