Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 427
Filter
1.
Int J Mol Sci ; 25(12)2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38928262

ABSTRACT

Cancer is a significant global public health issue with increasing morbidity and mortality rates. To address this challenge, novel drug carriers such as nano-materials, liposomes, hydrogels, fibers, and microspheres have been extensively researched and utilized in oncology. Among them, polymer microspheres are gaining popularity due to their ease of preparation, excellent performance, biocompatibility, and drug-release capabilities. This paper categorizes commonly used materials for polymer microsphere preparation, summarizes various preparation methods (emulsification, phase separation, spray drying, electrospray, microfluidics, and membrane emulsification), and reviews the applications of polymer microspheres in cancer diagnosis, therapy, and postoperative care. The current status and future development directions of polymer microspheres in cancer treatment are analyzed, highlighting their importance and potential for improving patient outcomes.


Subject(s)
Microspheres , Neoplasms , Polymers , Humans , Neoplasms/diagnosis , Neoplasms/therapy , Polymers/chemistry , Drug Carriers/chemistry , Animals , Antineoplastic Agents/therapeutic use , Drug Delivery Systems/methods
2.
J Am Soc Nephrol ; 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38857203

ABSTRACT

BACKGROUND: Chemical modifications on RNA profoundly impact RNA function and regulation. m6A, the most abundant RNA modification in eukaryotes, plays a pivotal role in diverse cellular processes and disease mechanisms. However, its importance is understudied in human chronic kidney disease (CKD) samples regarding its influence on pathological mechanisms. METHODS: LC-MS/MS and Methylated RNA Immunoprecipitation (MeRIP) sequencing were utilized to examine alterations in m6A levels and patterns in CKD samples. Overexpression of the m6A writer METTL3 in cultured kidney tubular cells was performed to confirm the impact of m6A in tubular cells and explore the biological functions of m6A modification on target genes. Additionally, tubule-specific deletion of Mettl3 (Ksp-Cre Mettl3f/f) mice and the use of anti-sense oligonucleotides inhibiting Mettl3 expression were utilized to reduce m6A modification in an animal kidney disease model. RESULTS: By examining 127 human CKD samples, we observed a significant increase in m6A modification and METTL3 expression in diseased kidneys. Epitranscriptomic analysis unveiled an enrichment of m6A modifications in transcripts associated with the activation of inflammatory signaling pathways, particularly the cGAS-STING pathway. m6A hypermethylation increased mRNA stability in cGAS and STING1, as well as elevated the expression of key proteins within the cGAS-STING pathway. Both the tubule-specific deletion of Mettl3 and the use of anti-sense oligonucleotides to inhibit Mettl3 expression protected mice from inflammation, reduced cytokine expression, decreased immune cell recruitment, and attenuated kidney fibrosis. CONCLUSIONS: Our research revealed heightened METTL3-mediated m6A modification in fibrotic kidneys, particularly enriching the cGAS-STING pathway. This hypermethylation increased mRNA stability for cGAS and STING1, leading to sterile inflammation and fibrosis.

3.
Nanomicro Lett ; 16(1): 217, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38884846

ABSTRACT

The interfacial instability of the poly(ethylene oxide) (PEO)-based electrolytes impedes the long-term cycling and further application of all-solid-state lithium metal batteries. In this work, we have shown an effective additive 1-adamantanecarbonitrile, which contributes to the excellent performance of the poly(ethylene oxide)-based electrolytes. Owing to the strong interaction of the 1-Adamantanecarbonitrile to the polymer matrix and anions, the coordination of the Li+-EO is weakened, and the binding effect of anions is strengthened, thereby improving the Li+ conductivity and the electrochemical stability. The diamond building block on the surface of the lithium anode can suppress the growth of lithium dendrites. Importantly, the 1-Adamantanecarbonitrile also regulates the formation of LiF in the solid electrolyte interface and cathode electrolyte interface, which contributes to the interfacial stability (especially at high voltages) and protects the electrodes, enabling all-solid-state batteries to cycle at high voltages for long periods of time. Therefore, the Li/Li symmetric cell undergoes long-term lithium plating/stripping for more than 2000 h. 1-Adamantanecarbonitrile-poly(ethylene oxide)-based LFP/Li and 4.3 V Ni0.8Mn0.1Co0.1O2/Li all-solid-state batteries achieved stable cycles for 1000 times, with capacity retention rates reaching 85% and 80%, respectively.

