Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
Add more filters










Publication year range
1.
Int Immunopharmacol ; 137: 112384, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38878484

ABSTRACT

Selenium nanoparticles (SeNPs) enhance the immune response as adjuvants, increasing the efficacy of viral vaccines, including those for COVID-19. However, the efficiency of mucosal SeNPs in boosting vaccine-induced protective immunity against tuberculosis remains unclear. Therefore, this study aims to investigate whether the combination of SeNPs with the AH antigen (Ag85A-HspX) can boost respiratory mucosal immunity and thereby enhance the protective effects against tuberculosis. We synthesized SeNPs and assessed their impact on the immune response and protection against Mycobacterium bovis (M. bovis) as a mucosal adjuvant in mice, administered intranasally at a dose of 20 µg. SeNPs outperformed polyinosinic-polycytidylic acid (Poly IC) in stimulating the maturation of bone marrow-derived dendritic cells (BMDCs), which enhanced antigen presentation. SeNPs significantly activated and proliferated tissue-resident memory T cells (TRMs) and effector CD4+ T cells in the lungs. The vaccines elicited specific antibody responses in the respiratory tract and stimulated systemic Th1 and Th17 immune responses. Immunization with AH and SeNPs led to higher levels of mucosal secretory IgA in bronchoalveolar lavage fluid (BALF) and secretory IL-17 in splenocytes. Moreover, SeNPs immunized mice showed reduced M. bovis infection loads and inflammatory lesions in the lungs post-challenge. Notably, immunization with AH and SeNPs significantly reduced bacterial load in the lungs, achieving the lowest levels compared to all other tested groups. This study calls for pre-clinical investigation of AHB-SeNPs as an anti-bovine tuberculosis vaccine and for exploring its human vaccine potential, which is anticipated to aid in the development of innovative vaccines or adjuvants.

2.
Curr Issues Mol Biol ; 46(6): 5825-5844, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38921019

ABSTRACT

Tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb) complex, is a zoonotic disease that remains one of the leading causes of death worldwide. Latent tuberculosis infection reactivation is a challenging obstacle to eradicating TB globally. Understanding the gene regulatory network of Mtb during dormancy is important. This review discusses up-to-date information about TB gene regulatory networks during dormancy, focusing on the regulation of lipid and energy metabolism, dormancy survival regulator (DosR), White B-like (Wbl) family, Toxin-Antitoxin (TA) systems, sigma factors, and MprAB. We outline the progress in vaccine and drug development associated with Mtb dormancy.

3.
BMC Vet Res ; 20(1): 184, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38724994

ABSTRACT

Cinnamon and star anise essential oils are extracted from natural plants and provide a theoretical basis for the development and clinical application of compound essential oil pellets. However, cinnamon oil and star anise oil have the characteristics of a pungent taste, extreme volatility, poor palatability, and unstable physical and chemical properties, which limit their clinical use in veterinary medicine. In this study, the inhibitory effects of cinnamon oil and star anise oil on Escherichia coli and Salmonella were measured. Compound essential oil pellets were successfully prepared by centrifugal granulation technology. Subsequently, the in vitro dissolution of the pellets and their pharmacokinetics in pigs were investigated. The results showd that, cinnamon and star anise oils showed synergistic or additive inhibitiory effects on Escherichia coli and Salmonella. The oil pellets had enteric characteristics in vitro and high dissolution in vitro. The pharmacokinetic results showed that the pharmacokinetic parameters Cmax and AUC were directly correlated with the dosage and showed linear pharmacokinetic characteristics, which provided a theoretical basis for the development and clinical application of compound essential oil pellets.


Subject(s)
Cinnamomum zeylanicum , Escherichia coli , Oils, Volatile , Animals , Oils, Volatile/pharmacokinetics , Oils, Volatile/administration & dosage , Cinnamomum zeylanicum/chemistry , Escherichia coli/drug effects , Swine , Anti-Bacterial Agents/pharmacokinetics , Anti-Bacterial Agents/administration & dosage , Salmonella/drug effects , Satureja/chemistry , Plant Oils/pharmacokinetics , Plant Oils/chemistry , Male , Centrifugation
4.
ACS Biomater Sci Eng ; 10(5): 3387-3400, 2024 05 13.
Article in English | MEDLINE | ID: mdl-38656158

ABSTRACT

Given the worldwide problem posed by enteric pathogens, the discovery of safe and efficient intestinal adjuvants combined with novel antigen delivery techniques is essential to the design of mucosal vaccines. In this work, we designed poly (lactic-co-glycolic acid) (PLGA)-based nanoparticles (NPs) to codeliver all-trans retinoic acid (atRA), novel antigens, and CpG. To address the insolubility of the intestinal adjuvant atRA, we utilized PLGA to encapsulate atRA and form a "nanocapsid" with polydopamine. By leveraging polydopamine, we adsorbed the water-soluble antigens and the TLR9 agonist CpG onto the NPs' surface, resulting in the pathogen-mimicking PLPCa NPs. In this study, the novel fusion protein (HBf), consisting of the Mycobacterium avium subspecies paratuberculosis antigens HBHA, Ag85B, and Bfra, was coloaded onto the NPs. In vitro, PLPCa NPs were shown to promote the activation and maturation of bone marrow-derived dendritic cells. Additionally, we found that PLPCa NPs created an immune-rich microenvironment at the injection site following intramuscular administration. From the results, the PLPCa NPs induced strong IgA levels in the gut in addition to enhancing powerful systemic immune responses. Consequently, significant declines in the bacterial burden and inflammatory score were noted in PLPCa NPs-treated mice. In summary, PLPCa can serve as a novel and safe vaccine delivery platform against gut pathogens, such as paratuberculosis, capable of activating both systemic and intestinal immunity.


