Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 30
1.
Nucleic Acids Res ; 2024 May 29.
Article En | MEDLINE | ID: mdl-38808662

Cohesin plays a crucial role in the organization of topologically-associated domains (TADs), which influence gene expression and DNA replication timing. Whether epigenetic regulators may affect TADs via cohesin to mediate DNA replication remains elusive. Here, we discover that the histone demethylase PHF2 associates with RAD21, a core subunit of cohesin, to regulate DNA replication in mouse neural stem cells (NSC). PHF2 loss impairs DNA replication due to the activation of dormant replication origins in NSC. Notably, the PHF2/RAD21 co-bound genomic regions are characterized by CTCF enrichment and epigenomic features that resemble efficient, active replication origins, and can act as boundaries to separate adjacent domains. Accordingly, PHF2 loss weakens TADs and chromatin loops at the co-bound loci due to reduced RAD21 occupancy. The observed topological and DNA replication defects in PHF2 KO NSC support a cohesin-dependent mechanism. Furthermore, we demonstrate that the PHF2/RAD21 complex exerts little effect on gene regulation, and that PHF2's histone-demethylase activity is dispensable for normal DNA replication and proliferation of NSC. We propose that PHF2 may serve as a topological accessory to cohesin for cohesin localization to TADs and chromatin loops, where cohesin represses dormant replication origins directly or indirectly, to sustain DNA replication in NSC.

2.
Cell Death Dis ; 15(5): 338, 2024 May 14.
Article En | MEDLINE | ID: mdl-38744809

Epitranscriptomic RNA modifications are crucial for the maintenance of glioma stem cells (GSCs), the most malignant cells in glioblastoma (GBM). 3-methylcytosine (m3C) is a new epitranscriptomic mark on RNAs and METTL8 represents an m3C writer that is dysregulated in cancer. Although METTL8 has an established function in mitochondrial tRNA (mt-tRNA) m3C modification, alternative splicing of METTL8 can also generate isoforms that localize to the nucleolus where they may regulate R-loop formation. The molecular basis for METTL8 dysregulation in GBM, and which METTL8 isoform(s) may influence GBM cell fate and malignancy remain elusive. Here, we investigated the role of METTL8 in regulating GBM stemness and tumorigenicity. In GSC, METTL8 is exclusively localized to the mitochondrial matrix where it installs m3C on mt-tRNAThr/Ser(UCN) for mitochondrial translation and respiration. High expression of METTL8 in GBM is attributed to histone variant H2AZ-mediated chromatin accessibility of HIF1α and portends inferior glioma patient outcome. METTL8 depletion impairs the ability of GSC to self-renew and differentiate, thus retarding tumor growth in an intracranial GBM xenograft model. Interestingly, METTL8 depletion decreases protein levels of HIF1α, which serves as a transcription factor for several receptor tyrosine kinase (RTK) genes, in GSC. Accordingly, METTL8 loss inactivates the RTK/Akt axis leading to heightened sensitivity to Akt inhibitor treatment. These mechanistic findings, along with the intimate link between METTL8 levels and the HIF1α/RTK/Akt axis in glioma patients, guided us to propose a HIF1α/Akt inhibitor combination which potently compromises GSC proliferation/self-renewal in vitro. Thus, METTL8 represents a new GBM dependency that is therapeutically targetable.


Glioblastoma , Hypoxia-Inducible Factor 1, alpha Subunit , Methyltransferases , Neoplastic Stem Cells , Proto-Oncogene Proteins c-akt , Humans , Glioblastoma/metabolism , Glioblastoma/pathology , Glioblastoma/genetics , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Proto-Oncogene Proteins c-akt/metabolism , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology , Animals , Methyltransferases/metabolism , Methyltransferases/genetics , Mice , Brain Neoplasms/pathology , Brain Neoplasms/metabolism , Brain Neoplasms/genetics , Cell Line, Tumor , Carcinogenesis/genetics , Carcinogenesis/pathology , Carcinogenesis/metabolism , Signal Transduction , RNA, Transfer/metabolism , RNA, Transfer/genetics , Mitochondria/metabolism , Gene Expression Regulation, Neoplastic , Mice, Nude , Cell Proliferation
3.
Biogerontology ; 25(2): 341-360, 2024 Apr.
Article En | MEDLINE | ID: mdl-37987889