4.
Int J Biol Macromol ; 271(Pt 2): 132534, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38777022

ABSTRACT

Hydrogel-based microcarriers have demonstrated effectiveness in wound repair treatments. The current research focus is creating and optimizing active microcarriers containing natural ingredients capable of conforming to diverse wound shapes and depths. Here, microalgae (MA)-loaded living alginate hydrogel microspheres were successfully fabricated via microfluidic electrospray technology, to enhance the effectiveness of wound healing. The stable living alginate hydrogel microspheres loaded with photoautotrophic MA were formed by cross-linking alginate with calcium ions. The combination of MA-loaded living alginate microspheres ensures high biocompatibility and efficient oxygen release, providing strong support for wound healing. Concurrently, vascular endothelial growth factor (VEGF) has been successfully introduced into the microspheres, further enhancing the comprehensive effectiveness of wound treatment. Covering the rat's wound with these MA-VEGF-loaded alginate microspheres further substantiated their significant role in promoting collagen deposition and vascular generation during the wound closure processes. These results confirm the outstanding value of microalgae-loaded live alginate hydrogel microspheres in wound healing, paving the way for new prospects in future clinical treatment methods.


Subject(s)
Alginates , Biocompatible Materials , Microalgae , Microspheres , Wound Healing , Alginates/chemistry , Microalgae/chemistry , Wound Healing/drug effects , Animals , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Rats , Hydrogels/chemistry , Hydrogels/pharmacology , Vascular Endothelial Growth Factor A/metabolism
5.
Molecules ; 29(10)2024 May 13.
Article in English | MEDLINE | ID: mdl-38792156

ABSTRACT

Vitamin C (VC), also known as ascorbic acid, plays a crucial role as a water-soluble nutrient within the human body, contributing to a variety of metabolic processes. Research findings suggest that increased doses of VC demonstrate potential anti-tumor capabilities. This review delves into the mechanisms of VC absorption and its implications for cancer management. Building upon these foundational insights, we explore modern delivery systems for VC, evaluating its use in diverse cancer treatment methods. These include starvation therapy, chemodynamic therapy (CDT), photothermal/photodynamic therapy (PTT/PDT), electrothermal therapy, immunotherapy, cellular reprogramming, chemotherapy, radiotherapy, and various combination therapies.


Subject(s)
Ascorbic Acid , Neoplasms , Ascorbic Acid/therapeutic use , Ascorbic Acid/pharmacology , Humans , Neoplasms/drug therapy , Neoplasms/metabolism , Photochemotherapy/methods , Animals , Antineoplastic Agents/therapeutic use , Antineoplastic Agents/pharmacology , Combined Modality Therapy
6.
Int J Med Sci ; 21(7): 1337-1343, 2024.
Article in English | MEDLINE | ID: mdl-38818476

