Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 11 de 11
1.
Article En | MEDLINE | ID: mdl-38690615

Ubiquitin-conjugation enzyme E2C (UBE2C) is a crucial component of the ubiquitin-proteasome system that is involved in numerous cancers. In this study, we find that UBE2C expression is significantly increased in mouse embryos, a critical stage during skeletal muscle development. We further investigate the function of UBE2C in myogenesis. Knockdown of UBE2C inhibits C2C12 cell differentiation and decreases the expressions of MyoG and MyHC, while overexpression of UBE2C promotes C2C12 cell differentiation. Additionally, knockdown of UBE2C, specifically in the tibialis anterior muscle (TA), severely impedes muscle regeneration in vivo. Mechanistically, we show that UBE2C knockdown reduces the level of phosphorylated protein kinase B (p-Akt) and promotes the degradation of Akt. These findings suggest that UBE2C plays a critical role in myoblast differentiation and muscle regeneration and that UBE2C regulates myogenesis through the Akt signaling pathway.

2.
J Agric Food Chem ; 2024 Apr 10.
Article En | MEDLINE | ID: mdl-38598771

Intramuscular fat (IMF) plays a crucial role in enhancing meat quality, enriching meat flavor, and overall improving palatability. In this study, Single-cell RNA sequencing was employed to analyze the longissimus dorsi (LD) obtained from Guangdong small-ear spotted pigs (GDSS, with high IMF) and Yorkshire pigs (YK, with low IMF). GDSS had significantly more Fibro/Adipogenic Progenitor (FAPs), in which the CD9 negative FAPs (FAPCD9-) having adipogenic potential, as demonstrated by in vitro assays using cells originated from mouse muscle. On the other hand, Yorkshire had more fibro-inflammatory progenitors (FIPs, marked with FAPCD9+), presenting higher expression of the FBN1-Integrin α5ß1. FBN1-Integrin α5ß1 could inhibit insulin signaling in FAPCD9-, suppressing adipogenic differentiation. Our results demonstrated that fat-type pigs possess a greater number of FAPCD9-, which are the exclusive cells in muscle capable of differentiating into adipocytes. Moreover, lean-type pigs exhibit higher expression of FBN1-Integrin α5ß1 axis, which inhibits adipocyte differentiation. These results appropriately explain the observed higher IMF content in fat-type pigs.

3.
Waste Manag ; 180: 149-161, 2024 May 15.
Article En | MEDLINE | ID: mdl-38569437

Gold tailings are characterized by low-grade, complex composition, fine embedded particle size, environmental pollution, and large land occupation. This paper describes the mineralogical properties of gold tailings, including chemical composition, phase composition, particle size distribution, and microstructure; summarizes the recycling and utilization of components such as mica, feldspar, and valuable metals in gold tailings; reviews harmless treatment measures for harmful elements in gold tailings; and adumbrated the research progress of gold tailings in the application fields of building materials, ceramics, and glass materials. Based on these discussions, a new technology roadmap that combines multistage magnetic separation and cemented filling is proposed for the clean utilization of all components of gold tailings.


Environmental Pollution , Gold , Ceramics , Recycling , Particle Size
4.
J Anim Sci Biotechnol ; 14(1): 141, 2023 Nov 02.
Article En | MEDLINE | ID: mdl-37919760

BACKGROUND: Chinese indigenous pigs are popular with consumers for their juiciness, flavour and meat quality, but they have lower meat production. Insulin-like growth factor 2 (IGF2) is a maternally imprinted growth factor that promotes skeletal muscle growth by regulating cell proliferation and differentiation. A single nucleotide polymorphism (SNP) within intron 3 of porcine IGF2 disrupts a binding site for the repressor, zinc finger BED-type containing 6 (ZBED6), leading to up-regulation of IGF2 and causing major effects on muscle growth, heart size, and backfat thickness. This favorable mutation is common in Western commercial pig populations, but absent in most Chinese indigenous pig breeds. To improve meat production of Chinese indigenous pigs, we used cytosine base editor 3 (CBE3) to introduce IGF2-intron3-C3071T mutation into porcine embryonic fibroblasts (PEFs) isolated from a male Liang Guang Small Spotted pig (LGSS), and single-cell clones harboring the desired mutation were selected for somatic cell nuclear transfer (SCNT) to generate the founder line of IGF2T/T pigs. RESULTS: We found the heterozygous progeny IGF2C/T pigs exhibited enhanced expression of IGF2, increased lean meat by 18%-36%, enlarged loin muscle area by 3%-17%, improved intramuscular fat (IMF) content by 18%-39%, marbling score by 0.75-1, meat color score by 0.53-1.25, and reduced backfat thickness by 5%-16%. The enhanced accumulation of intramuscular fat in IGF2C/T pigs was identified to be regulated by the PI3K-AKT/AMPK pathway, which activated SREBP1 to promote adipogenesis. CONCLUSIONS: We demonstrated the introduction of IGF2-intron3-C3071T in Chinese LGSS can improve both meat production and quality, and first identified the regulation of IMF deposition by IGF2 through SREBP1 via the PI3K-AKT/AMPK signaling pathways. Our study provides a further understanding of the biological functions of IGF2 and an example for improving porcine economic traits through precise base editing.