Telomere shortening is a well-established hallmark of cellular aging. Telomerase reverse transcriptase (TERT) plays a crucial role in maintaining the length of telomeres, which are specialised protective caps at the end of chromosomes. The lack of in vitro aging models, particularly for the central nervous system (CNS), has impeded progress in understanding aging and age-associated neurodegenerative diseases. In this study, we aimed to explore the possibility of inducing aging-associated features in cell types of the CNS using hiPSC (human induced pluripotent stem cell) technology. To achieve this, we utilised CRISPR/Cas9 to generate hiPSCs with a loss of telomerase function and shortened telomeres. Through directed differentiation, we generated motor neurons and astrocytes to investigate whether telomere shortening could lead to age-associated phenotypes. Our findings revealed that shortened telomeres induced age-associated characteristics in both motor neurons and astrocytes including increased cellular senescence, heightened inflammation, and elevated DNA damage. We also observed cell-type specific age-related morphology changes. Additionally, our study highlighted the fundamental role of TERT and telomere shortening in neural progenitor cell (NPC) proliferation and neuronal differentiation. This study serves as a proof of concept that telomere shortening can effectively induce aging-associated phenotypes, thereby providing a valuable tool to investigate age-related decline and neurodegenerative diseases.


Induced Pluripotent Stem Cells , Neurodegenerative Diseases , Telomerase , Humans , Telomere Shortening , Induced Pluripotent Stem Cells/metabolism , Astrocytes/metabolism , Telomerase/genetics , Telomere , Motor Neurons/metabolism , Phenotype
4.
Cell Death Differ ; 30(8): 1973-1987, 2023 08.
Article En | MEDLINE | ID: mdl-37468549

MAD2 is a spindle assembly checkpoint protein that participates in the formation of mitotic checkpoint complex, which blocks mitotic progression. RNF8, an established DNA damage response protein, has been implicated in mitotic checkpoint regulation but its exact role remains poorly understood. Here, RNF8 proximity proteomics uncovered a role of RNF8-MAD2 in generating the mitotic checkpoint signal. Specifically, RNF8 competes with a small pool of p31comet for binding to the closed conformer of MAD2 via its RING domain, while CAMK2D serves as a molecular scaffold to concentrate the RNF8-MAD2 complex via transient/weak interactions between its p-Thr287 and RNF8's FHA domain. Accordingly, RNF8 overexpression impairs glioma stem cell (GSC) mitotic progression in a FHA- and RING-dependent manner. Importantly, low RNF8 expression correlates with inferior glioma outcome and RNF8 overexpression impedes GSC tumorigenicity. Last, we identify PLK1 inhibitor that mimics RNF8 overexpression using a chemical biology approach, and demonstrate a PLK1/HSP90 inhibitor combination that synergistically reduces GSC proliferation and stemness. Thus, our study has unveiled a previously unrecognized CAMK2D-RNF8-MAD2 complex in regulating mitotic checkpoint with relevance to gliomas, which is therapeutically targetable.


Cell Cycle Proteins , Glioma , Mad2 Proteins , Humans , Adaptor Proteins, Signal Transducing/metabolism , Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism , Cell Cycle Proteins/metabolism , DNA-Binding Proteins/metabolism , Glioma/genetics , Glioma/metabolism , M Phase Cell Cycle Checkpoints , Mad2 Proteins/genetics , Mad2 Proteins/metabolism , Mitosis , Nuclear Proteins/metabolism , Spindle Apparatus/metabolism , Ubiquitin-Protein Ligases/metabolism
5.
J Stomatol Oral Maxillofac Surg ; 124(6S): 101564, 2023 Dec.
Article En | MEDLINE | ID: mdl-37453567

Zirconia is favored in dental implant applications due to its biocompatibility, mechanical properties, and esthetic appeal, particularly in its interaction with soft oral tissues such as the gingiva. To optimize zirconia for clinical use, surface treatments like sanding and polishing are essential. The aim of this study was to investigate the effects of clinical surface treatments on the microscopic characteristics of zirconia and the adhesion and proliferation of human gingival fibroblasts (HGFs). Scanning electron microscopy (SEM) and fluorescence microscopy were utilized to examine the microscopic morphology and roughness resulting from various clinical surface treatment procedures on zirconia and to assess their impact on the microscopic appearance and behavior of HGFs. The results showed that the application of surface treatment procedures, particularly polishing treatments, resulted in the formation of a regular shallow groove morphology and a significant reduction in roughness in zirconia. This was accompanied by improved cell proliferation, cell adhesion, and the expression of integrin ß1 in HGFs. The results suggest that smoother zirconia surfaces promote better cell-material interactions, potentially improving the clinical success of dental implants. This research contributes to our understanding of the optimal surface roughness for soft tissue adhesion and the effect of different micro-morphologies on HGF attachment.