ABSTRACT

Background: Interleukin-25 (IL-25) has been proved to play a role in the pathogenesis and metastasis of Hepatocellular carcinoma (HCC), but the relationship between the level of IL-25 and the metastasis and prognosis of HCC is still not clear. This study aimed to investigate the expression of IL-25 and other potential biochemical indicators among healthy people, HBV-associated HCC patients without lung metastasis and HBV-associated HCC patients with lung metastasis. Methods: From September 2019 to November 2021, 33 HCC patients without lung metastasis, 37 HCC patients with lung metastasis and 29 healthy controls were included in the study. IL-25 and other commonly used biochemical markers were measured to establish predictors of overall survival (OS) and progression-free survival (PFS) after treatment. Results: The serum level of IL-25 was increased in HCC patients than healthy controls (p < 0.001) and HCC patients with lung metastasis had higher IL-25 level than HCC patients without metastasis (p = 0.035). Lung metastasis also indicated higher death rate (p < 0.001) by chi-square test, higher GGT level (p = 0.024) and higher AFP level (p = 0.049) by non-parametric test. Kaplan-Meier analysis demonstrated that IL-25 was negatively associated with PFS (p = 0.024). Multivariate Cox-regression analysis indicated IL-25 (p = 0.030) and GGT (p = 0.020) to be independent predictors of poorer PFS, while IL-25 showed no significant association with OS. Conclusion: The level of IL-25 was significantly associated with disease progression and lung metastasis of HBV-associated HCC. The high expression of IL-25 predicted high recurrence rate and death probability of HCC patients after treatment. Therefore, IL-25 may be an effective predictor of prognosis in HCC.


Subject(s)
Biomarkers, Tumor , Carcinoma, Hepatocellular , Liver Neoplasms , Lung Neoplasms , Humans , Liver Neoplasms/virology , Liver Neoplasms/mortality , Liver Neoplasms/blood , Liver Neoplasms/pathology , Liver Neoplasms/secondary , Carcinoma, Hepatocellular/virology , Carcinoma, Hepatocellular/mortality , Carcinoma, Hepatocellular/pathology , Carcinoma, Hepatocellular/blood , Male , Female , Lung Neoplasms/pathology , Lung Neoplasms/mortality , Lung Neoplasms/blood , Lung Neoplasms/virology , Middle Aged , Biomarkers, Tumor/blood , Case-Control Studies , Prognosis , Adult , China/epidemiology , Hepatitis B/complications , Hepatitis B/virology , Interleukin-17/blood , Aged , East Asian People
7.
RSC Adv ; 14(21): 14722-14741, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38716093

ABSTRACT

In the realm of cancer treatment, traditional modalities like radiotherapy and chemotherapy have achieved certain advancements but continue to grapple with challenges including harm to healthy tissues, resistance to treatment, and adverse drug reactions. The swift progress in nanotechnology recently has opened avenues for investigating innovative approaches to cancer therapy. Especially, chemodynamic therapy (CDT) utilizing metal nanomaterials stands out as an effective cancer treatment choice owing to its minimal side effects and independence from external energy sources. Transition metals like manganese are capable of exerting anti-tumor effects through a Fenton-like mechanism, with their distinctive magnetic properties playing a crucial role as contrast agents in tumor diagnosis and treatment. Against this backdrop, this review emphasizes the recent five-year advancements in the application of manganese (Mn) metal ions within nanomaterials, particularly highlighting their unique capabilities in catalyzing CDT and enhancing MRI imaging. Initially, we delineate the biomedical properties of manganese, followed by an integrated discussion on the utilization of manganese-based nanomaterials in CDT alongside multimodal therapies, and delve into the application and future outlook of manganese-based nanomaterial-mediated MRI imaging techniques in cancer therapy. By this means, the objective is to furnish novel viewpoints and possibilities for the research and development in future cancer therapies.

