Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 39
1.
Neurosci Bull ; 2024 Jun 01.
Article En | MEDLINE | ID: mdl-38824231

The current study aimed to evaluate the susceptibility to regional brain atrophy and its biological mechanism in Alzheimer's disease (AD). We conducted data-driven meta-analyses to combine 3,118 structural magnetic resonance images from three datasets to obtain robust atrophy patterns. Then we introduced a set of radiogenomic analyses to investigate the biological basis of the atrophy patterns in AD. Our results showed that the hippocampus and amygdala exhibit the most severe atrophy, followed by the temporal, frontal, and occipital lobes in mild cognitive impairment (MCI) and AD. The extent of atrophy in MCI was less severe than that in AD. A series of biological processes related to the glutamate signaling pathway, cellular stress response, and synapse structure and function were investigated through gene set enrichment analysis. Our study contributes to understanding the manifestations of atrophy and a deeper understanding of the pathophysiological processes that contribute to atrophy, providing new insight for further clinical research on AD.

2.
Front Aging Neurosci ; 16: 1375836, 2024.
Article En | MEDLINE | ID: mdl-38605859

Background: In the spectrum of Alzheimer's Disease (AD) and related disorders, the resting-state functional magnetic resonance imaging (rs-fMRI) signals within the cerebral cortex may exhibit distinct characteristics across various frequency ranges. Nevertheless, this hypothesis has not yet been substantiated within the broader context of whole-brain functional connectivity. This study aims to explore potential modifications in degree centrality (DC) and voxel-mirrored homotopic connectivity (VMHC) among individuals with amnestic mild cognitive impairment (aMCI) and AD, while assessing whether these alterations differ across distinct frequency bands. Methods: This investigation encompassed a total of 53 AD patients, 40 aMCI patients, and 40 healthy controls (HCs). DC and VMHC values were computed within three distinct frequency bands: classical (0.01-0.08 Hz), slow-4 (0.027-0.073 Hz), and slow-5 (0.01-0.027 Hz) for the three respective groups. To discern differences among these groups, ANOVA and subsequent post hoc two-sample t-tests were employed. Cognitive function assessment utilized the mini-mental state examination (MMSE) and Montreal Cognitive Assessment (MoCA). Pearson correlation analysis was applied to investigate the associations between MMSE and MoCA scores with DC and VMHC. Results: Significant variations in degree centrality (DC) were observed among different groups across diverse frequency bands. The most notable differences were identified in the bilateral caudate nucleus (CN), bilateral medial superior frontal gyrus (mSFG), bilateral Lobule VIII of the cerebellar hemisphere (Lobule VIII), left precuneus (PCu), right Lobule VI of the cerebellar hemisphere (Lobule VI), and right Lobule IV and V of the cerebellar hemisphere (Lobule IV, V). Likewise, disparities in voxel-mirrored homotopic connectivity (VMHC) among groups were predominantly localized to the posterior cingulate gyrus (PCG) and Crus II of the cerebellar hemisphere (Crus II). Across the three frequency bands, the brain regions exhibiting significant differences in various parameters were most abundant in the slow-5 frequency band. Conclusion: This study enhances our understanding of the pathological and physiological mechanisms associated with AD continuum. Moreover, it underscores the importance of researchers considering various frequency bands in their investigations of brain function.

3.
Neuropsychiatr Dis Treat ; 20: 399-414, 2024.
Article En | MEDLINE | ID: mdl-38436041

Purpose: There are some challenges to diagnosis in the context of similar diagnostic criteria for late-life depression (LLD) and adult depression due to cognitive impairment and other clinical manifestations. The association between gut microbiota and inflammation remains unclear in LLD. We analyzed gut microbiota characteristics and serum inflammatory cytokines in individuals with LLD to explore the combined role of these two factors in potential biomarkers of LLD. Methods: This was an observational cross-sectional study. Fecal samples and peripheral blood from 29 patients and 33 sex- and age-matched healthy controls (HCs) were collected to detect gut microbiota and 12 inflammatory factors. We analyzed differences in diversity and composition of gut microbiota and evaluated relations among gut microbiota, inflammatory factors, and neuropsychological scales. We extracted potential biomarkers using receiver-operating characteristic curve analysis to predict LLD utilizing the combination of the microbiota and inflammatory cytokines. Results: Elevated systemic inflammatory cytokine levels and gut microbiota dysbiosis were found in LLD patients. Relative abundance of Verrucomicrobia at the phylum level and Megamonas, Citrobacter, and Akkermansia at the genus level among LLD patients was lower than HCs. Abundance of Coprococcus, Lachnobacterium, Oscillospira, and Sutterella was higher in LLD patients. Notably, IL6, IFNγ, Verrucomicrobia, and Akkermansia levels were correlated with depression severity. Our study identified IL6, Akkermansia, and Sutterella as predictors of LLD, and their combination achieved an area under the curve of 0.962 in distinguishing LLD patients from HCs. Conclusion: This research offers evidence of changes within gut microbiota and systemic inflammation in LLD. These findings possibly help elucidate functions of gut microbiota and systemic inflammation in LLD development and offer fresh ideas on biomarkers for clinical practise in the context of LLD.