Fibroblasts , Gingiva , Humans , Gingiva/metabolism , Tissue Adhesions/metabolism , Fibroblasts/metabolism , Cell Proliferation , Surface Properties
6.
Biochem Biophys Res Commun ; 674: 19-26, 2023 09 24.
Article En | MEDLINE | ID: mdl-37393640

Nuclear factor erythroid-derived factor 2-related factor 2 (Nrf2) is a master regulator of antioxidant response and protects cells from excessive oxidative stress. Nrf2 emerges as a prospective therapeutic target for metabolic bone disorders, in which the balance between osteoblastic bone formation and osteoclastic bone resorption is disrupted. However, the molecular mechanism through which Nrf2 modulates bone homeostasis remains unclear. In this study, we compared the differences in Nrf2-mediated antioxidant response and ROS regulation in osteoblasts and osteoclasts, both in vitro and in vivo. Findings indicated a close connection between the Nrf2 expression and its related antioxidant response with osteoclasts than osteoblasts. We next pharmacologically manipulated the Nrf2-mediated antioxidant response during osteoclast or osteoblast differentiation. Nrf2 inhibition enhanced osteoclastogenesis, while its activation suppressed it. In contrast, osteogenesis decreased irrespective of whether Nrf2 was inhibited or activated. These findings highlight the distinct ways in which the Nrf2-mediated antioxidant response regulates osteoclast and osteoblast differentiation, thereby contributing to the development of Nrf2 targeted therapies for metabolic bone diseases.


Bone Resorption , NF-E2-Related Factor 2 , Osteoclasts , Humans , Antioxidants/pharmacology , Antioxidants/metabolism , Bone Resorption/metabolism , Cell Differentiation , Homeostasis , NF-E2-Related Factor 2/metabolism , Osteoblasts/metabolism , Osteoclasts/metabolism , Osteogenesis , RANK Ligand/metabolism
7.
Environ Pollut ; 331(Pt 2): 121952, 2023 Aug 15.
Article En | MEDLINE | ID: mdl-37270048

Recent findings found that TiO2 nanoparticles (TiO2-NPs) have male reproductive toxicity. However, few reports have studied the toxicity of TiO2-NPs in crustaceans. In this study, we first chose the freshwater crustacean Eriocheir sinensis (E. sinensis) to explore the male toxicity of TiO2-NP exposure and the underlying mechanisms. Three nm and 25 nm TiO2-NPs at a dose of 30 mg/kg bw induced apoptosis and damaged the integrity of the haemolymph-testis-barrier (HTB, a structure similar to the blood-testis-barrier) and the structure of the seminiferous tubule. The 3-nm TiO2-NPs caused more severe spermatogenesis dysfunction than the 25-nm TiO2-NPs. We initially confirmed that TiO2-NP exposure affected the expression patterns of adherens junctions (α-catenin and ß-catenin) and induced tubulin disorganization in the testis of E. sinensis. TiO2-NP exposure caused reactive oxygen species (ROS) generation and an imbalance of mTORC1-mTORC2 (mTORC1/rps6/Akt levels were increased, while mTORC2 activity was not changed). After using the ROS scavenger NAC to inhibit ROS generation, both the mTORC1-mTORC2 imbalance and alterations in AJs were rescued. More importantly, the mTORC1 inhibitor rapamycin abolished mTORC1/rps6/Akt hyperactivation and partially restored the alterations in AJs and tubulin. Collectively, the mTORC1-mTORC2 imbalance induced by TiO2-NPs was involved in the mechanism of AJ and HTB disruption, resulting in spermatogenesis in E. sinensis.


Nanoparticles , Testis , Male , Humans , Testis/metabolism , Reactive Oxygen Species/metabolism , Tubulin/metabolism , Adherens Junctions/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Spermatogenesis/physiology , Titanium/toxicity , Titanium/metabolism , TOR Serine-Threonine Kinases/metabolism , Nanoparticles/toxicity , Mechanistic Target of Rapamycin Complex 1/metabolism , Mechanistic Target of Rapamycin Complex 2/metabolism
8.
Front Oncol ; 13: 1041111, 2023.
Article En | MEDLINE | ID: mdl-36793595