8.
Apoptosis ; 29(5-6): 663-680, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38598070

ABSTRACT

Cancer cachexia-associated muscle wasting as a multifactorial wasting syndrome, is an important factor affecting the long-term survival rate of tumor patients. Photobiomodulation therapy (PBMT) has emerged as a promising tool to cure and prevent many diseases. However, the effect of PBMT on skeletal muscle atrophy during cancer progression has not been fully demonstrated yet. Here, we found PBMT alleviated the atrophy of myotube diameter induced by cancer cells in vitro, and prevented cancer-associated muscle atrophy in mice bearing tumor. Mechanistically, the alleviation of muscle wasting by PBMT was found to be involved in inhibiting E3 ubiquitin ligases MAFbx and MuRF-1. In addition, transcriptomic analysis using RNA-seq and GSEA revealed that PI3K/AKT pathway might be involved in PBMT-prevented muscle cachexia. Next, we showed the protective effect of PBMT against muscle cachexia was totally blocked by AKT inhibitor in vitro and in vivo. Moreover, PBMT-activated AKT promoted FoxO3a phosphorylation and thus inhibiting the nucleus entry of FoxO3a. Lastly, in cisplatin-treated muscle cachexia model, PBMT had also been shown to ameliorate muscle atrophy through enhancing PI3K/AKT pathway to suppress MAFbx and MuRF-1 expression. These novel findings revealed that PBMT could be a promising therapeutic approach in treating muscle cachexia induced by cancer.


Subject(s)
Cachexia , Forkhead Box Protein O3 , Muscular Diseases , Neoplasms , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , Wasting Syndrome , Cachexia/etiology , Cachexia/metabolism , Cachexia/therapy , Muscular Diseases/etiology , Muscular Diseases/metabolism , Muscular Diseases/therapy , Neoplasms/complications , Metabolic Networks and Pathways , Phosphatidylinositol 3-Kinases/genetics , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-akt/metabolism , Forkhead Box Protein O3/genetics , Forkhead Box Protein O3/metabolism , Wasting Syndrome/etiology , Wasting Syndrome/metabolism , Wasting Syndrome/therapy , Animals , Disease Models, Animal , Mice , Cell Line , Male , Mice, Inbred BALB C , Gene Expression Profiling
9.
J Am Chem Soc ; 146(18): 12734-12742, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38592928

ABSTRACT

Innovative surface-protecting ligands are in constant demand due to their crucial role in shaping the configuration, property, and application of gold nanoclusters. Here, the unprecedented O-ethyl dithiocarbonate (DTX)-stabilized atomically precise gold nanoclusters, [Au25(PPh3)10(DTX)5Cl2]2+ (Au25DTX-Cl) and [Au25(PPh3)10(DTX)5Br2]2+ (Au25DTX-Br), were synthesized and structurally characterized. The introduction of bidentate DTX ligands not only endowed the gold nanocluster with unique staggered Au25 nanorod configurations but also generated the symmetry breaking from the D5d geometry of the Au25 kernels to the chiral D5 configuration of the Au25 molecules. The chirality of Au25 nanorods was notably revealed through single-crystal X-ray diffraction, and chiral separation was induced by employing chiral DTX ligands. The staggered configurations of Au25 nanorods, as opposed to eclipsed ones, were responsible for the large red shift in the emission wavelengths, giving rise to a promising near-infrared II (NIR-II, >1000 nm) phosphorescence. Furthermore, their performances in photocatalytic sulfide oxidation and electrocatalytic hydrogen evolution reactions have been examined, and it has been demonstrated that the outstanding catalytic activity of gold nanoclusters is highly related to their stability.

10.
Chemphyschem ; : e202400052, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38629246

ABSTRACT

A new group of BF3 complexing phosphate/phosphonate ionic liquids (ILs) [Emim][X(BF3)2] (X=dimethyl phosphate, diethyl phosphate, methyl phosphonate, and ethyl phosphonate) were synthesized and characterized. Key thermophysical properties of the new complex ionic liquids, including density, viscosity, conductivity, surface tension, solid-liquid phase transition, and thermal stability were determined and compared with those of [Emim][X]. Some other important thermophysical properties such as isobaric thermal expansion coefficient, molecular volume, standard molar entropy, and lattice potential energy were obtained from measured density data, and the free volume was estimated by a linear equation presented in this article, while critical temperature, normal boiling temperature, and enthalpy of vaporization were estimated from measured surface tension and density data. Furthermore, Fragility study shows that [Emim][X(BF3)2] should be considered as fragile liquids, while [Emim][X] could be considered as extremely fragile liquids. The ionicity of [Emim][X(BF3)2] was predicted by Walden rule, and the result shows that these ILs fit well with Walden law. The key features of these complex ILs are their extremely low glass transition (-95.33~-98.46 °C) without melting, considerably low viscosities (33.876~58.117 mPa ⋅ s), and high values of free volume fraction (comparable to [Omim][BF4], [Emim][NTf2], and [Emim][TCB]).