4.
N Engl J Med ; 390(8): 712-722, 2024 Feb 22.
Article En | MEDLINE | ID: mdl-38381674

BACKGROUND: Biomarker changes that occur in the period between normal cognition and the diagnosis of sporadic Alzheimer's disease have not been extensively investigated in longitudinal studies. METHODS: We conducted a multicenter, nested case-control study of Alzheimer's disease biomarkers in cognitively normal participants who were enrolled in the China Cognition and Aging Study from January 2000 through December 2020. A subgroup of these participants underwent testing of cerebrospinal fluid (CSF), cognitive assessments, and brain imaging at 2-year-to-3-year intervals. A total of 648 participants in whom Alzheimer's disease developed were matched with 648 participants who had normal cognition, and the temporal trajectories of CSF biochemical marker concentrations, cognitive testing, and imaging were analyzed in the two groups. RESULTS: The median follow-up was 19.9 years (interquartile range, 19.5 to 20.2). CSF and imaging biomarkers in the Alzheimer's disease group diverged from those in the cognitively normal group at the following estimated number of years before diagnosis: amyloid-beta (Aß)42, 18 years; the ratio of Aß42 to Aß40, 14 years; phosphorylated tau 181, 11 years; total tau, 10 years; neurofilament light chain, 9 years; hippocampal volume, 8 years; and cognitive decline, 6 years. As cognitive impairment progressed, the changes in CSF biomarker levels in the Alzheimer's disease group initially accelerated and then slowed. CONCLUSIONS: In this study involving Chinese participants during the 20 years preceding clinical diagnosis of sporadic Alzheimer's disease, we observed the time courses of CSF biomarkers, the times before diagnosis at which they diverged from the biomarkers from a matched group of participants who remained cognitively normal, and the temporal order in which the biomarkers became abnormal. (Funded by the Key Project of the National Natural Science Foundation of China and others; ClinicalTrials.gov number, NCT03653156.).


Alzheimer Disease , Biomarkers , Cognitive Dysfunction , Humans , Alzheimer Disease/cerebrospinal fluid , Alzheimer Disease/complications , Alzheimer Disease/diagnosis , Alzheimer Disease/diagnostic imaging , Amyloid beta-Peptides/cerebrospinal fluid , Biomarkers/cerebrospinal fluid , Case-Control Studies , Cognitive Dysfunction/cerebrospinal fluid , Cognitive Dysfunction/diagnostic imaging , Cognitive Dysfunction/etiology , tau Proteins/cerebrospinal fluid , Follow-Up Studies
5.
Lipids Health Dis ; 23(1): 64, 2024 Feb 29.
Article En | MEDLINE | ID: mdl-38424549

BACKGROUND: Extensive evidence demonstrates correlations among gut microbiota, lipid metabolism and cognitive function. However, there is still a lack of researches in the field of late-life depression (LLD). This research targeted at investigating the relationship among gut microbiota, lipid metabolism indexes, such as total free fatty acids (FFAs), and cognitive functions in LLD. METHODS: Twenty-nine LLD patients from the Cognitive Outcome Cohort Study of Depression in Elderly were included. Cognitive functions were estimated through the Chinese version of Montreal Cognitive Assessment (MoCA). Blood samples were collected to evaluate serum lipid metabolism parameters. Fecal samples were evaluated for gut microbiota determination via 16S rRNA sequencing. Spearman correlation, linear regression and mediation analysis were utilized to explore relationship among gut microbiota, lipid metabolism and cognitive function in LLD patients. RESULTS: Spearman correlation analysis revealed significant correlations among Akkermansia abundance, total Free Fatty Acids (FFAs) and MoCA scores (P < 0.05). Multiple regression indicated Akkermansia and total FFAs significantly predicted MoCA scores (P < 0.05). Mediation analysis demonstrated that the correlation between decreased Akkermansia relative abundance and cognitive decline in LLD patients was partially mediated by total FFAs (Bootstrap 95%CI: 0.023-0.557), accounting for 43.0% of the relative effect. CONCLUSION: These findings suggested a significant relationship between cognitive functions in LLD and Akkermansia, as well as total FFAs. Total FFAs partially mediated the relationship between Akkermansia and cognitive functions. These results contributed to understanding the gut microbial-host lipid metabolism axis in the cognitive function of LLD.