Purpose: Long-term survival benefit of anthracyclines for human epidermal growth factor receptor 2 (HER2)-positive breast cancer is clear. In the neoadjuvant treatment, compared with the monoclonal antibody such as trastuzumab and pertuzumab, the clinical benefit of pyrotinib, a new small-molecule tyrosine kinase inhibitor (TKI), as the main anti-HER2 strategy currently requires more research to determine. Our real-world study is the first prospective observational study in China to evaluate the efficacy and safety of epirubicin (E) and cyclophosphamide (C) with pyrotinib as anti-HER2 therapy in the neoadjuvant setting of patients with stage II-III HER2-positive breast cancer. Methods: From May 2019 to December 2021, 44 untreated patients with HER2-positive nonspecific invasive breast cancer who received 4 cycles of neoadjuvant EC with pyrotinib. The primary endpoint was pathological complete response (pCR) rate. Secondary endpoints included the overall clinical response, breast pathological complete response rate (bpCR), the rate of axillary lymph nodes pathological negativity and adverse events (AEs). Other objective indicators were the rate of surgical breast-conserving, the negative conversion ratios of tumor markers. Results: Thirty-seven (84.1%) of 44 patients completed this neoadjuvant therapy, and 35 (79.5%) had surgery and were included in the primary endpoint assessment. The objective response rate (ORR) of 37 patients was 97.3%. Two patients reached clinical complete response, 34 obtained clinical partial response, 1 sustained stable disease, and no one had progressive disease. Eleven (31.4%) of 35 patients who had surgery achieved bpCR and the rate of axillary lymph nodes pathological negativity was 61.3%. The tpCR rate was 28.6% (95% CI: 12.8-44.3%). Safety was evaluated in all 44 patients. Thirty-nine (88.6%) had diarrhea, and 2 developed grade 3 diarrhea. Four (9.1%) patients had grade 4 leukopenia. All grade 3-4 AEs could be improved after symptomatic treatment. Conclusion: The regimen of 4 cycles of EC combined with pyrotinib presented some feasibility in the neoadjuvant setting for HER2-positive breast cancer with manageable safety. New regimens with pyrotinib should be evaluated for higher pCR in future. Trial registration: chictr.org Identifier: ChiCTR1900026061.

9.
Nat Commun ; 14(1): 924, 2023 02 18.
Article En | MEDLINE | ID: mdl-36801863

Certain CRISPR-Cas elements integrate into Tn7-like transposons, forming CRISPR-associated transposon (CAST) systems. How the activity of these systems is controlled in situ has remained largely unknown. Here we characterize the MerR-type transcriptional regulator Alr3614 that is encoded by one of the CAST (AnCAST) system genes in the genome of cyanobacterium Anabaena sp. PCC 7120. We identify a number of Alr3614 homologs across cyanobacteria and suggest naming these regulators CvkR for Cas V-K repressors. Alr3614/CvkR is translated from leaderless mRNA and represses the AnCAST core modules cas12k and tnsB directly, and indirectly the abundance of the tracr-CRISPR RNA. We identify a widely conserved CvkR binding motif 5'-AnnACATnATGTnnT-3'. Crystal structure of CvkR at 1.6 Å resolution reveals that it comprises distinct dimerization and potential effector-binding domains and that it assembles into a homodimer, representing a discrete structural subfamily of MerR regulators. CvkR repressors are at the core of a widely conserved regulatory mechanism that controls type V-K CAST systems.


Anabaena , CRISPR-Associated Proteins , Cyanobacteria , DNA Transposable Elements/genetics , Transposases/genetics , CRISPR-Cas Systems/genetics , Cyanobacteria/genetics , Anabaena/genetics , Transcription Factors/genetics , CRISPR-Associated Proteins/genetics , Bacterial Proteins/genetics
10.
Angew Chem Int Ed Engl ; 62(12): e202215529, 2023 03 13.
Article En | MEDLINE | ID: mdl-36704842

Flavonoids are important plant natural products with variable structures and bioactivities. All known plant flavonoids are generated under the catalysis of a type III polyketide synthase (PKS) followed by a chalcone isomerase (CHI) and a flavone synthase (FNS). In this study, the biosynthetic gene cluster of chlorflavonin, a fungal flavonoid with acetolactate synthase inhibitory activity, was discovered using a self-resistance-gene-directed strategy. A novel flavonoid biosynthetic pathway in fungi was revealed. A core nonribosomal peptide synthetase-polyketide synthase (NRPS-PKS) is responsible for the generation of the key precursor chalcone. Then, a new type of CHI catalyzes the conversion of a chalcone into a flavanone by a histidine-mediated oxa-Michael addition mechanism. Finally, the desaturation of flavanone to flavone is catalyzed by a new type of FNS, a flavin mononucleotide (FMN)-dependent oxidoreductase.