Subject(s)
Nanoparticles , Paratuberculosis , Animals , Nanoparticles/chemistry , Paratuberculosis/immunology , Paratuberculosis/prevention & control , Mice , Tretinoin/chemistry , Tretinoin/pharmacology , Mycobacterium avium subsp. paratuberculosis/immunology , Polylactic Acid-Polyglycolic Acid Copolymer/chemistry , Antigens, Bacterial/immunology , Antigens, Bacterial/chemistry , Dendritic Cells/immunology , Dendritic Cells/drug effects , Intestines/immunology , Intestines/microbiology , Mice, Inbred C57BL , Female , Adjuvants, Immunologic/pharmacology , Adjuvants, Immunologic/chemistry , Adjuvants, Immunologic/administration & dosage , Bacterial Vaccines/immunology , Mice, Inbred BALB C
5.
Virulence ; 15(1): 2316459, 2024 12.
Article in English | MEDLINE | ID: mdl-38378464

ABSTRACT

Actinobacillus pleuropneumoniae (APP) is an important pathogen of the porcine respiratory disease complex, which leads to huge economic losses worldwide. We previously demonstrated that Pichia pastoris-producing bovine neutrophil ß-defensin-5 (B5) could resist the infection by the bovine intracellular pathogen Mycobacterium bovis. In this study, the roles of synthetic B5 in regulating mucosal innate immune response and protecting against extracellular APP infection were further investigated using a mouse model. Results showed that B5 promoted the production of tumour necrosis factor (TNF)-α, interleukin (IL)-1ß, and interferon (IFN)-ß in macrophages as well as dendritic cells (DC) and enhanced DC maturation in vitro. Importantly, intranasal B5 was safe and conferred effective protection against APP via reducing the bacterial load in lungs and alleviating pulmonary inflammatory damage. Furthermore, in the early stage of APP infection, we found that intranasal B5 up-regulated the secretion of TNF-α, IL-1ß, IL-17, and IL-22; enhanced the rapid recruitment of macrophages, neutrophils, and DC; and facilitated the generation of group 3 innate lymphoid cells in lungs. In addition, B5 activated signalling pathways associated with cellular response to IFN-ß and activation of innate immune response in APP-challenged lungs. Collectively, B5 via the intranasal route can effectively ameliorate the immune suppression caused by early APP infection and provide protection against APP. The immunization strategy may be applied to animals or human respiratory bacterial infectious diseases. Our findings highlight the potential importance of B5, enhancing mucosal defence against intracellular bacteria like APP which causes early-phase immune suppression.


Subject(s)
Actinobacillus pleuropneumoniae , Immunity, Innate , Humans , Swine , Animals , Cattle , Actinobacillus pleuropneumoniae/metabolism , Lymphocytes , Lung/microbiology , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/metabolism , Immunosuppression Therapy
6.
Poult Sci ; 103(3): 103427, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38262334

ABSTRACT

Riemerella anatipestifer (RA) causes epizootic infectious polyserositis in ducks with high mortality and leads to huge economic losses worldwide. Bacterial resistance poses a challenge for the control of the disease, vaccines failed to provide ideal cross-protection. Thus, the preparation of vaccines based on popular serotypes is important. In this study, we collected 700 brain and liver tissues of dead ducks from 8 provinces in southern China from 2016 to 2022 and obtained 195 RA isolates with serotypes 1, 2, 7, and 10. Serotypes 1 and 2 were the most prevalent (82%). A novel bivalent inactivated vaccine WZX-XT5 containing propolis adjuvant was prepared, we chose XT5 (serotype 1) and WZX (serotype 2) as vaccine strains and evaluated WZX-XT5-induced immune response and protective efficacy in ducks. Results showed that the XT5 (LD50, 3.5 × 103 CFU) exhibited high virulence and provided better protection against RA compared with ZXP, DCR and LCF1 (LD50, 108 CFU). Notably, the dose of 109 CFU provided ideal protection compared with 108 CFU, propolis and oil emulsion adjuvants induced stronger protective efficacy compared with aluminum hydroxide adjuvant. Importantly, WZX-XT5 immunization induced high levels of RA-specific IgY, IFN-γ, IL-2, and IL-4 in serum and offered over 90% protection against RA with ultra-high lethal dose in ducks. Additionally, no clinical signs of RA infection or obvious pathological damage in tissues were observed in protected ducks. Overall, this study first reports the identification, serotyping and virulence of RA in ducks of southern China and the preparation of a novel bivalent inactivated vaccine, providing useful scientific information to prevent and control RA infection.