Gastrointestinal Microbiome , Humans , Aged , Gastrointestinal Microbiome/genetics , Fatty Acids, Nonesterified , Depression , Mediation Analysis , Cohort Studies , RNA, Ribosomal, 16S/genetics , Cognition
6.
Front Neurol ; 14: 1284227, 2023.
Article En | MEDLINE | ID: mdl-38107647

Background: Alzheimer's disease (AD) and amnestic mild cognitive impairment (aMCI) are characterized by abnormal functional connectivity (FC) of default-mode network (DMN), salience network (SN), and central executive network (CEN). Static FC (sFC) and dynamic FC (dFC) combined with triple network model can better study the dynamic and static changes of brain networks, and improve its potential diagnostic value in the diagnosis of AD spectrum disorders. Methods: Differences in sFC values and dFC variability patterns among the three brain networks of the three groups (53 AD patients, 40 aMCI patients, and 40 NCs) were computed by ANOVA using Gaussian Random Field theory (GRF) correction. The correlation between FC values (sFC values and dFC variability) in the three networks and cognitive scores (MMSE and MoCA) in AD and aMCI groups was analyzed separately. Results: Within the DMN network, there were significant differences of sFC values in right/left medial superior frontal gyrus and dFC variability in left opercular part inferior frontal gyrus and right dorsolateral superior frontal gyrus among the three groups. Within the CEN network, there were significant differences of sFC values in left superior parietal gyrus. Within the SN network, there were significant differences of dFC variability in right Cerebelum_7b and left opercular part inferior frontal gyrus. In addition, there was a significant negative correlation between FC values (sFC values of CEN and dFC variability of SN) and MMSE and MoCA scores. Conclusion: It suggests that sFC, dFC combined with triple network model can be considered as potential biomarkers for AD and aMCI.

7.
Front Aging Neurosci ; 15: 1273658, 2023.
Article En | MEDLINE | ID: mdl-38099266

Background: Neuroimaging studies have demonstrated alterations in hippocampal volume and hippocampal subfields among individuals with amnestic mild cognitive impairment (aMCI). However, research on using hippocampal subfield volume modeling to differentiate aMCI from normal controls (NCs) is limited, and the relationship between hippocampal volume and overall cognitive scores remains unclear. Methods: We enrolled 50 subjects with aMCI and 44 NCs for this study. Initially, a univariate general linear model was employed to analyze differences in the volumes of hippocampal subfields. Subsequently, two sets of dimensionality reduction methods and four machine learning techniques were applied to distinguish aMCI from NCs based on hippocampal subfield volumes. Finally, we assessed the correlation between the relative volumes of hippocampal subfields and cognitive test variables (Mini-Mental State Examination (MMSE) and Montreal Cognitive Assessment Scale (MoCA)). Results: Significant volume differences were observed in several hippocampal subfields, notably in the left hippocampus. Specifically, the volumes of the hippocampal tail, subiculum, CA1, presubiculum, molecular layer, GC-ML-DG, CA3, CA4, and fimbria differed significantly between the two groups. The highest area under the curve (AUC) values for left and right hippocampal machine learning classifiers were 0.678 and 0.701, respectively. Moreover, the volumes of the left subiculum, left molecular layer, right subiculum, right CA1, right molecular layer, right GC-ML-DG, and right CA4 exhibited the strongest and most consistent correlations with MoCA scores. Conclusion: Hippocampal subfield volume may serve as a predictive marker for aMCI. These findings underscore the sensitivity of hippocampal subfield volume to overall cognitive performance.

