Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 47
Filter
Add more filters










Publication year range
1.
Neuroendocrinology ; 112(10): 998-1026, 2022.
Article in English | MEDLINE | ID: mdl-34963114

ABSTRACT

INTRODUCTION: The kisspeptin gene Kiss1 is expressed in two hypothalamic areas: anteroventral periventricular nucleus/periventricular nucleus (AVPV/PeN) and arcuate nucleus (ARC), and also in gonads. Several pieces of evidence suggests that gamma-amino butyric acid B receptors (GABAB) signaling can regulate Kiss1 expression. Here, we inhibited GABAB signaling from PND2 to PND21 and evaluated the hypothalamic-pituitary-gonadal (HPG) axis. METHODS: BALB/c mice were treated on postnatal days 2-21 (PND2-PND21) with CGP55845 (GABAB antagonist) and evaluated in PND21 and adulthood: gene expression (qPCR) in the hypothalamus and gonads, hormones by radioimmunoassay, gonad histochemistry (H&E), puberty onset, and estrous cycles. RESULTS: At PND21, CGP inhibited Kiss1 and Tac2 and increased Pdyn and Gabbr1 in the ARC of both sexes and decreased Th only in female AVPV/PeN. Serum follicle-stimulating hormone (FSH) and testis weight were decreased in CGP-males, and puberty onset was delayed. In adults, Kiss1, Tac2, Pdyn, Pgr, Cyp19a1, and Gad1 were downregulated, while Gabbr1 was upregulated in the ARC of both sexes. In the AVPV/PeN, Kiss1, Th, Cyp19a1, and Pgr were decreased while Gad1 was increased in CGP-females, whereas Cyp19a1 was increased in CGP-males. Serum FSH was increased in CGP-males while prolactin was increased in CGP-females. Testosterone and progesterone were increased in ovaries from CGP-females, in which Kiss1, Cyp19a1, and Esr1 were downregulated while Hsd3b2 was upregulated, together with increased atretic and decreased ovulatory follicles. Testes from CGP-males showed decreased progesterone, increased Gabbr1, Kiss1, Kiss1r, and Esr2 and decreased Cyp19a1, and clear signs of seminiferous tubules atrophy. CONCLUSION: These results demonstrate that appropriate GABAB signaling during this critical prepubertal period is necessary for the normal development of the HPG axis.


Subject(s)
Kisspeptins , Progesterone , Animals , Arcuate Nucleus of Hypothalamus/metabolism , Female , Follicle Stimulating Hormone , GABA Antagonists , Gonads , Hypothalamus/metabolism , Kisspeptins/genetics , Kisspeptins/metabolism , Male , Mice , Progesterone/metabolism , Prolactin/metabolism , Receptors, Kisspeptin-1/metabolism , Sexual Maturation/physiology , Testosterone/metabolism , Weaning
2.
Nucleic Acid Ther ; 31(2): 155-171, 2021 04.
Article in English | MEDLINE | ID: mdl-33347786

ABSTRACT

Type 1 diabetes occurs as a consequence of progressive autoimmune destruction of beta cells. A potential treatment for this disease should address the immune attack on beta cells and their preservation/regeneration. The objective of this study was to elucidate whether the immunomodulatory synthetic oligonucleotide IMT504 was able to ameliorate diabetes in NOD mice and to provide further understanding of its mechanism of action. We found that IMT504 restores glucose homeostasis in a diabetes mouse model similar to human type 1 diabetes, by regulating expression of immune modulatory factors and improving beta cell function. IMT504 treatment markedly improved fasting glycemia, insulinemia, and homeostatic model assessment of beta cell function (HOMA-Beta cell) index. Moreover, this treatment increased islet number and decreased apoptosis, insulitis, and CD45+ pancreas-infiltrating leukocytes. In a long-term treatment, we observed improvement of glucose metabolism up to 9 days after IMT504 cessation and increased survival after 15 days of the last IMT504 injection. We postulate that interleukin (IL)-12B (p40), possibly acting as a homodimer, and Galectin-3 (Gal-3) may function as mediators of this immunomodulatory action. Overall, these results validate the therapeutic activity of IMT504 as a promising drug for type 1 diabetes and suggest possible downstream mediators of its immunomodulatory effect.


Subject(s)
Diabetes Mellitus, Type 1/drug therapy , Insulin/genetics , Oligodeoxyribonucleotides/pharmacology , Oligonucleotides/pharmacology , Animals , Diabetes Mellitus, Type 1/genetics , Diabetes Mellitus, Type 1/metabolism , Diabetes Mellitus, Type 1/pathology , Disease Models, Animal , Female , Glucose/metabolism , Humans , Insulin/metabolism , Mice , Mice, Inbred NOD , Oligodeoxyribonucleotides/genetics , Oligonucleotides/genetics , Pancreas/drug effects , Pancreas/metabolism , Pancreas/pathology
3.
Am J Physiol Endocrinol Metab ; 318(6): E901-E919, 2020 06 01.
Article in English | MEDLINE | ID: mdl-32286880