11.
Clin Transl Oncol ; 2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38602644

ABSTRACT

The journey of cancer development is a multifaceted and staged process. The array of treatments available for cancer varies significantly, dictated by the disease's type and stage. Cancer-associated fibroblasts (CAFs), prevalent across various cancer types and stages, play a pivotal role in tumor genesis, progression, metastasis, and drug resistance. The strategy of concurrently targeting cancer cells and CAFs holds great promise in cancer therapy. In this review, we focus intently on CAFs, delving into their critical role in cancer's progression. We begin by exploring the origins, classification, and surface markers of CAFs. Following this, we emphasize the key cytokines and signaling pathways involved in the interplay between cancer cells and CAFs and their influence on the tumor immune microenvironment. Additionally, we examine current therapeutic approaches targeting CAFs. This article underscores the multifarious roles of CAFs within the tumor microenvironment and their potential applications in cancer treatment, highlighting their importance as key targets in overcoming drug resistance and enhancing the efficacy of tumor therapies.

12.
Phys Rev Lett ; 132(15): 156503, 2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38683001

ABSTRACT

The "symmetric mass generation" (SMG) quantum phase transition discovered in recent years has attracted great interest from both condensed matter and high energy theory communities. Here, interacting Dirac fermions acquire a gap without condensing any fermion bilinear mass term or any concomitant spontaneous symmetry breaking. It is hence beyond the conventional Gross-Neveu-Yukawa-Higgs paradigm. One important question we address in this Letter is whether the SMG transition corresponds to a true unitary conformal field theory. We employ the sharp diagnosis including the scaling of disorder operator and Rényi entanglement entropy in large-scale lattice model quantum Monte Carlo simulations. Our results strongly suggest that the SMG transition is indeed an unconventional quantum phase transition and it should correspond to a true (2+1)d unitary conformal field theory.

13.
Article in English | MEDLINE | ID: mdl-38664060

ABSTRACT

BACKGROUND AND HYPOTHESIS: Arterial medial calcification (AMC) is a common complication in individuals with chronic kidney disease (CKD), which can lead to cardiovascular morbidity and mortality. The progression of AMC is controlled by a key transcription factor called runt-related transcription factor 2 (RUNX2), which induces vascular smooth muscle cells (VSMCs) transdifferentiation into a osteogenic phenotype. However, RUNX2 has not been targeted for therapy due to its essential role in bone development. The objective of our study was to discover a RUNX2 coactivator that is highly expressed in arterial VSMCs as a potential therapy for AMC. METHODS: We employed transcriptomic analysis of human data and an animal reporter system to pinpoint FHL2 as a potential target. Subsequently, we investigated the mRNA and protein expression patterns of FHL2 in the aortas of both human and animal subjects with CKD. To examine the role of FHL2 in the RUNX2 transcription machinery, we conducted coimmunoprecipitation (Co-IP) and chromatin immunoprecipitation (ChIP) experiments. Next, we manipulated FHL2 expression in cultured VSMCs to examine its impact on high phosphate-induced transdifferentiation. Finally, we employed FHL2 null mice to confirm the role of FHL2 in the development of AMC in vivo. RESULTS: Among all the potential RUNX2 cofactor, FHL2 displays selective expression within the cardiovascular system. In the context of CKD subjects, FHL2 undergoes upregulation and translocation from the cytosol to the nucleus of arterial VSMCs. Once in the nucleus, FHL2 interacts structurally and functionally with RUNX2, acting as a coactivator of RUNX2. Notably, the inhibition of FHL2 expression averts transdifferentiation of VSMCs into an osteogenic phenotype and mitigates aortic calcification in uremic animals, without causing any detrimental effects on the skeletal system. CONCLUSION: These observations provide evidence that FHL2 is a promising target for treating arterial calcification in patients with CKD.