Subject(s)
Flavobacteriaceae Infections , Poultry Diseases , Propolis , Riemerella , Animals , Ducks/microbiology , Serogroup , Poultry Diseases/microbiology , Flavobacteriaceae Infections/prevention & control , Flavobacteriaceae Infections/veterinary , Vaccines, Combined , Chickens , Adjuvants, Immunologic/pharmacology , Vaccines, Inactivated
7.
BMC Vet Res ; 19(1): 164, 2023 Sep 19.
Article in English | MEDLINE | ID: mdl-37726783

ABSTRACT

BACKGROUND: A new antibacterial compound powder of amoxicillin (AMO)/Radix Scutellaria extract (RSE) was developed, and its pharmacokinetics were determined in pigs following oral administration. RESULTS: The MIC ranges of AMO against Escherichia coli, Staphylococcus aureus and Streptococcus were 1-8 µg/mL, 0.5-4 µg/mL and 0.5-64 µg/mL, respectively. The MIC ranges of RSE against E. coli, S. aureus, and Streptococcus were greater than 2.5 mg/mL, 0.156-2.5 mg/mL, and greater than 2.5 mg/mL, respectively. For S. aureus, the combined drug susceptibility test showed that AMO and RSE had an additive or synergistic effect. The results of compatibility test, the excipient screening test and the drug quality control test showed that the formulation had stable quality and uniform properties under the test conditions. Two studies were conducted to investigate the pharmacokinetics of the compound product in pigs. First, the pharmacokinetics of the AMO-RSE powder were compared with those of their respective single products. The results showed no significant change in the main pharmacokinetic parameters when either component was removed from the compound formulation; thus, AMO and RSE have no pharmacokinetic interaction in pigs. Second, pigs were orally administered three different doses of AMO-RSE powder. The Cmax and AUC increased proportionally with increasing p.o. dose; thus, the λz, t1/2λ, MRT, and Tmax were unchanged for the doses of 10, 20, and 30 mg/kg AMO and the doses of 5, 10, and 15 mg/kg BCL, showing that AMO/baicalin in AMO-RSE powder showed linear pharmacokinetic characteristics in pigs. CONCLUSIONS: The combined drug sensitivity test of AMO and RSE against S. aureus showed that the combination was additive or synergistic. Pharmacokinetic studies indicated that AMO and BCL do not interfere with each other in pigs when used in a compound formulation. The pharmacokinetic parameters remained unchanged regardless of the dose for p.o. administration, indicating linear pharmacokinetic properties over the tested dose range. The quality of the AMO-RSE powder was good and stable, providing a foundation for its clinical application in veterinary medicine. Further bioavailability, PK/PD and clinical trials are still needed to determine the final dosage regimen.


Subject(s)
Amoxicillin , Scutellaria , Animals , Swine , Escherichia coli , Powders , Staphylococcus aureus , Plant Extracts/pharmacology
8.
PLoS One ; 18(8): e0290854, 2023.
Article in English | MEDLINE | ID: mdl-37647293

ABSTRACT

Water quality regulation is widely recognized as a highly effective strategy for disease prevention in the field of aquaculture, and it holds significant potential for the development of sustainable aquaculture. Herein, four water quality regulators, including potassium monopersulfate (KMPS), tetrakis hydroxymethyl phosphonium sulfate (THPS), bacillus subtilis (BS), and chitosan (CS), were added to the culture water of Oreochromis niloticus (GIFT tilapia) every seven days. Subsequently, the effects of these four water quality regulators on GIFT tilapia were comprehensively evaluated by measuring the water quality index of daily growth-related performance and immune indexes of GIFT tilapia. The findings indicated that implementing the four water quality regulators resulted in a decrease in the content of ammonia nitrogen, active phosphate, nitrite, total organic carbon (TOC), and chemical oxygen demand (COD) in the water. Additionally, these regulators were found to maintain dissolved oxygen (DO) levels and pH of the water effectively. Furthermore, using these regulators demonstrated positive effects on various physiological parameters of GIFT tilapia, including improvements in final body weight, weight gain rate (WGR), specific growth rate (SGR), condition factor (CF), feed conversion ratio (FCR), spleen index (SI), hepato-somatic index (HSI), immune cell count, the activity of antioxidant-related enzymes (Nitric oxide, NO and Superoxide dismutase, SOD), and mRNA expression levels of immunity-related factors (Tumor Necrosis Factor-alpha, TNF-α and Interleukin-1 beta, IL-1ß) in the liver and spleen. Notably, the most significant improvements were observed in the groups treated with the BS and CS water quality regulators. Moreover, BS and CS groups exhibited significantly higher serum levels of albumin (ALB) and total protein (TP) (P < 0.05), whereas the other indicators showed no significant difference (P > 0.05) compared to the control group. However, the KMPS and THPS groups of GIFT tilapia exhibited significantly higher serum levels of aspartate aminotransferase (AST), alanine transaminase (ALT), creatinine (CRE) and blood urea nitrogen (BUN) (P < 0.05), whereas they exhibited significantly decreased HSI (P < 0.05). In addition, the partially pathological observations revealed the presence of cell vacuolation, nuclear shrinkage, and pyknosis within the liver. In conclusion, these four water quality regulators, mainly BS and CS, could improve the growth performance and immunity of GIFT tilapia to varying degrees by regulating the water quality and then further increasing the expression levels of immune-related factors or the activity of antioxidant-related enzymes of GIFT tilapia. On the contrary, the prolonged use of KMPS and THPS may gradually diminish their growth-enhancing properties and potentially hinder the growth of GIFT tilapia.