ABSTRACT

Lack of GABAB receptors in GABAB1 knockout mice decreases neonatal ARC kisspeptin 1 (Kiss1) expression in the arcuate nucleus of the hypothalamus (ARC) in females, which show impaired reproduction as adults. Our aim was to selectively impair GABAB signaling during a short postnatal period to evaluate its impact on the reproductive system. Neonatal male and female mice were injected with the GABAB antagonist CGP 55845 (CGP, 1 mg/kg body wt sc) or saline from postnatal day 2 (PND2) to PND6, three times per day (8 AM, 1 PM, and 6 PM). One group was killed on PND6 for collection of blood samples (hormones by radioimmunoassay), brains for gene expression in the anteroventral periventricular nucleus-periventricular nucleus continuum (AVPV/PeN), and ARC micropunches [quantitative PCR (qPCR)] and gonads for qPCR, hormone contents, and histology. A second group of mice was injected with CGP (1 mg/kg body wt sc) or saline from PND2 to PND6, three times per day (8 AM, 1 PM, and 6 PM), and left to grow to adulthood. We measured body weight during development and parameters of sexual differentiation, puberty onset, and estrous cycles. Adult mice were killed, and trunk blood (hormones), brains for qPCR, and gonads for qPCR and hormone contents were obtained. Our most important findings on PND6 include the CGP-induced decrease in ARC Kiss1 and increase in neurokinin B (Tac2) in both sexes; the decrease in AVPV/PeN tyrosine hydroxylase (Th) only in females; the increase in gonad estradiol content in both sexes; and the increase in primordial follicles and decrease in primary and secondary follicles. Neonatally CGP-treated adults showed decreased ARC Kiss1 and ARC gonadotropin-releasing hormone (Gnrh1) and increased ARC glutamic acid decarboxylase 67 (Gad1) only in males; increased ARC GABAB receptor subunit 1 (Gabbr1) in both sexes; and decreased AVPV/PeN Th only in females. We demonstrate that ARC Kiss1 expression is chronically downregulated in males and that the normal sex difference in AVPV/PeN Th expression is abolished. In conclusion, neonatal GABAergic input through GABAB receptors shapes gene expression of factors critical to reproduction.


Subject(s)
Arcuate Nucleus of Hypothalamus/metabolism , Gene Expression Regulation, Developmental/physiology , Hypothalamus, Anterior/metabolism , Receptors, GABA-B/metabolism , Animals , Animals, Newborn , Arcuate Nucleus of Hypothalamus/drug effects , Estradiol/metabolism , Female , Follicle Stimulating Hormone/metabolism , GABA-B Receptor Antagonists/pharmacology , Gene Expression Regulation, Developmental/drug effects , Glutamate Decarboxylase/genetics , Glutamate Decarboxylase/metabolism , Gonadotropin-Releasing Hormone/genetics , Gonadotropin-Releasing Hormone/metabolism , Hypothalamus, Anterior/drug effects , Kisspeptins/genetics , Kisspeptins/metabolism , Luteinizing Hormone/metabolism , Male , Mice , Ovary/drug effects , Ovary/metabolism , Phosphinic Acids/pharmacology , Propanolamines/pharmacology , Protein Precursors/genetics , Protein Precursors/metabolism , Puberty/drug effects , Puberty/genetics , Receptors, Estrogen/genetics , Receptors, Estrogen/metabolism , Receptors, GABA-B/genetics , Receptors, Progesterone/genetics , Receptors, Progesterone/metabolism , Reproduction/drug effects , Reproduction/genetics , Reverse Transcriptase Polymerase Chain Reaction , Sex Differentiation/drug effects , Sex Differentiation/genetics , Tachykinins/genetics , Tachykinins/metabolism , Testis/drug effects , Testis/metabolism , Testosterone/metabolism , Tyrosine 3-Monooxygenase/genetics , Tyrosine 3-Monooxygenase/metabolism
4.
J Neuroendocrinol ; 31(8): e12765, 2019 08.
Article in English | MEDLINE | ID: mdl-31269532

ABSTRACT

Female mice lacking GABAB receptors, GABAB1KO, show disrupted oestrous cycles, reduced pregnancies and increased hypothalamic Gnrh1 mRNA expression, whereas anteroventral periventricular/periventricular preoptic nucleus (AVPV/PeN) Kiss1 mRNA was not affected. In the present study, we characterise the important components of the gonadotrophic preovulatory surge, aiming to unravel the origin of this reproductive impairment. In GABAB1KO and wild-type (WT) females, we determined: (i) hypothalamic oestrogen receptor (ER)α and ß and aromatase mRNA and protein expression; (ii) ovulation index and oestrus serum follicle-stimulating hormone (FSH) and pituitary Gnrh1r expression; (iii) in ovariectomised-oestradiol valerate-treated mice, we evaluated ex vivo hypothalamic gonadotrophin-releasing hormone (GnRH) pulsatility in the presence/absence of kisspeptin (Kiss-10, constant or pulsatile) and oestradiol (constant); and (iv) in ovariectomised-oestradiol silastic capsule-treated mice (proestrous-like environment), we evaluated morning and evening kisspeptin neurone activation (c-Fos+) and serum luteinising homrone (LH). In the medial basal hypothalamus of oestrus GABAB1KOs, aromatase and ERα mRNA and protein were increased, whereas ERß was decreased. In GABAB1KOs, the ovulation index was decreased together with decreased first oestrus serum FSH and increased pituitary Gnrh1r mRNA. Under constant Kiss-10 stimulation, hypothalamic GnRH pulse frequency did not vary, although GnRH mass/pulse was increased in GABAB1KOs. In WTs, pulsatile Kiss-10 together with constant oestradiol significantly increased GnRH pulsatility, whereas, in GABAB1KOs, oestradiol alone increased GnRH pulsatility and this was reversed by pulsatile Kiss-10 addition. In GABAB1KOs AVPV/PeN kisspeptin neurones were similarly activated (c-Fos+) in the morning and evening, whereas WTs showed the expected, marked evening stimulation. LH correlated with activated kisspeptin cells in WT mice, whereas GABAB1KO mice showed high, similar LH levels both in the morning and evening. Taken together, all of these alterations point to impairment in the trigger of the preovulatory GnRH surge that entails the reproductive alterations described.


