Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Natl Sci Rev ; 11(7): nwae177, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38883289

ABSTRACT

Covalent-organic frameworks (COFs) with photoinduced donor-acceptor (D-A) radical pairs show enhanced photocatalytic activity in principle. However, achieving long-lived charge separation in COFs proves challenging due to the rapid charge recombination. Here, we develop a novel strategy by combining [6 + 4] nodes to construct zyg-type 3D COFs, first reported in COF chemistry. This structure type exhibits a fused Olympic-rings-like shape, which provides a platform for stabilizing the photoinduced D-A radical pairs. The zyg-type COFs containing catalytically active moieties such as triphenylamine and phenothiazine (PTZ) show superior photocatalytic production rates of hydrogen peroxide (H2O2). Significantly, the photochromic radical states of these COFs show up to 400% enhancement in photocatalytic activity compared to the parent states, achieving a remarkable H2O2 synthesis rate of 3324 µmol g-1 h-1, which makes the PTZ-COF one of the best crystalline porous photocatalysts in H2O2 production. This work will shed light on the synthesis of efficient 3D COF photocatalysts built on topologies that can facilitate photogenerating D-A radical pairs for enhanced photocatalysis.

2.
Front Oncol ; 14: 1294253, 2024.
Article in English | MEDLINE | ID: mdl-38390261

ABSTRACT

Aim: Limited data are available regarding ALI's clinical relevance and prognostic value in patients with hepatocellular carcinoma (HCC) after hepatectomy. Materials and methods: HCC patients who received hepatectomy at the Meizhou People's Hospital from May 2011 to February 2022 were enrolled in the study cohort. The ALI was calculated as follows: ALI = BMI (kg/m2) × ALB (g/dL)/(absolute neutrophil count/absolute lymphocyte count). The primary outcome was overall survival (OS). The secondary outcome was cancer-specific survival (CSS). Univariate and multivariate Cox regression analyses were performed, followed by nomogram construction and decision curve analysis (DCA). Results: 425 HCC patients were enrolled for analyses. Lower preoperative ALI was significantly correlated with incomplete tumor capsule and advanced tumor stage. Lower preoperative ALI was an adverse independent prognostic factor for OS (HR: 1.512, 95% CI: 1.122-2.039, P 0.007) and CSS (HR: 1.754, 95% CI: 1.262-2.438, P <0.001) in HCC patients. The nomogram plot was built based on three (including age, TNM stage, and ALI) and two (including TNM stage and ALI) independent prognostic factors for OS and CSS, respectively. Further analyses indicated that the nomogram had better predictive value and some net benefit than the traditional TNM stage alone, especially in long-term OS. Conclusions: Our study further indicated that ALI could be a prognostic marker for OS and CSS in HCC patients after hepatectomy, especially in long-term OS.

3.
J Am Chem Soc ; 145(49): 26863-26870, 2023 Dec 13.
Article in English | MEDLINE | ID: mdl-38048529

ABSTRACT

Spin-state transition is a vital factor that dominates catalytic processes, but unveiling its mechanism still faces the great challenge of the lack of catalyst model systems. Herein, we propose that the {Fe-Pt} Hofmann clathrates, whose dynamic spin-state transition of metal centers can be chemically manipulated through iodine treatment, can serve as model systems in the spin-related structural-catalytic relationship study. Taking the photocatalytic synthesis of H2O2 as the basic catalytic reaction, when the spin state of Fe(II) in the clathrate is high spin (HS), sacrificial agents are indispensable to the photosynthesis of H2O2 because only the photocatalytic oxygen reduction reaction (ORR) occurs; when it is low spin (LS), both the ORR and water oxidation reaction (WOR) can take place, enabling a high H2O2 photosynthesis rate of 66 000 µM g-1 h-1 under visible-light irradiation. In situ characterizations combined with density functional theory calculations confirmed that, compared with the HS-state counterpart, the LS state can induce strong charge transfer between the LS Fe(II) and the iodide-coordinating Pt(IV) in the polymer and reduce the energy barriers for both the ORR and WOR processes, dominating the on-off switching upon the photosynthesis of H2O2 in O2-saturated water. What's more, the one-pot tandem reactions were conducted to utilize the synthesized H2O2 for transforming the low-value-added sodium alkenesulfonates into value-added bromohydrin products with decent conversion rates. This work provides a pioneering investigation into on-off switching the photocatalytic overall reaction through manipulating the metallic spin-state transition in spin-crossover systems.