8.
EClinicalMedicine ; 65: 102276, 2023 Nov.
Article En | MEDLINE | ID: mdl-37954904

Background: Alzheimer's disease (AD) is a prevalent neurodegenerative disorder that poses a worldwide public health challenge. A neuroimaging biomarker would significantly improve early diagnosis and intervention, ultimately enhancing the quality of life for affected individuals and reducing the burden on healthcare systems. Methods: Cross-sectional and longitudinal data (10,099 participants with 13,380 scans) from 12 independent datasets were used in the present study (this study was performed between September 1, 2021 and February 15, 2023). The Individual Brain-Related Abnormalities In Neurodegeneration (IBRAIN) score was developed via integrated regional- and network-based measures under an ensemble machine learning model based on structural MRI data. We systematically assessed whether IBRAIN could be a neuroimaging biomarker for AD. Findings: IBRAIN accurately differentiated individuals with AD from NCs (AUC = 0.92) and other neurodegenerative diseases, including Frontotemporal dementia (FTD), Parkinson's disease (PD), Vascular dementia (VaD) and Amyotrophic Lateral Sclerosis (ALS) (AUC = 0.92). IBRAIN was significantly correlated to clinical measures and gene expression, enriched in immune process and protein metabolism. The IBRAIN score exhibited a significant ability to reveal the distinct progression of prodromal AD (i.e., Mild cognitive impairment, MCI) (Hazard Ratio (HR) = 6.52 [95% CI: 4.42∼9.62], p < 1 × 10-16), which offers similar powerful performance with Cerebrospinal Fluid (CSF) Aß (HR = 3.78 [95% CI: 2.63∼5.43], p = 2.13 × 10-14) and CSF Tau (HR = 3.77 [95% CI: 2.64∼5.39], p = 9.53 × 10-15) based on the COX and Log-rank test. Notably, the IBRAIN shows comparable sensitivity (beta = -0.70, p < 1 × 10-16) in capturing longitudinal changes in individuals with conversion to AD than CSF Aß (beta = -0.26, p = 4.40 × 10-9) and CSF Tau (beta = 0.12, p = 1.02 × 10-5). Interpretation: Our findings suggested that IBRAIN is a biologically relevant, specific, and sensitive neuroimaging biomarker that can serve as a clinical measure to uncover prodromal AD progression. It has strong potential for application in future clinical practice and treatment trials. Funding: Science and Technology Innovation 2030 Major Projects, the National Natural Science Foundation of China, Beijing Natural Science Funds, the Fundamental Research Funds for the CentralUniversity, and the Startup Funds for Talents at Beijing Normal University.

9.
Front Psychiatry ; 14: 1099333, 2023.
Article En | MEDLINE | ID: mdl-37293396

Mild behavioral impairment (MBI) is a neurobehavioral syndrome that occurs in the absence of cognitive impairment later in life (≥50 years of age). MBI is widespread in the pre-dementia stage and is closely associated with the progression of cognitive impairment, reflecting the neurobehavioral axis of pre-dementia risk states and complementing the traditional neurocognitive axis. Despite being the most common type of dementia, Alzheimer's disease (AD) does not yet have an effective treatment; therefore, early recognition and intervention are crucial. The Mild Behavioral Impairment Checklist is an effective tool for identifying MBI cases and helps identify people at risk of developing dementia. However, because the concept of MBI is still quite new, the overall understanding of it is relatively insufficient, especially in AD. Therefore, this review examines the current evidence from cognitive function, neuroimaging, and neuropathology that suggests the potential use of MBI as a risk indicator in preclinical AD.

10.
Arch Psychiatr Nurs ; 43: 87-91, 2023 04.
Article En | MEDLINE | ID: mdl-37032021

BACKGROUND: We aimed to evaluate the correlation of Childhood parental companionship, self-esteem and prosocial behavior in college students. METHODS: We conducted a survey to assess the childhood parental companionship, self-esteem and prosocial behavior in our college from November 1, 2021 to December 15, 2021. The parental companionship status questionnaire, Self-Esteem Scale (SES) and prosocial behavior questionnaire were used for survey. Pearson linear correlation analysis was used for evaluating the correlation of childhood parental companionship, self-esteem and prosocial behavior in college students. The Bootstrap method was used to test the potentially mediating effect. RESULTS: A total of 2186 college students were included. The average total companionship score was (60.52 ± 5.17), the average self-esteem scale score was (27.15 ± 8.56), the prosocial behavior questionnaire score was (61.19 ± 15.04). Pearson correlation analysis indicated that childhood parental companionship was positively correlated with self-esteem (r = 0.679) and prosocial behavior(r = 0.679) in included college students (all P < 0.05). Self-esteem had mediating effect on parental companionship and prosocial behavior of included college students, its mediating effect was -0.445, accounting for 77.92 % of the total effect. CONCLUSIONS: Childhood parental companionship is positively correlated with self-esteem and prosocial behavior, and self-esteem play a mediating role in the parental companionship and prosocial behavior of college students.