Subject(s)
Estrous Cycle/blood , Estrous Cycle/genetics , Luteinizing Hormone/blood , Ovulation Inhibition , Receptors, GABA-B/genetics , Animals , Estradiol/blood , Female , Follicle Stimulating Hormone/blood , Gonadotropin-Releasing Hormone/blood , Mice , Mice, Inbred BALB C , Mice, Knockout , Ovulation/blood , Ovulation/genetics , Ovulation Inhibition/blood , Ovulation Inhibition/genetics , Up-Regulation/genetics
5.
Reproduction ; 157(6): R225-R233, 2019 06.
Article in English | MEDLINE | ID: mdl-30844750

ABSTRACT

Neuroendocrine control of reproduction involves the interplay of various factors that become active at some point along development. GnRH is the main neurohormone controlling reproduction and among the most important inputs modulating GnRH synthesis/secretion are GABA and kisspeptins. These interactions of GABA and kisspeptin in the control of GnRH secretion can take place by the presence of the receptors of both factors on the GnRH neuron or alternatively by the actions of GABA on kisspeptin neurons and/or the actions of kisspeptin on GABA neurons. Kisspeptin acts on the Kiss1R, a seven transmembrane domain, Gαq/11-coupled receptor that activates phospholipase C, although some Gαq/11-independent pathways in mediating part of the effects of Kiss1R activation have also been proposed. GABA acts through two kinds of receptors, ionotropic GABAA/C receptors involving a chloride channel and associated with fast inhibitory/stimulatory conductance and metabotropic GABAB receptors (GABABR) that are Gi/0 protein linked inducing late slow hyperpolarization. In this review, we aim to summarize the different ways in which these two actors, kisspeptin and GABA, interact to modulate GnRH secretion across the reproductive lifespan.


Subject(s)
Gonadotropin-Releasing Hormone/metabolism , Kisspeptins/metabolism , Receptors, Kisspeptin-1/metabolism , Reproduction/physiology , gamma-Aminobutyric Acid/metabolism , Animals , Humans
6.
Toxicol Lett ; 285: 81-86, 2018 Mar 15.
Article in English | MEDLINE | ID: mdl-29305326

ABSTRACT

Bisphenol A (BPA) is a component of polycarbonate plastics, epoxy resins and polystyrene found in many common products. Several reports revealed potent in vivo and in vitro effects. In this study we analyzed the effects of the exposure to BPA in the hypothalamic-pituitary-thyroid axis in female rats, both in vivo and in vitro. Female Sprague-Dawley rats were injected sc from postnatal day 1 (PND1) to PND10 with BPA: 500 µg 50 µl-1 oil (B500), or 50 µg 50 µl-1 (B50), or 5 µg 50 µl-1 (B5). Controls were injected with 50 µl vehicle during the same period. Neonatal exposure to BPA did not modify TSH levels in PND13 females, but it increased them in adults in estrus. Serum T4 was lower in B5 and B500 with regards to Control, whereas no difference was seen in T3. No significant differences were observed in TRH, TSHß and TRH receptor expression between groups. TSH release from PPC obtained from adults in estrus was also higher in B50 with regard to Control. In vitro 24 h pre-treatment with BPA or E2 increased basal TSH as well as prolactin release. On the other hand, both BPA and E2 lowered the response to TRH. The results presented here show that the neonatal exposure to BPA alters the hypothalamic pituitary-thyroid axis in adult rats in estrus, possibly with effects on the pituitary and thyroid. They also show that BPA alters TSH release from rat PPC through direct actions on the pituitary.


Subject(s)
Benzhydryl Compounds/toxicity , Endocrine Disruptors/toxicity , Hypothalamus/drug effects , Phenols/toxicity , Pituitary Gland/drug effects , Thyroid Gland/drug effects , Aging/blood , Aging/drug effects , Animals , Animals, Newborn , Cells, Cultured , Dose-Response Relationship, Drug , Female , Hypothalamus/growth & development , Hypothalamus/metabolism , Pituitary Gland/growth & development , Pituitary Gland/metabolism , Rats, Sprague-Dawley , Receptors, Thyrotropin-Releasing Hormone/genetics , Receptors, Thyrotropin-Releasing Hormone/metabolism , Thyroid Gland/growth & development , Thyroid Gland/metabolism , Thyrotropin/blood , Thyrotropin/genetics , Thyrotropin-Releasing Hormone/blood
7.
Peptides ; 99: 117-127, 2018 01.
Article in English | MEDLINE | ID: mdl-28442349