5.
Cell Death Dis ; 14(9): 612, 2023 09 18.
Article En | MEDLINE | ID: mdl-37723138

Krüppel-like factor 4 (KLF4) is an evolutionarily conserved zinc finger-containing transcription factor that regulates diverse cellular processes such as cell proliferation, apoptosis, and differentiation. Our previous study showed that KLF4 expression is upregulated in skeletal muscle ontogeny during embryonic development in pigs, suggesting its importance for skeletal muscle development and muscle function. We revealed here that KLF4 plays a critical role in skeletal muscle development and regeneration. Specific knockout of KLF4 in skeletal muscle impaired muscle formation further affecting physical activity and also defected skeletal muscle regeneration. In vitro, KLF4 was highly expressed in proliferating myoblasts and early differentiated cells. KLF4 knockdown promoted myoblast proliferation and inhibited myoblast fusion, while its overexpression showed opposite results. Mechanically, in proliferating myoblasts, KLF4 inhibits myoblast proliferation through regulating cell cycle arrest protein P57 by directly targeting its promoter; while in differentiated myoblasts, KLF4 promotes myoblast fusion by transcriptionally activating Myomixer. Our study provides mechanistic information for skeletal muscle development, reduced muscle strength and impaired regeneration after injury and unveiling the mechanism of KLF4 in myogenic regulation.


Kruppel-Like Factor 4 , Muscle Development , Female , Pregnancy , Animals , Swine , Muscle Development/genetics , Cell Differentiation/genetics , Apoptosis , Cell Cycle Proteins , Muscle, Skeletal
6.
Acta Biochim Biophys Sin (Shanghai) ; 55(2): 250-261, 2023 Feb 25.
Article En | MEDLINE | ID: mdl-36825441

E3 ubiquitin ligases are closely related to cell division, differentiation, and survival in all eukaryotes and play crucial regulatory roles in multiple biological processes and diseases. While Deltex2, as a member of the DELTEX family ubiquitin ligases, is characterized by a RING domain followed by a C-terminal domain (DTC), its functions and underlying mechanisms in myogenesis have not been fully elucidated. Here, we report that Deltex2, which is highly expressed in muscles, positively regulates myoblast proliferation via mediating the expression of Pax7. Meanwhile, we find that Deltex2 is translocated from the nucleus into the cytoplasm during myogenic differentiation, and further disclose that Deltex2 inhibits myoblast differentiation and interacts with MyoD, resulting in the ubiquitination and degradation of MyoD. Altogether, our findings reveal the physiological function of Deltex2 in orchestrating myogenesis and delineate the novel role of Deltex2 as a negative regulator of MyoD protein stability.


Biological Phenomena , Ubiquitin-Protein Ligases , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism , Cell Differentiation , Ubiquitin/metabolism , Myoblasts/metabolism , Cell Proliferation
7.
BMC Biol ; 21(1): 19, 2023 02 01.
Article En | MEDLINE | ID: mdl-36726129