Subject(s)
Cichlids , Tilapia , Animals , Antioxidants , Water Quality , Body Weight , Bacillus subtilis
9.
Microbiol Spectr ; : e0343122, 2023 Feb 27.
Article in English | MEDLINE | ID: mdl-36847491

ABSTRACT

Accumulating evidence indicates that antibodies can protect against some intracellular pathogens. Mycobacterium bovis is an intracellular bacterium, and its cell wall (CW) is essential for its virulence and survival. However, the questions of whether antibodies play a protective role in immunity against M. bovis infection and what effects antibodies specific to the CW of M. bovis have still remain unclear. Here, we report that antibodies targeting the CW of an isolated pathogenic M. bovis strain and that of an attenuated bacillus Calmette-Guérin (BCG) strain could induce protection against virulent M. bovis infection in vitro and in vivo. Further research found that the antibody-induced protection was mainly achieved by promoting Fc gamma receptor (FcγR)-mediated phagocytosis, inhibiting bacterial intracellular growth, and enhancing the fusion of phagosomes and lysosomes, and it also depended on T cells for its efficacy. Additionally, we analyzed and characterized the B-cell receptor (BCR) repertoires of CW-immunized mice via next-generation sequencing. CW immunization stimulated BCR changes in the complementarity determining region 3 (CDR3) isotype distribution, gene usage, and somatic hypermutation. Overall, our study validates the idea that antibodies targeting the CW induce protection against virulent M. bovis infection. This study highlights the importance of antibodies targeting the CW in the defense against tuberculosis. IMPORTANCE M. bovis is the causative agent of animal tuberculosis (TB) and human TB. Research on M. bovis is of great public health significance. Currently, TB vaccines are mainly aimed at eliciting protection by enhancement of cell-mediated immunity, and there are few studies on protective antibodies. This is the first report of protective antibodies against M. bovis infection, and the antibodies had both preventive and even therapeutic effects in an M. bovis infection mouse model. Additionally, we reveal the relationship between CDR3 gene diversity and the immune characteristics of the antibodies. These results will provide valuable advice for the rational development of TB vaccines.

10.
Bioimpacts ; 12(5): 395-404, 2022.
Article in English | MEDLINE | ID: mdl-36381632

ABSTRACT

Introduction: The limited efficacy of BCG (bacillus Calmette-Guérin) urgently requires new effective vaccination approaches for the control of tuberculosis. Poly lactic-co-glycolic acid (PLGA) is a prevalent drug delivery system. However, the effect of PLGA-based nanoparticles (NPs) against tuberculosis for the induction of mucosal immune response is no fully elucidated. In this study, we hypothesized that intranasal immunization with culture filtrate protein-10 (CFP10)-loaded PLGA NPs (CFP10-NPs) could boost the protective immunity of BCG against Mycobacterium bovis in mice. Methods: The recombinant protein CFP10 was encapsulated with PLGA NPs to prepare CFP10-NPs by the classical water-oil-water solvent-evaporation method. Then, the immunoregulatory effects of CFP10-NPs on macrophages in vitro and on BCG-immunized mice in vivo were investigated. Results: We used spherical CFP10-NPs with a negatively charged surface (zeta-potential -28.5 ± 1.7 mV) having a particle size of 281.7 ± 28.5 nm in diameter. Notably, CFP10-NPs significantly enhanced the secretion of tumor necrosis factor α (TNF-α) and interleukin (IL)-1ß in J774A.1 macrophages. Moreover, mucosal immunization with CFP10-NPs significantly increased TNF-α and IL-1ß production in serum, and immunoglobulin A (IgA) secretion in bronchoalveolar lavage fluid (BALF), and promoted the secretion of CFP10-specific interferon-γ (IFN-γ) in splenocytes of mice. Furthermore, CFP10-NPs immunization significantly reduced the inflammatory area and bacterial load in lung tissues at 3-week post-M. bovis challenge. Conclusion: CFP10-NPs markedly improve the immunogenicity and protective efficacy of BCG. Our findings explore the potential of the airway mucosal vaccine based on PLGA NPs as a vehicle for targeted lung delivery.