ABSTRACT

Orexins A/B derived from hypothalamic prepro-orexin (PPO) are agonists for orexin receptors 1 (OX1) and 2 (OX2). Previously, we showed clear sex differences in the hypothalamic-pituitary-gonadal orexinergic system in adult rodents. Here, we studied the effect of sexual brain differentiation on the orexinergic system in neuroendocrine structures regulating reproduction. We evaluated: a: proestrous and neonatally androgenized female rats; b: adult males, untreated or gonadectomized in adulthood and injected with oil or estradiol and progesterone (E2/P4); c: control and demasculinized males (perinatally treated with flutamide and later castration) injected either with oil or E2/P4 in adulthood. Rats were sacrificed at 12:00 and 18:00h; blood samples and brains were collected. Hormones were measured using radioimmunoassay. PPO, OX1 and OX2 mRNAs were quantified by qPCR in medial basal hypothalamus, anterior hypothalamus, adenohypophysis, and cortex. Western blots for OX1 were done in the same structures. In normal females, gonadotropins surged at 18:00h coinciding with significant elevations of PPO, OX1 and OX2 mRNAs and OX1 protein in hypothalamus and pituitary; no increases were observed at noon. Afternoon changes were absent in masculinized females. Demasculinized males when treated with E2/P4 showed high PPO, OX1 and OX2 mRNAs and OX1 protein expression in hypothalamus and pituitary at 12:00 and 18:00h compared vehicle-treated controls. The same steroid treatment was ineffective in males with normal brain masculinization. Here we show that neonatal testosterone shapes the sexual differences in the hypothalamic-pituitary orexinergic system in synchronicity to establishing the brain sex differences of the reproductive axis. The female brain controls gonadotropin surges and concurrent elevations of all studied components of the orexinergic system, suggesting its participation as a possible link between food intake, behavior and hormonal control of reproduction.


Subject(s)
Hypothalamus/metabolism , Orexin Receptors/biosynthesis , Orexins/metabolism , Pituitary Gland, Anterior/metabolism , Sex Characteristics , Testosterone/metabolism , Animals , Estradiol/metabolism , Female , Male , Progesterone/metabolism , Rats , Rats, Sprague-Dawley
8.
Reprod Toxicol ; 69: 1-12, 2017 04.
Article in English | MEDLINE | ID: mdl-28077272

ABSTRACT

We investigated arsenite exposure on the reproductive axis of dams (during pregnancy and at cyclicity resumption) and their offspring. Pregnant rats were exposed to 5 (A5) or 50ppm (A50) of sodium arsenite in drinking water from gestational day 1 (GD1) until sacrifice at GD18 or two months postpartum. Offspring were exposed to the same treatment as their mothers from weaning to adulthood. A50-pregnant rats gained less weight, showed increased testosterone and estradiol but pregnancy was unaffected. After lactation, arsenic-exposed dams presented compromised cyclicity, decreased estradiol, increased follicle-stimulating hormone (FSH), less preovulatory follicles and presence of ovarian cysts, suggesting impaired reproduction. A50-offspring presented lower body weight; A50-female-offspring showed elevated gonadotropin releasing hormone (GnRH), FSH and testosterone, while A50-males showed diminished GnRH/FSH, but normal testosterone. We conclude that arsenite at the present exposure levels did not compromise pregnancy outcome while it negatively affected reproductive physiology in postpartum dams and their offspring.


Subject(s)
Arsenites/toxicity , Prenatal Exposure Delayed Effects , Sodium Compounds/toxicity , Adrenal Glands/drug effects , Adrenal Glands/metabolism , Animals , Arsenic/metabolism , Female , Hormones/metabolism , Hypothalamus/drug effects , Hypothalamus/metabolism , Lactation , Liver/metabolism , Male , Maternal-Fetal Exchange , Ovary/drug effects , Ovary/metabolism , Pituitary Gland/drug effects , Pituitary Gland/metabolism , Pregnancy , Rats , Rats, Sprague-Dawley , Reproduction/drug effects , Sexual Maturation/drug effects
9.
Food Chem Toxicol ; 100: 207-216, 2017 Feb.
Article in English | MEDLINE | ID: mdl-28017702

ABSTRACT

Drinking water is the main source of arsenic exposure. Chronic exposure has been associated with metabolic disorders. Here we studied the effects of arsenic on glucose metabolism, in pregnant and post-partum of dams and their offspring. We administered 5 (A5) or 50 (A50) mg/L of sodium arsenite in drinking water to rats from gestational day 1 (GD1) until two months postpartum (2MPP), and to their offspring from weaning until 8 weeks old. Liver arsenic dose-dependently increased in arsenite-treated rats to levels similar to exposed population. Pregnant A50 rats gained less weight than controls and recovered normal weight at 2MPP. Arsenite-treated pregnant animals showed glucose intolerance on GD16-17, with impaired insulin secretion but normal insulin sensitivity; they showed dose-dependent increased pancreas insulin on GD18. All alterations reverted at 2MPP. Offspring from A50-treated mothers showed lower body weight at birth, 4 and 8 weeks of age, and glucose intolerance in adult females, probably due to insulin secretion and sensitivity alterations. Arsenic alters glucose homeostasis during pregnancy by altering beta-cell function, increasing risk of developing gestational diabetes. In pups, it induces low body weight from birth to 8 weeks of age, and glucose intolerance in females, demonstrating a sex specific response.