BACKGROUND: Skeletal muscle development is a multistep process whose understanding is central in a broad range of fields and applications, from the potential medical value to human society, to its economic value associated with improvement of agricultural animals. Skeletal muscle initiates in the somites, with muscle precursor cells generated in the dermomyotome and dermomyotome-derived myotome before muscle differentiation ensues, a developmentally regulated process that is well characterized in model organisms. However, the regulation of skeletal muscle ontogeny during embryonic development remains poorly defined in farm animals, for instance in pig. Here, we profiled gene expression and chromatin accessibility in developing pig somites and myotomes at single-cell resolution. RESULTS: We identified myogenic cells and other cell types and constructed a differentiation trajectory of pig skeletal muscle ontogeny. Along this trajectory, the dynamic changes in gene expression and chromatin accessibility coincided with the activities of distinct cell type-specific transcription factors. Some novel genes upregulated along the differentiation trajectory showed higher expression levels in muscular dystrophy mice than that in healthy mice, suggesting their involvement in myogenesis. Integrative analysis of chromatin accessibility, gene expression data, and in vitro experiments identified EGR1 and RHOB as critical regulators of pig embryonic myogenesis. CONCLUSIONS: Collectively, our results enhance our understanding of the molecular and cellular dynamics in pig embryonic myogenesis and offer a high-quality resource for the further study of pig skeletal muscle development and human muscle disease.


Chromatin Immunoprecipitation Sequencing , Single-Cell Gene Expression Analysis , Animals , Mice , Cell Differentiation/genetics , Chromatin/genetics , Chromatin/metabolism , Gene Expression Regulation, Developmental , Muscle Development/genetics , Muscle, Skeletal/metabolism , Single-Cell Analysis , Swine
8.
Comput Methods Programs Biomed ; 228: 107238, 2023 Jan.
Article En | MEDLINE | ID: mdl-36423485

BACKGROUND AND OBJECTIVE: The assessment of the image quality is crucial before the computer-aided diagnosis of fundus images. This task is very challenging. Firstly, the subjective judgments of graders on image quality lead to ambiguous labels. Secondly, despite being treated as classification in existing works, grading has regression properties that cannot be ignored. Solving the ambiguity problem and regression problem in the label space, and extracting discriminative features, have become the keys to quality assessment. METHODS: In this paper, we proposed a framework that can assess the quality of fundus images accurately and reasonably based on deep convolutional neural networks. Drawing on the experience of human graders, a dual-path convolutional neural network with attention blocks is designed to better extract discriminative features and present the bases of decision. Label smoothing and cost-sensitive regularization are designed to solve the label ambiguity problem and the potential regression problem respectively. Besides, a large number of images are annotated by us to further improve the results. RESULTS: We conducted our experiments on the largest retinal image quality assessment dataset with 28,792 retinal images. Our approach achieves 0.8868 precision, 0.8786 recall, 0.8820 F1, and 0.9138 Kappa score. Results show that our approach outperforms state-of-the-art methods. CONCLUSIONS: The promising performances reveal that our methods are beneficial to retinal image quality assessment and have potential in other grading tasks.

9.
J Biol Chem ; 298(9): 102309, 2022 09.
Article En | MEDLINE | ID: mdl-35921899

Protein arginine methyltransferase 1 (PRMT1) methylates a variety of histone and nonhistone protein substrates to regulate multiple cellular functions such as transcription, DNA damage response, and signal transduction. It has been reported as an emerging regulator of various metabolic pathways including glucose metabolism in the liver, atrophy in the skeletal muscle, and lipid catabolism in the adipose tissue. However, the underlying mechanisms governing how PRMT1 regulates adipogenesis remain elusive. Here, we delineate the roles of PRMT1 in mitotic clonal expansion and adipocyte differentiation. Gain and loss of functions demonstrate that PRMT1 is essential for adipogenesis of 3T3-L1 and C3H10T1/2 cells. Mechanistically, we show PRMT1 promotes the expression of transcription factor peroxisome proliferator-activated receptor-γ (PPARγ) by catalyzing histone modification H4R3me2a and impedes the activation of Wnt/ß-catenin signaling by increasing the level of Axin to accelerate adipogenic differentiation. In addition, we demonstrate mitotic clonal expansion is suppressed by PRMT1 deficiency. PRMT1 interacts with transcription factor CCATT enhancer-binding protein ß (C/EBPß), and the absence of PRMT1 leads to the depressed phosphorylation of C/EBPß. Interestingly, we discover PRMT1 acts as a positive regulator of C/EBPß protein stability through decreasing the level of E3 ubiquitin ligase Smurf2, which promotes the ubiquitination and degradation of C/EBPß, thus facilitating adipogenesis. Collectively, these discoveries highlight a critical role of PRMT1 in adipogenesis and provide potential therapeutic targets for the treatment of obesity.