11.
Emerg Microbes Infect ; 11(1): 1806-1818, 2022 Dec.
Article in English | MEDLINE | ID: mdl-35766265

ABSTRACT

The role of gut microbiota has been described as an important influencer of the immune system. Gut-lung axis is critical in the prevention of mycobacterium infection, but the specific mechanism, by which dysbiosis affects tuberculosis, has not been reported. In this study, we attempted to provide more information on how the gut-lung axis contributes to Mycobacterium bovis (M. bovis) infection. Mice are pre-treated with broad-spectrum antibiotics cocktail (Abx) to induce gut dysbiosis. Interestingly, dysbiosis of microbes showed a significant increase in the bacterial burden in the lungs and inhibited the level of COX-2. After faecal transplantation, cyclooxygenase 2 (COX-2) expression was restored and the inflammatory lesion in the lungs was reduced. Further research found that the deficiency of COX-2 inhibited endoplasmic reticulum stress (ER stress). This mechanism was completed by COX-2 interaction with BIP. Moreover, we found a positive feedback mechanism by which blocking ER stress could reduce COX-2 levels by the NF-κB pathway. Taken together, we reveal for the first time gut dysbacteriosis exacerbates M. bovis disease by limiting the COX-2/ER stress pathway. The finding strengthens the foundation of gut microbiota-targeted therapy for tuberculosis treatment.


Subject(s)
Mycobacterium bovis , Tuberculosis , Animals , Cyclooxygenase 2/genetics , Cyclooxygenase 2/metabolism , Dysbiosis/microbiology , Endoplasmic Reticulum Stress , Mice , Tuberculosis/microbiology
12.
Virulence ; 13(1): 949-962, 2022 12.
Article in English | MEDLINE | ID: mdl-35603910

ABSTRACT

Respiratory mucosal immunization is an effective immunization strategy against tuberculosis (TB), and effective mucosal vaccines require adjuvants that can promote protective immunity without deleterious inflammation. Mucosal BCG (Bacille Calmette-Guerin) is effective, but it causes a severe inflammatory response in the lung. A novel less cytotoxic mucosal vaccine AH-PB containing Mycobacterium tuberculosis (Mtb) cell surface antigens Ag85A and HspX (AH), as well as polyinosinic-polycytidylic acid (Poly IC) and bovine neutrophil ß-defensin-5 (B5) adjuvants were prepared, with the overarching goal of protecting against TB. Then, the immunogenicity and protective efficacy of these vaccines via the intranasal route were evaluated in a mouse model. Results showed that intranasal AH-PB promoted tissue-resident memory T cells (TRMs) development in the lung, induced antigen-specific antibody response in airway, provided protection against Mycobacterium bovis (M. bovis), conferred better protection than parenteral BCG in the later stage of infection, and boosted the protective immunity generated by BCG in mice. Moreover, both B5 and Poly IC were indispensable for the protection generated by AH-PB. Furthermore, intranasal immunization with AH-B5 fusion vaccines also provided similar protection against M. bovis compared to AH-PB. Collectively, B5-based TB vaccine via the intranasal route is a promising immunization strategy against bovine TB, and this kind of immunization strategy may be applied to human TB vaccine development. These findings highlight the potential importance of B5 as a mucosal adjuvant used in TB vaccines or other respiratory disease vaccines.


Subject(s)
Mycobacterium bovis , Mycobacterium tuberculosis , Tuberculosis Vaccines , Tuberculosis , beta-Defensins , Animals , Antigens, Bacterial , Antitubercular Agents , BCG Vaccine , Cattle , Disease Models, Animal , Immunity, Mucosal , Mice , Tuberculosis/prevention & control
13.
Autophagy ; 18(6): 1401-1415, 2022 06.
Article in English | MEDLINE | ID: mdl-34720021

ABSTRACT

Mitophagy is a selective autophagy mechanism for eliminating damaged mitochondria and plays a crucial role in the immune evasion of some viruses and bacteria. Here, we report that Mycobacterium bovis (M. bovis) utilizes host mitophagy to suppress host xenophagy to enhance its intracellular survival. M. bovis is the causative agent of animal tuberculosis and human tuberculosis. In the current study, we show that M. bovis induces mitophagy in macrophages, and the induction of mitophagy is impaired by PINK1 knockdown, indicating the PINK1-PRKN/Parkin pathway is involved in the mitophagy induced by M. bovis. Moreover, the survival of M. bovis in macrophages and the lung bacterial burden of mice are restricted by the inhibition of mitophagy and are enhanced by the induction of mitophagy. Confocal microscopy analysis reveals that induction of mitophagy suppresses host xenophagy by competitive utilization of p-TBK1. Overall, our results suggest that induction of mitophagy enhances M. bovis growth while inhibition of mitophagy improves growth restriction. The findings provide a new insight for understanding the intracellular survival mechanism of M. bovis in the host.Abbreviations: BMDM: mouse bone marrow-derived macrophage; BNIP3: BCL2/adenovirus E1B interacting protein 3; BNIP3L/NIX: BCL2/adenovirus E1B interacting protein 3-like; BCL2L13: BCL2-like 13 (apoptosis facilitator); CCCP: carbonyl cyanide m-cholorophenyl hydrazone; FUNDC1: FUN14 domain-containing 1; FKBP8: FKBP506 binding protein 8; HCV: hepatitis C virus; HBV: hepatitis B virus; IFN: interferon; L. monocytogenes: Listeria monocytogenes; M. bovis: Mycobacterium bovis; Mtb: Mycobacterium tuberculosis; Mdivi-1: mitochondrial division inhibitor 1; PINK1: PTEN-induced putative kinase 1; TBK1: TANK-binding kinase 1; TUFM: Tu translation elongation factor, mitochondrial; TEM: transmission electron microscopy.