Chalcones , Flavanones , Flavones , Polyketide Synthases/metabolism , Fungi/metabolism , Peptide Synthases/metabolism
11.
Polymers (Basel) ; 14(14)2022 Jul 13.
Article En | MEDLINE | ID: mdl-35890618

Oxidized sucrose is a non-formaldehyde crosslinking agent with many applications in polymer crosslinking and modification, such as in the preparation of starch films and protein films. However, research on the structure of oxidized sucrose is lacking. In this paper, oxidized sucrose was synthesized through selective oxidation of sodium periodate. By LC-MS, FTIR, TGA, NMR, and HRMS analyses, it was shown that oxidized sucrose existed in the form of a hydrate, and the tetraaldehyde oxidized sucrose could isomerize into the form of two six-membered hemiacetal rings. The structure of oxidized sucrose was also verified by theoretical calculations. Furthermore, the diffusional properties of oxidized sucrose were investigated by the rolling-film method. Finally, it was found that oxidized sucrose used as a crosslinking agent could effectively improve the wrinkle recovery performance of cotton fabrics.

12.
J Agric Food Chem ; 70(18): 5728-5737, 2022 May 11.
Article En | MEDLINE | ID: mdl-35475366

All O-methylated derivatives of emodin, including physcion, questin, and 1-O-methylemodin, show potential antifungal activities. Notably, emodin and questin are two pivotal intermediates of geodin biosynthesis in Aspergillus terreus. Although most of the geodin biosynthetic steps have been investigated, the key O-methyltransferase (OMT) responsible for the O-methylation of emodin to generate questin has remained unidentified. Herein, through phylogenetic tree analysis and in vitro biochemical assays, the long-sought class II emodin-O-methyltransferase GedA has been functionally characterized. Additionally, the catalytic mechanism and key residues at the catalytic site of GedA were elucidated by enzyme-substrate-methyl donor analogue ternary complex crystal structure determination and site-directed mutagenesis. As we demonstrate, GedA adopts a typical general acid/base (E446/H373)-mediated transmethylation mechanism. In particular, residue D374 is also crucial for efficient catalysis through blocking the formation of intramolecular hydrogen bonds in emodin. This study will facilitate future engineering of GedA for the production of physcion or other site-specific O-methylated anthraquinone derivatives with potential applications as biopesticides.


Emodin , Aspergillus/genetics , Methyltransferases/chemistry , Methyltransferases/genetics , Phylogeny
13.
Front Aging Neurosci ; 14: 830824, 2022.
Article En | MEDLINE | ID: mdl-35309887

The topic of physical activity interventions for the treatment of Alzheimer's disease (AD) has been discussed for decades, but there are still inconsistent views on the effect of its intervention in different studies. With the increase in randomized controlled trials (RCTs), it is necessary to update newly published studies and systematically evaluate the effects of physical activity interventions. Scientific citation databases (e.g., PubMed, EMBASE, etc.) and registration databases (e.g., ISRCTN, CHICTR, etc.) were checked to screen RCTs and systematic reviews of physical activity interventions in AD. Then extract and review the intervention methods and their evaluation results in the included studies. Spearman correlation method was used to test the association between the mean difference (MD) of intervention results and activity time. The Hedges'g method was used to combine continuous data to analyze the standard MD (SMD) of different intervention types or time subgroups. The overall results show that physical activity intervention can improve the cognition, neuropsychiatric symptoms and quality of life (Qol) of AD patients, but the duration of the intervention significantly affected the outcome of the assessment. Subgroup analysis results showed that an intervention duration of 2-5 months had a significant advantage: cognitive function (Minimum Mental State Examination: SMD = 0.47, 95% CI = 0.33 ∼ 0.61, P < 0.01), neuropsychiatric symptoms (Neuropsychiatric Inventory: SMD = -0.48, 95% CI = -0.85 ∼-0.11, P < 0.01), and quality of life (Qol-AD: SMD = 0.47, 95% CI = 0.23 ∼ 0.71, P < 0.01). The systematic review and analysis results of updated RCTs suggested that short-term (2-5 months) physical activity interventions were more beneficial in improving cognitive function, neuropsychiatric symptoms and Qol in patients with AD. And there was no evidence of differences in the effectiveness of different physical activity interventions.