Subject(s)
Arsenites/toxicity , Drinking Water/adverse effects , Glucose Intolerance/etiology , Prenatal Exposure Delayed Effects/etiology , Animals , Body Weight/drug effects , Drinking Water/analysis , Female , Glucose Tolerance Test , Insulin/analysis , Lipid Peroxidation/drug effects , Liver/drug effects , Oxidative Stress/drug effects , Pregnancy , Rats , Rats, Sprague-Dawley
10.
Am J Physiol Endocrinol Metab ; 311(2): E380-95, 2016 08 01.
Article in English | MEDLINE | ID: mdl-27329801

ABSTRACT

Type 1 diabetes (T1D) originates from autoimmune ß-cell destruction. IMT504 is an immunomodulatory oligonucleotide that increases mesenchymal stem cell cloning capacity and reverts toxic diabetes in rats. Here, we evaluated long-term (20 doses) and short-term (2-6 doses) effects of IMT504 (20 mg·kg(-1)·day(-1) sc) in an immunodependent diabetes model: multiple low-dose streptozotocin-injected BALB/c mice (40 mg·kg(-1)·day(-1) ip for 5 consecutive days). We determined blood glucose, glucose tolerance, serum insulin, islet morphology, islet infiltration, serum cytokines, progenitor cell markers, immunomodulatory proteins, proliferation, apoptosis, and islet gene expression. IMT504 reduced glycemia, induced ß-cell recovery, and impaired islet infiltration. IMT504 induced early blood glucose decrease and infiltration inhibition, increased ß-cell proliferation and decreased apoptosis, increased islet indoleamine 2,3-dioxygenase (IDO) expression, and increased serum tumor necrosis factor and interleukin-6 (IL-6). IMT504 affected islet gene expression; preproinsulin-2, proglucagon, somatostatin, nestin, regenerating gene-1, and C-X-C motif ligand-1 cytokine (Cxcl1) increased in islets from diabetic mice and were decreased by IMT504. IMT504 downregulated platelet endothelial cell adhesion molecule-1 (Pecam1) in islets from control and diabetic mice, whereas it increased regenerating gene-2 (Reg2) in islets of diabetic mice. The IMT504-induced increase in IL-6 and islet IDO expression and decreased islet Pecam1 and Cxcl1 mRNA expression could participate in keeping leukocyte infiltration at bay, whereas upregulation of Reg2 may mediate ß-cell regeneration. We conclude that IMT504 effectively reversed immunodependent diabetes in mice. Corroboration of these effects in a model of autoimmune diabetes more similar to human T1D could provide promising results for the treatment of this disease.


Subject(s)
Blood Glucose/drug effects , Cytokines/drug effects , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Type 1/metabolism , Insulin-Secreting Cells/drug effects , Oligodeoxyribonucleotides/pharmacology , RNA, Messenger/drug effects , Animals , Apoptosis/drug effects , Blood Glucose/metabolism , Cell Proliferation/drug effects , Chemokine CXCL1/drug effects , Chemokine CXCL1/genetics , Cytokines/metabolism , Diabetes Mellitus, Experimental/genetics , Diabetes Mellitus, Type 1/genetics , Disease Models, Animal , Glucose Tolerance Test , Indoleamine-Pyrrole 2,3,-Dioxygenase/drug effects , Indoleamine-Pyrrole 2,3,-Dioxygenase/metabolism , Insulin/genetics , Insulin/metabolism , Insulin-Secreting Cells/metabolism , Interleukin-6/metabolism , Islets of Langerhans/drug effects , Islets of Langerhans/metabolism , Islets of Langerhans/pathology , Lithostathine/drug effects , Lithostathine/genetics , Male , Mice , Mice, Inbred BALB C , Nestin/drug effects , Nestin/genetics , Pancreatitis-Associated Proteins , Platelet Endothelial Cell Adhesion Molecule-1/drug effects , Platelet Endothelial Cell Adhesion Molecule-1/genetics , Proglucagon/drug effects , Proglucagon/genetics , Protein Precursors/drug effects , Protein Precursors/genetics , Proteins/drug effects , Proteins/genetics , RNA, Messenger/metabolism , Somatostatin/drug effects , Somatostatin/genetics , Stem Cells/drug effects , Stem Cells/metabolism , Transcriptome/drug effects , Tumor Necrosis Factor-alpha/drug effects , Tumor Necrosis Factor-alpha/metabolism
11.
Endocrinology ; 155(3): 1033-44, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24424047

ABSTRACT

Kisspeptin, encoded by Kiss1, stimulates reproduction and is synthesized in the hypothalamic anteroventral periventricular and arcuate nuclei. Kiss1 is also expressed at lower levels in the medial amygdala (MeA) and bed nucleus of the stria terminalis (BNST), but the regulation and function of Kiss1 there is poorly understood. γ-Aminobutyric acid (GABA) also regulates reproduction, and female GABAB1 receptor knockout (KO) mice have compromised fertility. However, the interaction between GABAB receptors and Kiss1 neurons is unknown. Here, using double-label in situ hybridization, we first demonstrated that a majority of hypothalamic Kiss1 neurons coexpress GABAB1 subunit, a finding also confirmed for most MeA Kiss1 neurons. Yet, despite known reproductive impairments in GABAB1KO mice, Kiss1 expression in the anteroventral periventricular and arcuate nuclei, assessed by both in situ hybridization and real-time PCR, was identical between adult wild-type and GABAB1KO mice. Surprisingly, however, Kiss1 levels in the BNST and MeA, as well as the lateral septum (a region normally lacking Kiss1 expression), were dramatically increased in both GABAB1KO males and females. The increased Kiss1 levels in extrahypothalamic regions were not caused by elevated sex steroids (which can increase Kiss1 expression), because circulating estradiol and testosterone were equivalent between genotypes. Interestingly, increased Kiss1 expression was not detected in the MeA or BNST in prepubertal KO mice of either sex, indicating that the enhancements in extrahypothalamic Kiss1 levels initiate during/after puberty. These findings suggest that GABAB signaling may normally directly or indirectly inhibit Kiss1 expression, particularly in the BNST and MeA, and highlight the importance of studying kisspeptin populations outside the hypothalamus.