Subject(s)
Macroautophagy , Macrophages , Mitophagy , Mycobacterium bovis , Animals , Macrophages/microbiology , Membrane Proteins , Mice , Mitochondrial Proteins/metabolism , Mycobacterium bovis/metabolism
14.
FASEB J ; 35(9): e21777, 2021 09.
Article in English | MEDLINE | ID: mdl-34403519

ABSTRACT

Mycobacterium bovis is the causative agent of bovine tuberculosis and also responsible for serious threat to public health. Koumiss is a fermented mare's milk product, used as traditional drink. Here, we explored the effect of koumiss on gut microbiota and the host immune response against M bovis infection. Therefore, mice were treated with koumiss and fresh mare milk for 14 days before M bovis infection and continue for 5 weeks after infection. The results showed a clear change in the intestinal flora of mice treated with koumiss, and the lungs of mice treated with koumiss showed severe edema, inflammatory infiltration, and pulmonary nodules in M bovis-infected mice. Notably, we found that the content of short-chain fatty acids was significantly lower in the koumiss-treated group compared with the control group. However, the expression of endoplasmic reticulum stress and apoptosis-related proteins in the lungs of koumiss-treated mice were significantly decreased. Collectively, these findings suggest that koumiss treatment disturb the intestinal flora of, which is associated with disease severity and the possible mechanism that induces lungs pathology. Our current findings can be exploited further to establish the "gut-lung" axis which might be a novel strategy for the control of tuberculosis.


Subject(s)
Endoplasmic Reticulum Stress/drug effects , Gastrointestinal Microbiome/drug effects , Koumiss/adverse effects , Mycobacterium bovis/drug effects , Tuberculosis, Pulmonary/microbiology , Tuberculosis, Pulmonary/pathology , Animals , Apoptosis/drug effects , Disease Models, Animal , Fatty Acids/analysis , Feces/chemistry , Feces/microbiology , Female , Gastrointestinal Microbiome/immunology , Horses , Lung/drug effects , Lung/microbiology , Lung/pathology , Mice , Mice, Inbred BALB C , Mycobacterium bovis/immunology , Tuberculosis, Pulmonary/diet therapy , Tuberculosis, Pulmonary/metabolism
15.
J Infect ; 83(1): 61-68, 2021 07.
Article in English | MEDLINE | ID: mdl-33892015

ABSTRACT

Caspases are classified as inflammatory or apoptotic category. Inflammatory caspases participate in inflammasome activation, while apoptotic caspases mediate apoptotic activation. Previous studies have shown that apoptotic caspases prevent the production of IFN-ß during apoptosis or virus infection. However, the relationship between apoptotic caspases and IFN-ß production during intracellular bacterial infection is still unclear. Here, we investigated the role of apoptotic caspases in IFN-ß production induced by Mycobacterium bovis (M. bovis) infection. M. bovis is an intracellular bacterium and belongs to the Mycobacterium tuberculosis complex. M. bovis infection can cause tuberculosis in animals and human beings. In the current study, we found that M. bovis infection triggered mitochondrial stress, which caused the leakage of cytochrome c into the cytoplasm, and in turn, activated the downstream caspase-9 and-3. Furthermore, our results showed that activation of apoptotic caspases reduced IFN-ß production during M. bovis infection and vice versa. Confocal microscopy analysis revealed that apoptotic caspases prevented IFN-ß production by decreasing p-IRF3 nuclear translocation. Our findings demonstrate that apoptotic caspases negatively regulate the production of IFN-ß induced by an intracellular bacterial infection.


Subject(s)
Apoptosis , Caspases , Interferon-beta/immunology , Macrophages/immunology , Mycobacterium bovis , Animals , Caspases/genetics , Macrophages/microbiology , Mice , Tuberculosis
16.
Biomed Pharmacother ; 137: 111341, 2021 May.
Article in English | MEDLINE | ID: mdl-33561646