4.
Natl Sci Rev ; 10(11): nwad226, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37818117

ABSTRACT

Electrocatalytic CO2 reduction (ECR) coupled with organic oxidation is a promising strategy to produce high value-added chemicals and improve energy efficiency. However, achieving the efficient redox coupling reaction is still challenging due to the lack of suitable electrocatalysts. Herein, we designed two bifunctional polyimides-linked covalent organic frameworks (PI-COFs) through assembling phthalocyanine (Pc) and porphyrin (Por) by non-toxic hydrothermal methods in pure water to realize the above catalytic reactions. Due to the high conductivity and well-defined active sites with different chemical environments, NiPc-NiPor COF performs efficient ECR coupled with methanol oxidation reaction (MOR) (Faradaic efficiency of CO (FECO) = 98.12%, partial current densities of CO (jCO) = 6.14 mA cm-2 for ECR, FEHCOOH = 93.75%, jHCOOH = 5.81 mA cm-2 for MOR at low cell voltage (2.1 V) and remarkable long-term stability). Furthermore, experimental evidences and density functional theory (DFT) calculations demonstrate that the ECR process mainly conducts on NiPc unit with the assistance of NiPor, meanwhile, the MOR prefers NiPor conjugating with NiPc. The two units of NiPc-NiPor COF collaboratively promote the coupled oxidation-reduction reaction. For the first time, this work achieves the rational design of bifunctional COFs for coupled heterogeneous catalysis, which opens a new area for crystalline material catalysts.

5.
Angew Chem Int Ed Engl ; 62(44): e202311999, 2023 Oct 26.
Article in English | MEDLINE | ID: mdl-37709724

ABSTRACT

The high local electron density and efficient charge carrier separation are two important factors to affect photocatalytic activity, especially for the CO2 photoreduction reaction. However, the systematic studies on the structure-functional relationship regarding the above two factors based on precisely structure model are rarely reported. Herein, as a proof-of-concept, we developed a new strategy on the evaluation of local electron density by controlling the relative electron-deficient (ED) and electron-rich (ER) intensity of monomer at a molecular level based on three rational-designed vinylene-linked sp2 carbon-covalent organic frameworks (COFs). As expected, the as-prepared vinylene-linked sp2 carbon-conjugated metal-covalent organic framework (MCOFs) (VL-MCOF-1) with molecular junction exhibited excellent activities for CO2 -to-HCOOH conversion (283.41 µmol g-1 h-1 ) and high selectivity of 97.1 %, much higher than the VL-MCOF-2 and g-C34 N6 -COF, which is due to the synergistic effect of the multi-electronic metal clusters (Cu3 (PyCA)3 ) (PyCA=pyrazolate-4-carboxaldehyde) as strong ER roles and cyanopyridine units as ED roles and active sites, as well as the boosted photo-induced charge separation efficiency of vinyl connection and increased light utilization ability. These results not only provide a strategy for regulating the electron-density distribution of photocatalysts at the molecular level but also offers profound insights for metal clusters-based COFs to effective CO2 conversion.

6.
Angew Chem Int Ed Engl ; 62(31): e202307632, 2023 Aug 01.
Article in English | MEDLINE | ID: mdl-37280179

ABSTRACT

In this work, we innovatively assembled two types of traditional photosensitizers, that is pyridine ruthenium/ferrum (Ru(bpy)3 2+ /Fe(bpy)3 2+ ) and porphyrin/metalloporphyrin complex (2HPor/ZnPor) by covalent linkage to get a series of dual photosensitizer-based three-dimensional metal-covalent organic frameworks (3D MCOFs), which behaved strong visible light-absorbing ability, efficient electron transfer and suitable band gap for highly efficient photocatalytic hydrogen (H2 ) evolution. Rubpy-ZnPor COF achieved the highest H2 yield (30 338 µmol g-1 h-1 ) with apparent quantum efficiency (AQE) of 9.68 %@420 nm, which showed one of the best performances among all reported COF based photocatalysts. Furthermore, the in situ produced H2 was successfully tandem used in the alkyne hydrogenation with ≈99.9 % conversion efficiency. Theoretical calculations reveal that both the two photosensitizer units in MCOFs can be photoexcited and thus contribute optimal photocatalytic activity. This work develops a general strategy and shows the great potential of using multiple photosensitive materials in the field of photocatalysis.

7.
Angew Chem Int Ed Engl ; 61(15): e202200003, 2022 Apr 04.
Article in English | MEDLINE | ID: mdl-35060268

ABSTRACT

As hot topics in the chemical conversion of CO2 , the photo-/electrocatalytic reduction of CO2 and use of CO2 as a supporter for energy storage have shown great potential for the utilization of CO2 . However, many obstacles still exist on the road to realizing highly efficient chemical CO2 conversion, such as inefficient uptake/activation of CO2 and mass transport in catalysts. Covalent organic frameworks (COFs), as a kind of porous material, have been widely explored as catalysts for the chemical conversion of CO2 owing to their unique features. In particular, COF-based functional materials containing diverse active sites (such as single metal sites, metal nanoparticles, and metal oxides) offer great potential for realizing CO2 conversion and energy storage. This Minireview discusses recent breakthroughs in the basic knowledge, mechanisms, and pathways of chemical CO2 conversion strategies that use COF-based functional catalysts. In addition, the challenges and prospects of COF-based functional catalysts for the efficient utilization of CO2 are also introduced.

SELECTION OF CITATIONS
SEARCH DETAIL
...