Subject(s)
Gene Expression Regulation , Kisspeptins/metabolism , Receptors, GABA-B/metabolism , Signal Transduction , Amygdala/metabolism , Animals , Arcuate Nucleus of Hypothalamus/metabolism , Brain Mapping , Estradiol/metabolism , Female , Genotype , Hypothalamus/metabolism , Immunohistochemistry , Kisspeptins/genetics , Male , Mice , Mice, Knockout , Midline Thalamic Nuclei/metabolism , Neurons/metabolism , Phenotype , Receptors, GABA-B/genetics , Septal Nuclei/metabolism , Testosterone/metabolism , Time Factors , Up-Regulation , gamma-Aminobutyric Acid/metabolism
12.
Neuroendocrinology ; 98(3): 212-23, 2013.
Article in English | MEDLINE | ID: mdl-24080944

ABSTRACT

BACKGROUND/AIMS: Adult mice lacking functional GABAB receptors (GABAB1KO) show altered Gnrh1 and Gad1 expressions in the preoptic area-anterior hypothalamus (POA-AH) and females display disruption of cyclicity and fertility. Here we addressed whether sexual differentiation of the brain and the proper wiring of the GnRH and kisspeptin systems were already disturbed in postnatal day 4 (PND4) GABAB1KO mice. METHODS: PND4 wild-type (WT) and GABAB1KO mice of both sexes were sacrificed; tissues were collected to determine mRNA expression (qPCR), amino acids (HPLC), and hormones (RIA and/or IHC). RESULTS: GnRH neuron number (IHC) did not differ among groups in olfactory bulbs or OVLT-POA. Gnrh1 mRNA (qPCR) in POA-AH was similar among groups. Gnrh1 mRNA in medial basal hypothalamus (MBH) was similar in WTs but was increased in GABAB1KO females compared to GABAB1KO males. Hypothalamic GnRH (RIA) was sexually different in WTs (males > females), but this sex difference was lost in GABAB1KOs; the same pattern was observed when analyzing only the MBH, but not in the POA-AH. Arcuate nucleus Kiss1 mRNA (micropunch-qPCR) was higher in WT females than in WT males and GABAB1KO females. Gad1 mRNA in MBH was increased in GABAB1KO females compared to GABAB1KO males. Serum LH and gonadal estradiol content were also increased in GABAB1KOs. CONCLUSION: We demonstrate that GABABRs participate in the sexual differentiation of the ARC/MBH, because sex differences in several reproductive genes, such as Gad1, Kiss1 and Gnrh1, are critically disturbed in GABAB1KO mice at PND4, probably altering the organization and development of neural circuits governing the reproductive axis.


Subject(s)
Glutamate Decarboxylase/deficiency , Gonadotropin-Releasing Hormone/deficiency , Hypothalamus, Middle/metabolism , Kisspeptins/deficiency , Protein Precursors/deficiency , Receptors, GABA-B/deficiency , Sex Differentiation/genetics , Animals , Animals, Newborn , Arcuate Nucleus of Hypothalamus/growth & development , Arcuate Nucleus of Hypothalamus/metabolism , Female , Gene Expression Regulation, Developmental , Glutamate Decarboxylase/genetics , Gonadotropin-Releasing Hormone/genetics , Hypothalamus, Middle/growth & development , Kisspeptins/genetics , Male , Mice , Mice, Inbred BALB C , Mice, Knockout , Protein Precursors/genetics , RNA, Messenger/biosynthesis , RNA, Messenger/genetics , Receptors, GABA-B/genetics
13.
Am J Physiol Endocrinol Metab ; 304(10): E1064-76, 2013 May 15.
Article in English | MEDLINE | ID: mdl-23531612

ABSTRACT

Adult mice lacking functional GABAB receptors (GABAB1KO) have glucose metabolism alterations. Since GABAB receptors (GABABRs) are expressed in progenitor cells, we evaluated islet development in GABAB1KO mice. Postnatal day 4 (PND4) and adult, male and female, GABAB1KO, and wild-type littermates (WT) were weighed and euthanized, and serum insulin and glucagon was measured. Pancreatic glucagon and insulin content were assessed, and pancreas insulin, glucagon, PCNA, and GAD65/67 were determined by immunohistochemistry. RNA from PND4 pancreata and adult isolated islets was obtained, and Ins1, Ins2, Gcg, Sst, Ppy, Nes, Pdx1, and Gad1 transcription levels were determined by quantitative PCR. The main results were as follows: 1) insulin content was increased in PND4 GABAB1KO females and in both sexes in adult GABAB1KOs; 2) GABAB1KO females had more clusters (<500 µm(2)) and less islets than WT females; 3) cluster proliferation was decreased at PND4 and increased in adult GABAB1KO mice; 4) increased ß-area at the expense of the α-cell area was present in GABAB1KO islets; 5) Ins2, Sst, and Ppy transcription were decreased in PND4 GABAB1KO pancreata, adult GABAB1KO female islets showed increased Ins1, Ins2, and Sst expression, Pdx1 was increased in male and female GABAB1KO islets; and 6) GAD65/67 was increased in adult GABAB1KO pancreata. We demonstrate that several islet parameters are altered in GABAB1KO mice, further pinpointing the importance of GABABRs in islet physiology. Some changes persist from neonatal ages to adulthood (e.g., insulin content in GABAB1KO females), whereas other features are differentially regulated according to age (e.g., Ins2 was reduced in PND4, whereas it was upregulated in adult GABAB1KO females).