14.
Eur J Med Res ; 29(1): 160, 2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38475928

ABSTRACT

BACKGROUND: He long noncoding RNA small nucleolar host RNA 5 (SNHG5) is highly expressed in many cancers, and there is a notable correlation between the elevated expression of SNHG5 and survival outcome in cancer patients. The objective of this study was to conduct a meta-analysis to evaluate the correlation between SNHG5 expression and the clinical outcome of cancer patients. METHODS: Six relevant electronic databases were exhaustively searched, and, depending on the inclusion and exclusion criteria, appropriate literature was obtained. The Newcastle-Ottawa Scale (NOS) score was utilized to evaluate the quality of the research for every article included, and pertinent data from each study were carefully extracted. Hazard ratios (HRs), odds ratios (ORs) and 95% confidence intervals (CIs) were combined to explore the association of SNHG5 expression levels with cancer prognosis, and sensitivity analyses and assessments of publication bias were also conducted to investigate any possibility in the publication of the studies. RESULTS: Eleven studies encompassing 721 patients were ultimately collected. When combined, the hazard ratios (HRs) revealed a substantial direct correlation between elevated SNHG5 expression and an unfavourable prognosis for cancer patients (HR = 1.90, 95% CI 0.87-4.15); however, the correlation did not reach statistical significance. Furthermore, high SNHG5 expression was predictive of advanced TNM stage (OR: 1.988, 95% CI 1.205-3.278) and larger tumour size (OR: 1.571, 95% CI 1.090-2.264); moreover, there were nonsignificant relationships between SNHG5 expression and DM (OR: 0.449, 95% CI 0.077-2.630), lymph node metastasis (OR: 1.443, 95% CI 0.709-2.939), histological grade (OR: 2.098, 95% CI 0.910-4.838), depth of invasion (OR: 1.106, 95% CI 0.376-3.248), age (OR: 0.946, 95% CI 0.718-1.247) and sex (OR: 0.762, 95% CI 0.521-1.115). CONCLUSION: SNHG5 expression is typically increased in the majority of tumour tissues. Elevated SNHG5 expression may indicate poor prognosis in cancer patients. Therefore, SNHG5 is a promising potential therapeutic target for tumours and a reliable prognostic biomarker.


Subject(s)
Neoplasms , RNA, Long Noncoding , Male , Humans , Neoplasms/genetics , Prognosis , Proportional Hazards Models , RNA, Long Noncoding/genetics , Biomarkers, Tumor/genetics
15.
J Tradit Complement Med ; 14(2): 215-222, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38481547

ABSTRACT

Angiotensin II receptor blockers (ARBs) are one of the standard treatments for diabetic kidney disease (DKD). Some patients may opt for Chinese herbal medicine (CHM) of their own free will. However, there is no real-world evidence regarding the effectiveness and safety of CHM. We aimed to explore the effectiveness of CHM for DKD in comparison to ARBs. We enrolled 732 DKD patients (72 used only CHM and 661 used ARBs) from 2007 to 2016, and all patients were followed until December 2016 at China Medical University Hospital in Taiwan. A total of 355 ARB users and 71 CHM users were analyzed after propensity score matching. The estimated glomerular filtration rate (eGFR) after treatment was 84.9 ± 28.1 ml/min/1.73 m2 in CHM users, which was higher than that (67.8 ± 35.4 ml/min/1.73 m2) in ARB users (p < 0.001). The change in the eGFR was -6.0 ± 21.4 ml/min/1.73 m2 in CHM users and -12.9 ± 24.8 ml/min/1.73 m2 in ARB users (p = 0.029). The blood urea nitrogen (BUN) and creatinine levels of patients taking CHM were 22 ± 16 mg/dl and 0.9 ± 0.4 mg/dl, respectively, and were lower than those (30 ± 28 mg/dl and 1.7 ± 2.0 mg/dl) of patients taking ARBs (p = 0.025 and p = 0.003). Using linear regression with adjustments for age, sex, BMI, baseline eGFR, and HbA1c levels, we found that the declines in the eGFR/baseline eGFR and changes in the urine albumin-creatinine ratio (ACR) were comparable between the two groups (p = 0.86 and 0.73). This study suggests that CHM may have comparable effectiveness to ARBs, which provides insights for further investigations.