ABSTRACT

Mycobacterium bovis (M. bovis) is a member of mycobacterium tuberculosis complex (MTBC), and a causative agent of chronic respiratory disease in a wide range of hosts. Bacillus Calmette-Guerin (BCG) vaccine is mostly used for the prevention of childhood tuberculosis. Further substantial implications are required for the development and evaluation of new tuberculosis (TB) vaccines as well as improving the role of BCG in TB control strategies. In this study, we prepared PLGA nanoparticles encapsulated with argF antigen (argF-NPs). We hypothesized, that argF nanoparticles mediate immune responses of BCG vaccine in mice models of M. bovis infection. We observed that mice vaccinated with argF-NPs exhibited a significant increase in secretory IFN-γ, CD4+ T cells response and mucosal secretory IgA against M. bovis infection. In addition, a marked increase was observed in the level of secretory IL-1ß, TNF-α and IL-10 both in vitro and in vivo upon argF-NPs vaccination. Furthermore, argF-NPs vaccination resulted in a significant reduction in the inflammatory lesions in the lung's tissues, minimized the losses in total body weight and reduced M. bovis burden in infected mice. Our results indicate that BCG prime-boost strategy might be a promising measure for the prevention against M. bovis infection by induction of CD4+ T cells responses and mucosal antibodies.


Subject(s)
BCG Vaccine/administration & dosage , BCG Vaccine/immunology , Mycobacterium bovis , Nanoparticles/administration & dosage , Ornithine Carbamoyltransferase/immunology , Polylactic Acid-Polyglycolic Acid Copolymer/immunology , Tuberculosis, Bovine/prevention & control , Administration, Intranasal , Animals , Antibody Formation/drug effects , Body Weight/drug effects , CD4-Positive T-Lymphocytes/metabolism , Cattle , Cell Line , Disease Models, Animal , Female , Immunoglobulin A, Secretory/metabolism , Immunoglobulin G/blood , Interferon-gamma/metabolism , Interleukin-10/blood , Interleukin-1beta/blood , Lung/metabolism , Lung/microbiology , Lung/pathology , Macrophages/drug effects , Macrophages/immunology , Mice, Inbred BALB C , Mycobacterium bovis/growth & development , Mycobacterium bovis/pathogenicity , Nanoparticles/chemistry , Ornithine Carbamoyltransferase/administration & dosage , Ornithine Carbamoyltransferase/chemistry , Polylactic Acid-Polyglycolic Acid Copolymer/administration & dosage , Polylactic Acid-Polyglycolic Acid Copolymer/chemistry , Recombinant Proteins/administration & dosage , Recombinant Proteins/chemistry , Recombinant Proteins/immunology , Spleen/microbiology , Spleen/pathology , Tumor Necrosis Factor-alpha/blood
17.
Pharmaceutics ; 12(12)2020 Dec 01.
Article in English | MEDLINE | ID: mdl-33271900

ABSTRACT

Mycobacterium bovis (M. bovis) is a member of the Mycobacterium tuberculosis complex imposing a high zoonotic threat to human health. The limited efficacy of BCG (Bacillus Calmette-Guérin) and upsurges of drug-resistant tuberculosis require new effective vaccination approaches and anti-TB drugs. Poly (lactic-co-glycolic acid) (PLGA) is a preferential drug delivery system candidate. In this study, we formulated PLGA nanoparticles (NPs) encapsulating the recombinant protein bovine neutrophil ß-defensin-5 (B5), and investigated its role in immunomodulation and antimicrobial activity against M. bovis challenge. Using the classical water-oil-water solvent-evaporation method, B5-NPs were prepared, with encapsulation efficiency of 85.5% ± 2.5%. These spherical NPs were 206.6 ± 26.6 nm in diameter, with a negatively charged surface (ζ-potential -27.1 ± 1.5 mV). The encapsulated B5 protein from B5-NPs was released slowly under physiological conditions. B5 or B5-NPs efficiently enhanced the secretion of tumor necrosis factor α (TNF-α), interleukin (IL)-1ß and IL-10 in J774A.1 macrophages. B5-NPs-immunized mice showed significant increases in the production of TNF-α and immunoglobulin A (IgA) in serum, and the proportion of CD4+ T cells in spleen compared with B5 alone. In immunoprotection studies, B5-NPs-immunized mice displayed significant reductions in pulmonary inflammatory area, bacterial burden in the lungs and spleen at 4-week after M. bovis challenge. In treatment studies, B5, but not B5-NPs, assisted rifampicin (RIF) with inhibition of bacterial replication in the lungs and spleen. Moreover, B5 alone also significantly reduced the bacterial load in the lungs and spleen. Altogether, our findings highlight the significance of the B5-PLGA NPs in terms of promoting the immune effect of BCG and the B5 in enhancing the therapeutic effect of RIF against M. bovis.

18.
Inflammation ; 43(5): 1902-1912, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32519269

ABSTRACT

Oxidative stress can induce lung damage and aggravate airway inflammation in asthma. Previously, we reported that rosmarinic acid (RA) exerted strong anti-inflammatory effects in a mouse allergic asthma model. Therefore, we hypothesized that RA might also have antioxidative effects in a superimposed asthma mouse model with oxidative lung damage challenged with ovalbumin (Ova) and hydrogen peroxide (H2O2). We evaluated the antioxidative and anti-asthmatic activity of RA and explored its possible mechanisms of action. Mice sensitized to Ova and challenged with Ova and H2O2 were treated with RA 1 h after challenge. RA treatment greatly diminished the number of inflammatory cells; decreased IL-4, IL-5, and IL-13 production; increased IFN-γ secretion; significantly downregulated ROS production; and markedly upregulated the activities of SOD, GPx, and CAT. Furthermore, RA treatment resulted in a significant increase in the expression of Cu/Zn SOD and a notable reduction in NOX-2 and NOX-4 expression in lung tissues. These findings suggest that RA may effectively alleviate oxidative lung damage and airway inflammation in asthma.