Altruism , Interpersonal Relations , Humans , Self Concept , Students , Parents
11.
BMJ ; 380: e072691, 2023 01 25.
Article En | MEDLINE | ID: mdl-36696990

OBJECTIVE: To identify an optimal lifestyle profile to protect against memory loss in older individuals. DESIGN: Population based, prospective cohort study. SETTING: Participants from areas representative of the north, south, and west of China. PARTICIPANTS: Individuals aged 60 years or older who had normal cognition and underwent apolipoprotein E (APOE) genotyping at baseline in 2009. MAIN OUTCOME MEASURES: Participants were followed up until death, discontinuation, or 26 December 2019. Six healthy lifestyle factors were assessed: a healthy diet (adherence to the recommended intake of at least 7 of 12 eligible food items), regular physical exercise (≥150 min of moderate intensity or ≥75 min of vigorous intensity, per week), active social contact (≥twice per week), active cognitive activity (≥twice per week), never or previously smoked, and never drinking alcohol. Participants were categorised into the favourable group if they had four to six healthy lifestyle factors, into the average group for two to three factors, and into the unfavourable group for zero to one factor. Memory function was assessed using the World Health Organization/University of California-Los Angeles Auditory Verbal Learning Test, and global cognition was assessed via the Mini-Mental State Examination. Linear mixed models were used to explore the impact of lifestyle factors on memory in the study sample. RESULTS: 29 072 participants were included (mean age of 72.23 years; 48.54% (n=14 113) were women; and 20.43% (n=5939) were APOE ε4 carriers). Over the 10 year follow-up period (2009-19), participants in the favourable group had slower memory decline than those in the unfavourable group (by 0.028 points/year, 95% confidence interval 0.023 to 0.032, P<0.001). APOE ε4 carriers with favourable (0.027, 95% confidence interval 0.023 to 0.031) and average (0.014, 0.010 to 0.019) lifestyles exhibited a slower memory decline than those with unfavourable lifestyles. Among people who were not carriers of APOE ε4, similar results were observed among participants in the favourable (0.029 points/year, 95% confidence interval 0.019 to 0.039) and average (0.019, 0.011 to 0.027) groups compared with those in the unfavourable group. APOE ε4 status and lifestyle profiles did not show a significant interaction effect on memory decline (P=0.52). CONCLUSION: A healthy lifestyle is associated with slower memory decline, even in the presence of the APOE ε4 allele. This study might offer important information to protect older adults against memory decline. TRIAL REGISTRATION: ClinicalTrials.gov NCT03653156.


Apolipoprotein E4 , Cognition Disorders , Humans , Female , Aged , Male , Prospective Studies , Memory Disorders/prevention & control , Healthy Lifestyle , Neuropsychological Tests
12.
Front Hum Neurosci ; 16: 951114, 2022.
Article En | MEDLINE | ID: mdl-36061502

Objective: Static regional homogeneity (ReHo) based on the resting-state functional magnetic resonance imaging (rs-fMRI) has been used to study intrinsic brain activity (IBA) in Alzheimer's disease (AD). However, few studies have examined dynamic ReHo (dReHo) in AD. In this study, we used rs-fMRI and dReHo to investigate the alterations in dynamic IBA in patients with AD to uncover dynamic imaging markers of AD. Method: In total, 111 patients with AD, 29 patients with mild cognitive impairment (MCI), and 73 healthy controls (HCs) were recruited for this study ultimately. After the rs-fMRI scan, we calculated the dReHo values using the sliding window method. ANOVA and post hoc two-sample t-tests were used to detect the differences among the three groups. We used the mini-mental state examination (MMSE) and Montreal Cognitive Assessment (MoCA) to evaluate the cognitive function of the subjects. The associations between the MMSE score, MoCA score, and dReHo were assessed by the Pearson correlation analysis. Results: Significant dReHo variability in the right middle frontal gyrus (MFG) and right posterior cingulate gyrus (PCG) was detected in the three groups through ANOVA. In post hoc analysis, the AD group exhibited significantly greater dReHo variability in the right MFG than the MCI group. Compared with the HC group, the AD group exhibited significantly increased dReHo variability in the right PCG. Furthermore, dReHo variability in the right PCG was significantly negatively correlated with the MMSE and MoCA scores of patients with AD. Conclusion: Disrupted dynamic IBA in the DMN might be an important characteristic of AD and could be a potential biomarker for the diagnosis or prognosis of AD.