16.
PLoS One ; 19(3): e0295369, 2024.
Article in English | MEDLINE | ID: mdl-38498407

ABSTRACT

Channel coding technology plays an important role in wireless communication systems, and it serves as a crucial mechanism to reduce interference during the transmission process. As the fifth-generation (5G) and sixth-generation (6G) wireless communication systems rapidly advance, requirements of the users on the quality and security of wireless service are increasing. To solve these problems, it calls for us to explore the new channel coding technologies. In this paper, a linear feedback coding scheme for fading multiple-access channels with degraded message sets (FMAC-DMS) is proposed. In this scheme, the transmitting beamforming and channel splitting are used to transform the channel with complex signals into scalar equivalent sub-channels. Then, the extended Schalkwijk-Kailath coding scheme (SK) is further applied to each sub-channel. The channel capacity, finite blocklength (FBL) sum-rate and FBL secrecy achievable sum-rate of the FMAC-DMS in single-input single-output (SISO) and multi-input single-output (MISO) cases are derived. Finally, we show that the proposed scheme not only provides a FBL coding solution but also guarantees physical layer security(PLS). The numerical and simulation results show the effectiveness of the proposed scheme as a channel coding solution. The study of this paper provides a new method to construct a practical FBL scheme for the FMAC-DMS.


Subject(s)
Algorithms , Feedback , Computer Simulation
18.
Cell Prolif ; 57(5): e13591, 2024 May.
Article in English | MEDLINE | ID: mdl-38319150

ABSTRACT

Highly aggressive gastric cancer (HAGC) is a gastric cancer characterized by bone marrow metastasis and disseminated intravascular coagulation (DIC). Information about the disease is limited. Here we employed single-cell RNA sequencing to investigate peripheral blood mononuclear cells (PBMCs), aiming to unravel the immune response of patients toward HAGC. PBMCs from seven HAGC patients, six normal advanced gastric cancer (NAGC) patients, and five healthy individuals were analysed by single-cell RNA sequencing. The expression of genes of interest was validated by bulk RNA-sequencing and ELISA. We found a massive expansion of neutrophils in PBMCs of HAGC. These neutrophils are activated, but immature. Besides, mononuclear phagocytes exhibited an M2-like signature and T cells were suppressed and reduced in number. Analysis of cell-cell crosstalk revealed that several signalling pathways involved in neutrophil to T-cell suppression including APP-CD74, MIF-(CD74+CXCR2), and MIF-(CD74+CD44) pathways were increased in HAGC. NETosis-associated genes S100A8 and S100A9 as well as VEGF, PDGF, FGF, and NOTCH signalling that contribute to DIC development were upregulated in HAGC too. This study reveals significant changes in the distribution and interactions of the PBMC subsets and provides valuable insight into the immune response in patients with HAGC. S100A8 and S100A9 are highly expressed in HAGC neutrophils, suggesting their potential to be used as novel diagnostic and therapeutic targets for HAGC.