Subject(s)
Insulin Resistance/physiology , Islets of Langerhans/physiology , Receptors, GABA-B/deficiency , Animals , Animals, Newborn , Body Weight/physiology , Female , Gene Expression Regulation , Glucagon/blood , Glucagon/genetics , Glucagon/physiology , Glutamate Decarboxylase/physiology , Insulin/blood , Insulin/genetics , Insulin/physiology , Islets of Langerhans/growth & development , Islets of Langerhans/metabolism , Islets of Langerhans/ultrastructure , Male , Mice , Mice, Inbred BALB C , Mice, Knockout , Organ Size/physiology , Proliferating Cell Nuclear Antigen/analysis , Proliferating Cell Nuclear Antigen/physiology , RNA/chemistry , RNA/genetics , Real-Time Polymerase Chain Reaction
14.
Toxicol Lett ; 213(3): 325-31, 2012 Sep 18.
Article in English | MEDLINE | ID: mdl-22842222

ABSTRACT

The hypothalamic-growth hormone (GH)-liver axis represents a new concept in endocrine regulation of drug toxicity. Preponderant sex differences are found in liver gene expression, mostly dependent on the sexually dimorphic pattern of GH secretion which is set during the neonatal period by gonadal steroids. We tested if GH-dependent sexually dimorphic liver enzymes and proteins was perturbed by neonatal Bisphenol A (BPA) treatment in female rats. Female rats were sc injected with BPA (50 or 500 µg/50 µl) or castor oil vehicle from postnatal day 1 to 10. At five months serum prolactin, pituitary GH, and serum and liver insulin growth factor-I (IGF-I) were measured by RIA. Major urinary proteins (MUPs) were determined by electrophoresis. Liver Cyp2c11, Cyp2c12, Adh1, Hnf6, and Prlr mRNA levels were determined by real time PCR. Pituitary GH content and liver IGF-I concentration were increased by neonatal BPA treatment, indicating partial masculinization of the GH axis in treated females. GH-dependent female predominant liver enzyme genes (Cyp2c12 and Adh1) and a transcription factor (Hnf6) were downregulated or defeminized, while there were no changes in a male predominant gene (Cyp2c11) or protein (MUP). Our findings indicate that perinatal exposure to BPA may compromise the sexually dimorphic capacity of the liver to metabolize drugs and steroids.


Subject(s)
Endocrine Disruptors/toxicity , Estrogens, Non-Steroidal/toxicity , Growth Hormone/metabolism , Liver/drug effects , Phenols/toxicity , Pituitary Gland/drug effects , Age Factors , Aging/genetics , Aging/metabolism , Alcohol Dehydrogenase/genetics , Animals , Animals, Newborn , Aryl Hydrocarbon Hydroxylases/genetics , Benzhydryl Compounds , Cytochrome P450 Family 2 , Drug Administration Schedule , Electrophoresis, Polyacrylamide Gel , Endocrine Disruptors/administration & dosage , Estrogens, Non-Steroidal/administration & dosage , Female , Gene Expression Regulation, Developmental/drug effects , Gene Expression Regulation, Enzymologic/drug effects , Hepatocyte Nuclear Factor 6/genetics , Injections, Subcutaneous , Insulin-Like Growth Factor I/metabolism , Liver/metabolism , Male , Phenols/administration & dosage , Pituitary Gland/metabolism , Prolactin/blood , RNA, Messenger/metabolism , Rats , Rats, Sprague-Dawley , Real-Time Polymerase Chain Reaction , Receptors, Prolactin/genetics , Sex Characteristics , Sex Factors , Steroid 16-alpha-Hydroxylase/genetics , Steroid Hydroxylases/genetics
15.
Regul Pept ; 178(1-3): 56-63, 2012 Oct 10.
Article in English | MEDLINE | ID: mdl-22749989

ABSTRACT

Orexin-A and orexin-B are neuropeptides controlling sleep-wakefulness, feeding and neuroendocrine functions via their G protein-coupled receptors, orexin-1R and orexin-2R. They are synthesized in the lateral hypothalamus and project throughout the brain. Orexins and orexin receptors have also been described outside the brain. Previously we demonstrated the presence of both receptors in the ovary, their increased expression during proestrous afternoon and the dependence on the gonadotropins. Here we studied the effects of orexins on the mRNA expression of both receptors, by quantitative real-time PCR, on luteal cells from superovulated rat ovaries and granulosa cells from diethylstilbestrol-treated rat ovaries. Effects on progesterone secretion were also measured. In luteal cells, 1 nM of either orexin-A or orexin-B decreased progesterone secretion. Orexin-A treatment increased expression of both orexin-1R and orexin-2R mRNA. The effect on orexin-1R mRNA expression was abolished by an orexin-1R selective receptor antagonist SB-334867 and the effect on orexin-2R mRNA expression was abolished by a selective orexin-2R antagonist JNJ-10397049. Orexin-B did not modify orexin-1R mRNA expression, but increased orexin-2R mRNA expression. The effect of orexin-B on orexin-2R was abolished by a selective orexin-2R antagonist. Neither the expression of orexin receptors nor progesterone secretions by granulosa cells were affected by orexins. FSH, as positive control, increased both steroid hormones secretion, but did not induce the expression of OX receptors in granulosa cells isolated from late preantral/early antral follicles. Finally in ovaries obtained immediately after sacrifice, the expression of orexin-1R and orexin-2R was higher in superovulated rat ovaries compared to control or diethylstilbestrol treated rat ovaries. A selective presence and function of both orexinergic receptors in luteal and granulosa cells is described, suggesting that the orexinergic system may have a functional role in the ovary.