13.
Front Neurosci ; 16: 970245, 2022.
Article En | MEDLINE | ID: mdl-36003964

Background: Textural features of the hippocampus in structural magnetic resonance imaging (sMRI) images can serve as potential diagnostic biomarkers for Alzheimer's disease (AD), while exhibiting a relatively poor discriminant performance in detecting early AD, such as amnestic mild cognitive impairment (aMCI). In contrast to sMRI, functional magnetic resonance imaging (fMRI) can identify brain functional abnormalities in the early stages of cerebral disorders. However, whether the textural features reflecting local functional activity in the hippocampus can improve the diagnostic performance for AD and aMCI remains unclear. In this study, we combined the textural features of the amplitude of low frequency fluctuation (ALFF) in the slow-5 frequency band and structural images in the hippocampus to investigate their diagnostic performance for AD and aMCI using multimodal radiomics technique. Methods: Totally, 84 AD, 50 aMCI, and 44 normal controls (NCs) were included in the current study. After feature extraction and feature selection, the radiomics models incorporating sMRI images, ALFF values and their combinations in the bilateral hippocampus were established for the diagnosis of AD and aMCI. The effectiveness of these models was evaluated by receiver operating characteristic (ROC) analysis. The radiomics models were further validated using the external data from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database. Results: The results of ROC analysis showed that the radiomics models based on structural images in the hippocampus had a better diagnostic performance for AD compared with the models using ALFF, while the ALFF-based model exhibited better discriminant performance for aMCI than the models with structural images. The radiomics models based on the combinations of structural images and ALFF were found to exhibit the highest accuracy for distinguishing AD from NCs and aMCI from NCs. Conclusion: In this study, we found that the textural features reflecting local functional activity could improve the diagnostic performance of traditional structural models for both AD and aMCI. These findings may deepen our understanding of the pathogenesis of AD, contributing to the early diagnosis of AD.

14.
Curr Alzheimer Res ; 19(6): 469-478, 2022.
Article En | MEDLINE | ID: mdl-35850650

BACKGROUND: Neuroimaging suggests that white matter microstructure is severely affected in Alzheimer's disease (AD) progression. However, whether alterations in white matter microstructure are confined to specific regions and whether they can be used as potential biomarkers to distinguish normal control (NC) from AD are unknown. METHODS: In this cross-sectional study, 33 cases of AD and 25 cases of NC were recruited for automatic fiber quantification (AFQ). A total of 20 fiber bundles were equally divided into 100 segments for quantitative assessment of fractional anisotropy (FA), mean diffusivity (MD), volume and curvature. In order to further evaluate the diagnostic value, the maximum redundancy minimum (mRMR) and LASSO algorithms were used to select features, calculate the Radscore of each subject, establish logistic regression models, and draw ROC curves, respectively, to assess the predictive power of four different models. RESULTS: There was a significant increase in the MD values in AD patients compared with healthy subjects. The differences were mainly located in the left cingulum hippocampus (HCC), left uncinate fasciculus (UF) and superior longitudinal fasciculus (SLF). The point-wise level of 20 fiber bundles was used as a classification feature, and the MD index exhibited the best performance to distinguish NC from AD. CONCLUSION: These findings contribute to the understanding of the pathogenesis of AD and suggest that abnormal white matter based on DTI-based AFQ analysis is helpful to explore the pathogenesis of AD.


Alzheimer Disease , White Matter , Humans , Diffusion Tensor Imaging/methods , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/pathology , Cross-Sectional Studies , White Matter/diagnostic imaging , White Matter/pathology , Biomarkers , Anisotropy , Brain/diagnostic imaging , Brain/pathology
15.
Front Psychiatry ; 12: 710878, 2021.
Article En | MEDLINE | ID: mdl-34484003

Introduction: The outbreak of coronavirus disease has negatively impacted college students' mental health across the world. In addition, substance abuse also is trouble among these students. This study aims to find the gender difference in Chinese international college students' mental health and substance abuse during the COVID-19 pandemic. Method: We conducted an online survey using PHQ-9, GAD-7, and several questions related to substance abuse frequency, self-injury, and suicidal thoughts, 535 male and 475 female Chinese international college students whose ages ranged from 18 to 23 years old (x = 20.19, SD = 1.50) were recruited during the epidemic. We utilized t-test and binary logistic regression in our study to find out the difference and statistical significance between substance abuse issues and mental health problems across gender. Results: Both male and female Chinese international college students had statistical significance with self-injury ideas and behaviors (t = -2.21, p < 0.05). Furthermore, the male college students with anxiety problems had positive statistical significance with medicine (OR = 3.47, 95%CI = 1.45-8.30, p < 0.01) and negative statistical significance with drinks (OR = 0.23, 95%CI = 0.08-0.65, p < 0.01). While for female college students with an anxiety problem, they had positive statistical significance with medicine (OR = 4.88, 95%CI = 1.53-15.57, p < 0.01), drugs (OR = 4.48, 95%CI = 1.41-14.25, p < 0.05) and cigarettes (OR = 6.63, 95%CI = 1.95-22.57, p < 0.01) and negative statistical significance with drinks (OR = 0.18, 95%CI = -0.05 to 0.65, p < 0.01). Conclusion: This is the first cross-sectional study focusing on the Chinese international college students' mental health and substance abuse problems during the COVID-19 pandemic. We found that Chinese international college students' mental health and substance abuse situation has been negatively influenced during this period. In addition, the self-injury ideas and behaviors also showed a high tendency for these students. The findings of our study also highlight the need to find more interventions and preventions to solve the different mental health and substance abuse problems for college students, especially for female Chinese international college students.