Subject(s)
Antioxidants/therapeutic use , Asthma/drug therapy , Asthma/enzymology , Cinnamates/therapeutic use , Depsides/therapeutic use , NADPH Oxidases/antagonists & inhibitors , Oxidative Stress/drug effects , Animals , Anti-Asthmatic Agents/pharmacology , Anti-Asthmatic Agents/therapeutic use , Antioxidants/pharmacology , Asthma/chemically induced , Cinnamates/pharmacology , Depsides/pharmacology , Dose-Response Relationship, Drug , Female , Hydrogen Peroxide/toxicity , Lung/drug effects , Lung/enzymology , Mice , Mice, Inbred BALB C , NADPH Oxidases/metabolism , Ovalbumin/toxicity , Oxidative Stress/physiology , Rosmarinic Acid
19.
Front Microbiol ; 11: 433, 2020.
Article in English | MEDLINE | ID: mdl-32265874

ABSTRACT

Mycobacterium bovis is the causative agent of bovine tuberculosis, has been identified a serious threat to human population. It has been found that sodium butyrate (NaB), the inhibitor of histone deacetylase, can promote the expression of cathelicidin (LL37) and help the body to resist a variety of injuries. In the current study, we investigate the therapeutic effect of NaB on the regulation of host defense mechanism against M. bovis infection. We found an increased expression of LL37 in M. bovis infected THP-1 cells after NaB treatment. In contrast, NaB treatment significantly down-regulated the expression of Class I HDAC in THP-1 cells infected with M. bovis. Additionally, NaB reduced the expression of phosphorylated P65 (p-P65) and p-IκBα, indicating the inhibition of nuclear factor-κB (NF-κB) signaling. Furthermore, we found that NaB treatment reduced the production of inflammatory cytokines (IL-1ß, TNF-α, and IL-10) and a key anti-apoptotic marker protein Bcl-2 in THP-1 cell infected with M. bovis. Notably, mice showed high resistance to M. bovis infection after NaB treatment. The reduction of viable M. bovis bacilli indicates that NaB-induced inhibition of M. bovis infection mediated by upregulation of LL37 and inhibition of NF-κB signaling pathway. These observations illustrate that NaB mediate protective immune responses against M. bovis infection. Overall, these results suggest that NaB can be exploited as a therapeutic strategy for the control of M. bovis in animals and human beings.

20.
Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi ; 33(12): 1669-1675, 2017 Dec.
Article in Chinese | MEDLINE | ID: mdl-29382429

ABSTRACT

Objective To inhibit cisplatin-induced autophagy and improve the cisplatin sensitivity of A549 cells by knockdown the silent information regulator of transcription 1 (SIRT1). Methods Both mRNA and protein levels of SIRT1 in BEAS-2B, A549 and A549/DDP cells were detected by real-time quantitative PCR and Western blotting. After cisplatin treatment, the protein levels of SIRT1, LC3, P62 and beclin-1 in A549 cells were detected by Western blotting. A549 cells were transfected by siRNA to silence SIRT1 expression. Then, the apoptotic morphology was observed by fluorescence microscopy with Hoechst33258 staining. The apoptotic rate was analyzed by flow cytometry. The expressions of SIRT1, LC3, P62, cleaved caspase-3 and poly(ADP-ribose)polymerase (PARP) were measured by Western blotting. Results Both mRNA and protein levels of SIRT1 in A549 cells and A549/DDP cells were significantly higher than those in BEAS-2B cells, and they were higher in A549/DDP cells than in A549 cells. After cisplatin treatment, the protein levels of SIRT1, LC3 and beclin-1 in A549 cells increased, while P62 decreased. After transfected with SIRT1-siRNA, the expression of SIRT1 in A549 cells decreased. Compared with cisplatin group, the number of the apoptotic cells increased with the obvious occurrence of pyknosis and nuclear fragmentation in cisplatin plus SIRT1-siRNA group. Moreover, the expressions of P62, cleaved caspase-3 and PARP were up-regulated accompanied with LC3 decrease. Conclusion SIRT1 is highly expressed in A549 cells. The sensitivity of A549 cells to cisplatin can be improved by inhibiting the cisplatin-induced autophagy through knockdown of SIRT1.


Subject(s)
Antineoplastic Agents/pharmacology , Autophagy/drug effects , Cisplatin/pharmacology , Sirtuin 1/genetics , A549 Cells , Apoptosis/drug effects , Humans , RNA, Small Interfering/genetics , Sirtuin 1/analysis , Sirtuin 1/antagonists & inhibitors , Sirtuin 1/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...