Adipogenesis , CCAAT-Enhancer-Binding Protein-beta , PPAR gamma , Protein-Arginine N-Methyltransferases , 3T3-L1 Cells , Adipocytes/metabolism , Animals , Axin Protein/metabolism , CCAAT-Enhancer-Binding Protein-beta/genetics , CCAAT-Enhancer-Binding Protein-beta/metabolism , Cell Differentiation , Glucose/metabolism , Histones/metabolism , Lipid Metabolism , Mice , PPAR gamma/genetics , PPAR gamma/metabolism , Protein-Arginine N-Methyltransferases/genetics , Protein-Arginine N-Methyltransferases/metabolism , Ubiquitin-Protein Ligases/metabolism , Wnt Signaling Pathway , beta Catenin/metabolism
10.
Article En | MEDLINE | ID: mdl-34574542

Current evidence remains inconsistent with regard to the association between different triglyceridemic-waist phenotypes and the risks for type 2 diabetes mellitus (T2DM). We aimed to investigate this association among a retrospective cohort analysis of 6918 participants aged ≥ 45 years in the China Health and Retirement Longitudinal Study (CHARLS). Participants were categorized into four triglyceridemic-waist phenotypes consisting of NWNT (normal waist circumference and normal triglycerides), NWHT (normal waist circumference and high triglycerides), EWNT (enlarged waist circumference and normal triglycerides), and EWHT (enlarged waist circumference and high triglycerides) based on participants' baseline information. Multivariate log-binomial regression was used to assess the T2DM risk in different phenotypes. Subgroup analysis was conducted to test the robustness of the findings. After 4-years of follow-up, participants with EWHT (Relative Risk [RR]: 1.909, 95% Confidence Interval [CI]: 1.499 to 2.447) or EWNT (RR: 1.580, 95%CI: 1.265 to 1.972) phenotypes had significantly higher likelihood of incident T2DM compared to the NWNT phenotype, whereas the association was not significant for the NWHT phenotype (RR: 1.063, 95%CI: 0.793 to 1.425). The subgroup analyses generally revealed similar associations across all subgroups. Among middle-aged and older adults, we suggested a combined use of waist circumference and triglycerides measures in identifying participants who are at high risk of developing T2DM.


Diabetes Mellitus, Type 2 , Aged , Body Mass Index , China/epidemiology , Cohort Studies , Diabetes Mellitus, Type 2/epidemiology , Humans , Longitudinal Studies , Middle Aged , Phenotype , Retrospective Studies , Risk Factors , Waist Circumference
11.
Cell Death Dis ; 12(6): 514, 2021 05 19.
Article En | MEDLINE | ID: mdl-34011940

Histone lysine demethylase 4A (KDM4A) plays a crucial role in regulating cell proliferation, cell differentiation, development and tumorigenesis. However, little is known about the function of KDM4A in muscle development and regeneration. Here, we found that the conditional ablation of KDM4A in skeletal muscle caused impairment of embryonic and postnatal muscle formation. The loss of KDM4A in satellite cells led to defective muscle regeneration and blocked the proliferation and differentiation of satellite cells. Myogenic differentiation and myotube formation in KDM4A-deficient myoblasts were inhibited. Chromatin immunoprecipitation assay revealed that KDM4A promoted myogenesis by removing the histone methylation mark H3K9me3 at MyoD, MyoG and Myf5 locus. Furthermore, inactivation of KDM4A in myoblasts suppressed myoblast differentiation and accelerated H3K9me3 level. Knockdown of KDM4A in vitro reduced myoblast proliferation through enhancing the expression of the cyclin-dependent kinase inhibitor P21 and decreasing the expression of cell cycle regulator Cyclin D1. Together, our findings identify KDM4A as an important regulator for skeletal muscle development and regeneration, orchestrating myogenic cell proliferation and differentiation.


Histone Demethylases/metabolism , Jumonji Domain-Containing Histone Demethylases/metabolism , Muscle Development/physiology , Myogenic Regulatory Factors/metabolism , Animals , Cell Differentiation/physiology , Cell Line , Cell Proliferation/physiology , Histones/metabolism , Humans , Mice , Mice, Inbred C57BL , Mice, Knockout , Muscle, Skeletal/cytology , Muscle, Skeletal/metabolism , Regeneration/physiology , Satellite Cells, Skeletal Muscle/cytology , Satellite Cells, Skeletal Muscle/metabolism , Stem Cells/cytology , Stem Cells/metabolism
...