16.
World J Clin Cases ; 9(20): 5611-5620, 2021 Jul 16.
Article En | MEDLINE | ID: mdl-34307616

BACKGROUND: Treatment-resistant schizophrenia is a severe form of schizophrenia characterized by poor response to at least two antipsychotic drugs and is typically treated with clozapine. However, clozapine lowers the epileptic threshold, leading to seizures, which are severe side effects of antipsychotics that result in multiple complications. Clozapine-related seizures are generally considered to be dose-dependent and especially rare in the low-dose (150-300 mg/d) clozapine treated population. Due to clinical rarity, little is known about its clinical characteristics and treatment. CASE SUMMARY: A 62-year-old Chinese man with a 40-year history of treatment-resistant schizophrenia presented to the Emergency Department with symptoms of myoclonus, consciousness disturbance and vomiting after taking 125 mg clozapine. Upon admission, the patient had a suddenly generalized tonic-clonic seizure lasting for about half a minute with persistent disturbance of consciousness, fever, cough and bloody sputum, which was considered to be low-dose clozapine-related seizure. After antiepileptic and multiple anti-infection treatments, the patient was discharged without epileptic or psychotic symptoms. CONCLUSION: Our aim is to highlight the early prevention and optimal treatment of clozapine-related seizure through case analysis and literature review.

17.
Ann Transl Med ; 9(1): 63, 2021 Jan.
Article En | MEDLINE | ID: mdl-33553356

BACKGROUND: Alzheimer's disease (AD) is a progressive neurodegenerative disease characterized by memory impairment. Previous studies have largely focused on alterations of static brain activity occurring in patients with AD. Few studies to date have explored the characteristics of dynamic brain activity in cognitive impairment, and their predictive ability in AD patients. METHODS: One hundred and eleven AD patients, 29 MCI patients, and 73 healthy controls (HC) were recruited. The dynamic amplitude of low-frequency fluctuation (dALFF) and the dynamic fraction amplitude of low-frequency fluctuation (dfALFF) were used to assess the temporal variability of local brain activity in patients with AD or mild cognitive impairment (MCI). Pearson's correlation coefficients were calculated between the metrics and subjects' behavioral scores. RESULTS: The results of analysis of variance indicated that the AD, MCI, and HC groups showed significant variability of dALFF in the cerebellar posterior and middle temporal lobes. In AD patients, these brain regions had high dALFF variability. Significant dfALFF variability was found between the three groups in the left calcarine cortex and white matter. The AD group showed lower dfALFF than the MCI group in the left calcarine cortex. CONCLUSIONS: Compared to HC, AD patients were found to have increased dALFF variability in the cerebellar posterior and temporal lobes. This abnormal pattern may diminish the capacity of the cerebellum and temporal lobes to participate in the cerebrocerebellar circuits and default mode network (DMN), which regulate cognition and emotion in AD. The findings above indicate that the analysis of dALFF and dfALFF based on functional magnetic resonance imaging data may give a new insight into the neurophysiological mechanisms of AD.