14.
AMB Express ; 11(1): 34, 2021 Mar 01.
Article En | MEDLINE | ID: mdl-33646434

To accurately explore the interaction mechanism between Escherichia coli and Staphylococcus aureus, we designed an ecological experiment to monoculture and co-culture E. coli and S. aureus. We co-cultured 45 strains of E. coli and S. aureus, as well as each species individually to measure growth over 36 h. We implemented a genome wide association study (GWAS) based on growth parameters (λ, R, A and s) to identify significant single nucleotide polymorphisms (SNPs) of the bacteria. Three commonly used growth regression equations, Logistic, Gompertz, and Richards, were used to fit the bacteria growth data of each strain. Then each equation's Akaike's information criterion (AIC) value was calculated as a commonly used information criterion. We used the optimal growth equation to estimate the four parameters above for strains in co-culture. By plotting the estimates for each parameter across two strains, we can visualize how growth parameters respond ecologically to environment stimuli. We verified that different genotypes of bacteria had different growth trajectories, although they were the same species. We reported 85 and 52 significant SNPs that were associated with interaction in E. coli and S. aureus, respectively. Many significant genes might play key roles in interaction, such as yjjW, dnaK, aceE, tatD, ftsA, rclR, ftsK, fepA in E. coli, and scdA, trpD, sdrD, SAOUHSC_01219 in S. aureus. Our study illustrated that there were multiple genes working together to affect bacterial interaction, and laid a solid foundation for the later study of more complex inter-bacterial interaction mechanisms.

15.
Cell Tissue Res ; 381(3): 527-541, 2020 Sep.
Article En | MEDLINE | ID: mdl-32458081

The Wnt/ß-catenin pathway participates in many important physiological events such as cell proliferation and differentiation in the male reproductive system. We found that Kinesin-2 motor KIF3A is highly expressed during spermatogenesis in Eriocheir sinensis; it may potentially promote the intracellular transport of cargoes in this process. However, only a few studies have focused on the relationship between KIF3A and the Wnt/ß-catenin pathway in the male reproductive system of decapod crustaceans. In this study, we cloned and characterized the CDS of ß-catenin in E. sinensis for the first time. Fluorescence in situ hybridization and immunofluorescence results showed the colocalization of Es-KIF3A and Es-ß-catenin at the mRNA and the protein level respectively. To further explore the regulatory function of Es-KIF3A to the Wnt/ß-catenin pathway, the es-kif3a was knocked down by double-stranded RNA (dsRNA) in vivo and in primary cultured cells in testes of E. sinensis. Results showed that the expression of es-ß-catenin and es-dvl were decreased in the es-kif3a knockdown group. The protein expression level of Es-ß-catenin was also reduced and the location of Es-ß-catenin was changed from nucleus to cytoplasm in the late stage of spermatogenesis when es-kif3a was knocked down. Besides, the co-IP result demonstrated that Es-KIF3A could bind with Es-ß-catenin. In summary, this study indicates that Es-KIF3A can positively regulate the Wnt/ß-catenin pathway during spermatogenesis and Es-KIF3A can bind with Es-ß-catenin to facilitate the nuclear translocation of Es-ß-catenin.


Kinesins/metabolism , Wnt Signaling Pathway , beta Catenin/metabolism , Animals , Anomura , Female , Humans , Male , Mice , Spermatogenesis/physiology , Transfection
16.
Appl Environ Microbiol ; 86(7)2020 03 18.
Article En | MEDLINE | ID: mdl-31953341

Salinity is one of the most important abiotic factors in various natural habitats of microbes. Cyanobacteria are the most widely distributed family of photosynthetic microorganisms in environments with fluctuating salinity. In response to salt stress, many cyanobacteria de novo synthesize compatible solutes to maintain osmotic balance in the cell. However, the regulation of intracellular accumulation of these compounds is still not well understood. The freshwater cyanobacterium Synechococcus elongatus PCC 7942 (Syn7942) exclusively accumulates sucrose as a compatible solute upon salt stress and is thus an ideal model microorganism for studying the metabolism of compatible solute dynamics. Here, we focused on elucidating the regulatory mechanisms involved in salt-induced sucrose accumulation in Syn7942. Using a series of physiological and biochemical experiments, we showed that the ionic effect of salt stress plays an important role in inducing sucrose synthesis, whereby elevated ion concentration directly activates the sucrose-synthesizing enzyme sucrose-phosphate synthase and simultaneously inhibits the sucrose-degrading enzyme invertase, resulting in a rapid sucrose accumulation. Thus, we propose a novel mechanism for cyanobacterial adaption to salt stress and fluctuating salinity, i.e., the ion-induced synergistic modulation of the enzymes synthesizing and degrading compatible solutes. These findings greatly enhance our current understanding of microbial adaptation to salt.IMPORTANCE Most microbes de novo synthesize compatible solutes for adaptation to salt stress or fluctuating salinity environments. However, to date, one of the core questions involved in these physiological processes, i.e., the regulation of salt-induced compatible solute biosynthesis, is still not well understood. Here, this issue was systematically investigated by employing the model freshwater cyanobacterium Synechococcus elongatus PCC 7942. A novel mechanism for cyanobacterial adaption to salt stress and fluctuating salinity, i.e., the ion-induced synergistic modulation of key synthesizing and degrading enzymes of compatible solutes, is proposed. Because the ion-induced activation/inhibition of enzymes is a fast and efficient process, it may represent a common strategy of microbes for adaptation to environments with fluctuating salinity.