Subject(s)
Leukocytes, Mononuclear , Sequence Analysis, RNA , Single-Cell Analysis , Stomach Neoplasms , Humans , Stomach Neoplasms/immunology , Stomach Neoplasms/genetics , Stomach Neoplasms/pathology , Stomach Neoplasms/blood , Leukocytes, Mononuclear/metabolism , Leukocytes, Mononuclear/immunology , Neutrophils/metabolism , Neutrophils/immunology , Male , Female , Middle Aged , Signal Transduction , Aged , T-Lymphocytes/immunology , T-Lymphocytes/metabolism
19.
Sci Rep ; 14(1): 3314, 2024 02 09.
Article in English | MEDLINE | ID: mdl-38332165

ABSTRACT

Dual-phenotype hepatocellular carcinoma (DPHCC) is a new subtype of hepatocellular carcinoma (HCC). This study aimed to investigate the relationship between the computerized tomography scan (CT) imaging and clinicopathologic features of DPHCC. The CT imaging and clinicopathologic data of 97 HCC cases who underwent radical resection were collected retrospectively. The CT imaging feature was evaluated by the ratio of the average CT value of tumor to liver (TLR) in the plain scan, arterial, portal vein and delayed phases. The association between CT imaging and clinicopathologic features was analyzed using the t-test or chi-square test. Univariate and multivariate recurrence-free survival (RFS) analysis and overall survival (OS) were performed. The positive rates of cytokeratin 7 (CK7) and CK19 were 35.1% and 20.6% respectively. The positive rate of CK19 was significantly higher in cases with age < 47 years (P = 0.005), tumor diameter > 4 cm (P = 0.016) or AFP ≥ 400 ng/ml (P = 0.007). The TLR in the portal vein phase was significantly lower in CK19 positive group (P = 0.024). The recurrence risk was significantly higher in cases with CK19 positive (HR: 2.17, 95% CI 1.16 to 4.04, P = 0.013), tumor diameter > 4 cm (HR: 2.05, 95% CI 1.11 to 3.78, P = 0.019), AFP ≥ 400 ng/ml (HR: 2.50, 95% CI 1.37 to 4.54, P = 0.002) or CA199 ≥ 37 U/ml (HR: 2.23, 95% CI 1.12 to 4.42, P = 0.020). However, imaging features, pathological subtype, CK7 or CK19 expression were not significantly related to HCC OS in the univariate and multivariate analysis (all P > 0.05). The expression of CK19 may be associated with the enhancement feature of the portal vein phase CT image, and CK19 positive may suggest a worse RFS.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Humans , Middle Aged , Carcinoma, Hepatocellular/pathology , Liver Neoplasms/pathology , alpha-Fetoproteins/metabolism , Retrospective Studies , Phenotype , Intermediate Filament Proteins , Keratin-7 , Prognosis
20.
Hortic Res ; 11(1): uhad236, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38222820

ABSTRACT

Plant height (PH) is a crucial trait determining plant architecture in chrysanthemum. To better understand the genetic basis of PH, we investigated the variations of PH, internode number (IN), internode length (IL), and stem diameter (SD) in a panel of 200 cut chrysanthemum accessions. Based on 330 710 high-quality SNPs generated by genotyping by sequencing, a total of 42 associations were identified via a genome-wide association study (GWAS), and 16 genomic regions covering 2.57 Mb of the whole genome were detected through selective sweep analysis. In addition, two SNPs, Chr1_339370594 and Chr18_230810045, respectively associated with PH and SD, overlapped with the selective sweep regions from FST and π ratios. Moreover, candidate genes involved in hormones, growth, transcriptional regulation, and metabolic processes were highlighted based on the annotation of homologous genes in Arabidopsis and transcriptomes in chrysanthemum. Finally, genomic selection for four PH-related traits was performed using a ridge regression best linear unbiased predictor model (rrBLUP) and six marker sets. The marker set constituting the top 1000 most significant SNPs identified via GWAS showed higher predictabilities for the four PH-related traits, ranging from 0.94 to 0.97. These findings improve our knowledge of the genetic basis of PH and provide valuable markers that could be applied in chrysanthemum genomic selection breeding programs.

SELECTION OF CITATIONS
SEARCH DETAIL
...