18.
Ann Transl Med ; 9(1): 64, 2021 Jan.
Article En | MEDLINE | ID: mdl-33553357

BACKGROUND: To study the efficacy of tandospirone citrate in treating Alzheimer's disease (AD) patients with anxiety. METHODS: Thirty mild-to-moderate AD patients with anxiety symptoms were randomly divided into a monotherapy group (donepezil) and a combination therapy group (donepezil and tandospirone). The treatment lasted for 12 weeks. Drug efficacy was regularly assessed using psychological assessment scales and quantitative pharmaco-electroencephalogram (QPEEG) power spectral analysis. RESULTS: After 12 weeks of treatment, the mean Hamilton Anxiety Scale (HAMA) score and mean Neuropsychiatric Inventory (NPI) score of the combination therapy group were 5.13±4.18 and 4.2±5.0, respectively, which was significantly lower compared to baseline and the monotherapy group (all P<0.05). The mean attention score on the Alzheimer's Disease Assessment Scale-cognitive subscale (ADAS-Cog) was 0.07±0.26 for the combination group, which was significantly lower than that of the monotherapy group (P<0.05). QPEEG revealed that the power values of the δ wave in the right prefrontal lobe, left middle temporal lobe and right posterior temporal lobe decreased in the combination therapy group but not in the monotherapy group. Similarly, the power values of the α2 wave in the right parietal, right posterior temporal and left middle temporal lobes, and the ß1 wave power values of left middle temporal and left posterior temporal lobes were also significantly decreased in the combination therapy group, but not in the monotherapy group. CONCLUSIONS: Tandospirone citrate can significantly improve anxiety symptoms and attention in patients with mild to moderate AD. QPEEG examination might provide a objective way for the efficacy of the tandospirone in anxiety symptoms of the patients with Alzheimer's disease.

19.
Ann Transl Med ; 9(1): 65, 2021 Jan.
Article En | MEDLINE | ID: mdl-33553358

BACKGROUND: Alzheimer's disease (AD) is an age-progressive neurodegenerative disorder that affects cognitive function. There have been several functional connectivity (FC) strengths; however, FC density needs more development in AD. Therefore, this study wanted to determine the alternations in resting-state functional connectivity density (FCD) induced by Alzheimer's and mild cognitive impairment (MCI). METHODS: One hundred and eleven AD patients, 29 MCI patients, and 73 healthy controls (age- and sex-matched) were recruited and assessed using resting-state functional magnetic resonance imaging (MRI) scanning. The ultra-fast graph theory called FCD mapping was used to calculate the voxel-wise short- and long-range FCD values of the brain. We performed voxel-based between-group comparisons of FCD values to show the cerebral regions with significant FCD alterations. We performed Pearson's correlation analyses between aberrant functional connectivity densities and several clinical variables with adjustment for age and sex. RESULTS: Patients with cognition decline showed significantly abnormal long-range FCD in the cerebellum crus I, right insula, left inferior frontal gyrus, left superior frontal gyrus, left inferior frontal gyrus, and right middle frontal gyrus. The short-range FCD changed in the cerebellum crus I, left inferior frontal gyrus, left superior occipital gyrus, and right middle frontal gyrus. The long- and short-range functional connectivity in the left inferior frontal gyrus was positively correlated with Mini-mental State Examination (MMSE) scores. CONCLUSIONS: FCD in the identified regions reflects mechanism and compensation for loss of cognitive function. These findings could improve the pathology of AD and MCI and supply a neuroimaging marker for AD and MCI.

20.
Ann Transl Med ; 9(1): 81, 2021 Jan.
Article En | MEDLINE | ID: mdl-33553374

To discuss the changes in cognitive function and related brain regions in patients with chronic benzene poisoning. Few studies have explored the damage to cognitive function that occurs in benzene toxic encephalopathy. It is important to identify early in the course of disease whether cognitive dysfunction is caused by benzene poisoning so that disease prognosis and appropriate treatment can be determined. We reported on the chronic benzene poisoning of a 41-year-old Han Chinese woman. The patient had graduated from primary school, and she had a cheerful and diligent personality. She had performed painting work for more than five years, and her primary work involved painting swivel chairs. The primary reasons she attended the psychiatric clinic were loss of appetite, she had experienced fatigue for more than 2 months, and she had had memory loss for a month. These symptoms seriously impacted the patient's daily life and ability to work. The patient's husband expressed concern that she could not recognize acquaintances, could not find her way home, and had lost approximately 5 kg per month over two months. We analyzed changes in this chronic benzene poisoning patient's cognitive function with cognitive function assessments and magnetic resonance imaging (MRI). Measurements were taken on presentation to hospital, during the patient's hospitalization, and three months following discharge. Long-term exposure to benzene can damage the central nervous system. However, it is difficult to recognize when cognitive impairment is caused by chronic benzene poisoning, as it rarely presents with a decline in cognitive function as the primary clinical manifestation. Atypical symptoms, such as decreased immune function and gastrointestinal issues, may be the first symptoms to appear, and these atypical symptoms are difficult to detect in the early stages of disease. Regular screening of high-risk groups is required to significantly reduce the incidence of systemic damage caused by benzene poisoning.

...