Adaptation, Physiological , Salinity , Salt Stress/physiology , Synechococcus/physiology
17.
J Biol Chem ; 295(4): 1047-1055, 2020 01 24.
Article En | MEDLINE | ID: mdl-31839596

The lovastatin hydrolase PcEST from the fungus Penicillium chrysogenum exhibits enormous potential for industrial-scale applications in single-step production of monacolin J, the key precursor for synthesis of the cholesterol-lowering drug simvastatin. This enzyme specifically and efficiently catalyzes the conversion of lovastatin to monacolin J but cannot hydrolyze simvastatin. Understanding the catalytic mechanism and the structure-function relationship of PcEST is therefore important for further lovastatin hydrolase screening, engineering, and commercial applications. Here, we solved four X-ray crystal structures, including apo PcEST (2.3 Å), PcEST in complex with monacolin J (2.48 Å), PcEST complexed with the substrate analog simvastatin (2.4 Å), and an inactivated PcEST variant (S57A) with the lovastatin substrate (2.3 Å). Structure-based biochemical analyses and mutagenesis assays revealed that the Ser57 (nucleophile)-Tyr170 (general base)-Lys60 (general acid) catalytic triad, the hydrogen-bond network (Trp344 and Tyr127) around the active site, and the specific substrate-binding tunnel together determine efficient and specific lovastatin hydrolysis by PcEST. Moreover, steric effects on nucleophilic attack caused by the 2',2-dimethybutyryl group of simvastatin resulted in no activity of PcEST on simvastatin. On the basis of structural comparisons, we propose several indicators to define lovastatin esterases. Furthermore, using structure-guided enzyme engineering, we developed a PcEST variant, D106A, having improved solubility and thermostability, suggesting a promising application of this variant in industrial processes. To our knowledge, this is the first report describing the mechanism and structure-function relationship of lovastatin hydrolase and providing insights that may guide rapid screening and engineering of additional lovastatin esterase variants.


Biocatalysis , Hydrolases/chemistry , Hydrolases/metabolism , Acyltransferases/chemistry , Acyltransferases/metabolism , Hydrogen Bonding , Hydrolysis , Kinetics , Models, Molecular , Mutagenesis/genetics , Mutation/genetics , Penicillium/enzymology , Protein Engineering , Simvastatin/chemistry , Simvastatin/metabolism , Structure-Activity Relationship , Substrate Specificity
18.
Contemp Nurse ; 55(6): 507-521, 2019 Dec.
Article En | MEDLINE | ID: mdl-31502504

Background: Patients are often not actively involved in their acute pain management.Objectives: To understand the attitudes of patients, family caregivers and nurses to patient participation in pain management after their knee or hip joint replacement.Design: Q-methodological design.Methods: 45 participants were recruited, included 15 patients, 15 caregivers and 15 nurses. Forty-nine statements were rank-ordered in a Q-sort table.Results: Four factors which explained 65% of the variance were identified from factor analysis. They are named "Endurers", "Supporters", "Worriers" ,and "Wabblers".Conclusion: Each group have a significant knowledge deficit in pain management. Patients and caregivers were more likely to have a passive attitude and false cognition towards pain and analgesic drugs. Nurses often play a role as a supporter, however, it is hard for them to understand their important role in facilitating patient involvement in their pain management.


Arthroplasty, Replacement, Hip/adverse effects , Arthroplasty, Replacement, Knee/adverse effects , Attitude of Health Personnel , Attitude to Health , Caregivers/psychology , Nursing Staff/psychology , Pain Management/methods , Pain, Postoperative/prevention & control , Patient Participation , Patients/psychology , Adult , Aged , China , Female , Humans , Male , Middle Aged
19.
Brain Behav Immun ; 80: 777-792, 2019 08.
Article En | MEDLINE | ID: mdl-31108168

The progressive increase in the prevalence of obesity in the population can result in increased healthcare costs and demands. Recent studies have revealed a positive correlation between pain and obesity, although the underlying mechanisms still remain unknown. Here, we aimed to clarify the role of microglia in altered pain behaviors induced by high-fat diet (HFD) in male mice. We found that C57BL/6CR mice on HFD exhibited enhanced spinal microglial reaction (increased cell number and up-regulated expression of p-p38 and CD16/32), increased tumor necrosis factor-α (TNF-α) mRNA and brain-derived neurotrophic factor (BDNF) protein expression as well as a polarization of spinal microglial toward a pro-inflammatory phenotype. Moreover, we found that using PLX3397 (a selective colony-stimulating factor-1 receptor (CSF1R) kinase inhibitor) to eliminate microglia in HFD-induced obesity mice, inflammation in the spinal cord was rescued, as was abnormal pain hypersensitivity. Intrathecal injection of Mac-1-saporin (a saporin-conjugated anti-mac1 antibody) resulted in a decreased number of microglia and attenuated both mechanical allodynia and thermal hyperalgesia in HFD-fed mice. These results indicate that the pro-inflammatory functions of spinal microglia have a special relevance to abnormal pain hypersensitivity in HFD-induced obesity mice. In conclusion, our data suggest that HFD induces a classical reaction of microglia, characterized by an enhanced phosphorylation of p-38 and increased CD16/32 expression, which may in part contribute to increased nociceptive responses in HFD-induced obesity mice.


Microglia/metabolism , Obesity/metabolism , Pain/metabolism , Animals , Brain-Derived Neurotrophic Factor/metabolism , Diet, High-Fat/adverse effects , Inflammation/metabolism , Male , Mice , Mice, Inbred C57BL , Microglia/physiology , Nociceptors/metabolism , Spinal Cord/metabolism , Tumor Necrosis Factor-alpha/metabolism , p38 Mitogen-Activated Protein Kinases/metabolism
20.
Gene ; 684: 1-9, 2019 Feb 05.
Article En | MEDLINE | ID: mdl-30342167

Kinesins are essential for the transport and positioning of several biomolecules through moving along the microtubule in eukaryotic cells. Up to now, there are 14 kinesin family proteins known. The MAPK pathway which is composed of multiple proteins constituting a complex cascade also plays important roles in cell proliferation, differentiation and apoptosis in eukaryotic cells. MAPK pathway includes three main kinases: MAPK Kinase Kinase, MAPK Kinase and mitogen-activated protein kinase that activate and phosphorylate downstream step by step in which abundant proteins scaffold together in complex ways. To accomplish the transmission of a variety of signals, numbers of kinesins are closely associated with the MAPK cascade such as Kinesin-1, Kinesin-3, Kinesin-5, Kinesin-8, Kinesin-11 and Kinesin-13 families in mammals and two kinds of kinesin-like proteins in plants. Studies have indicated that Kinesin-1 light chain KLC1, Kinesin-1 heavy chain KIF5B and Kinesin-11 family motor KIF26B interact with extracellular signal-regulated kinase ERK closely to regulate neuronal differentiation and mediate the chemosensitivity of osteosarcoma cells to drugs, Kinesin-3 family motor KIF13B and Kinesin-5 family motor Eg5 perform functions in regulating p38 to regulate the myelination of nervous system and facilitate the spindle elongation and tension, Kinesin-8 family motor MS-KIF18A and three isoforms of kinesin-13 can also connect and interact with MAPK pathway to transport estrogen receptor to the nucleus and control cell migration. In plant cells, NPK1-activating kinesin-like protein 1 NACK and AtNACK1 (HIK) kinesin-like protein HINKEL are two members of the plant-specific kinesin-7. They function as Ras at the upstream of MAPK pathway to regulate cytokinesis. This review summarizes the novel roles of kinesins in MAPK cascade and tries to discuss the mechanism of the interaction between them using mammalian and plant cells as models.


Kinesins/metabolism , MAP Kinase Signaling System/physiology , Animals , Cytokinesis/physiology , Humans , Kinesins/physiology , Microtubule-Associated Proteins , Microtubules/metabolism , Phosphorylation , Plant Proteins/metabolism , Plants/metabolism , Protein Transport
...