Subject(s)
Granulosa Cells/metabolism , Intracellular Signaling Peptides and Proteins/physiology , Luteal Cells/metabolism , Neuropeptides/physiology , Progesterone/metabolism , Receptors, G-Protein-Coupled/metabolism , Receptors, Neuropeptide/metabolism , Animals , Benzoxazoles/pharmacology , Cells, Cultured , Diethylstilbestrol/pharmacology , Dioxanes/pharmacology , Estradiol/metabolism , Estrogens, Non-Steroidal/pharmacology , Female , Gene Expression , Naphthyridines , Orexin Receptors , Orexins , Ovary/cytology , Ovary/metabolism , Phenylurea Compounds/pharmacology , Progesterone/blood , Rats , Rats, Sprague-Dawley , Receptors, G-Protein-Coupled/antagonists & inhibitors , Receptors, G-Protein-Coupled/genetics , Receptors, Neuropeptide/antagonists & inhibitors , Receptors, Neuropeptide/genetics , Urea/analogs & derivatives , Urea/pharmacology
16.
Eur J Pharmacol ; 677(1-3): 188-96, 2012 Feb 29.
Article in English | MEDLINE | ID: mdl-22210053

ABSTRACT

γ-Aminobutyric acid (GABA) inhibits insulin secretion through GABA(B) receptors in pancreatic ß-cells. We investigated whether GABA(B) receptors participated in the regulation of glucose homeostasis in vivo. BALB/c mice acutely pre-injected with the GABA(B) receptor agonist baclofen (7.5mg/kg, i.p.) presented glucose intolerance and diminished insulin secretion during a glucose tolerance test (GTT, 2g/kg body weight, i.p.). The GABA(B) receptor antagonist 2-hydroxysaclofen (15 mg/kg, i.p.) improved the GTT and reversed the baclofen effect. Also a slight increase in insulin secretion was observed with 2-hydroxysaclofen. In incubated islets 1.10(-5)M baclofen inhibited 20mM glucose-induced insulin secretion and this effect was reversed by coincubation with 1.10(-5)M 2-hydroxysaclofen. In chronically-treated animals (18 days) both the receptor agonist (5mg/kg/day i.p.) and the receptor antagonist (10mg/kg/day i.p.) induced impaired GTTs; the receptor antagonist, but not the agonist, also induced a decrease in insulin secretion. No alterations in insulin tolerance tests, body weight and food intake were observed with the treatments. In addition glucagon, insulin-like growth factor I, prolactin, corticosterone and growth hormone, other hormones involved in glucose metabolism regulation, were not affected by chronic baclofen or 2-hydroxysaclofen. In islets obtained from chronically injected animals with baclofen, 2-hydroxysaclofen or saline (as above), GABA(B2) mRNA expression was not altered. Results demonstrate that GABA(B) receptors are involved in the regulation of glucose homeostasis in vivo. Treatment with receptor agonists or antagonists, given acutely or chronically, altered glucose homeostasis and insulin secretion alerting to the need to evaluate glucose metabolism during the clinical use of these drugs.


Subject(s)
Blood Glucose/metabolism , GABA-B Receptor Agonists/pharmacology , GABA-B Receptor Antagonists/pharmacology , Receptors, GABA-B/metabolism , Animals , Baclofen/administration & dosage , Baclofen/analogs & derivatives , Baclofen/pharmacology , Basal Metabolism/drug effects , Body Weight/drug effects , Eating/drug effects , GABA-B Receptor Agonists/administration & dosage , GABA-B Receptor Antagonists/administration & dosage , Gene Expression Regulation/drug effects , Glucose Tolerance Test , Homeostasis/drug effects , Insulin/metabolism , Insulin Secretion , Islets of Langerhans/drug effects , Islets of Langerhans/metabolism , Male , Mice , Mice, Inbred BALB C , Protein Subunits/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Time Factors , gamma-Aminobutyric Acid/analogs & derivatives , gamma-Aminobutyric Acid/pharmacology
17.
Environ Health Perspect ; 118(9): 1217-22, 2010 Sep.
Article in English | MEDLINE | ID: mdl-20413367

ABSTRACT

BACKGROUND: Bisphenol A (BPA), an endocrine disruptor, is a component of polycarbonate plastics, epoxy resins, and polystyrene. Several studies have reported potent in vivo effects, because BPA behaves as an estrogen agonist and/or antagonist and as an androgen and thyroid hormone antagonist. OBJECTIVES: We investigated the effects of neonatal exposure to BPA on the reproductive axis in adult female Sprague-Dawley rats. METHODS: Female rats were injected subcutaneously, daily from postnatal day 1 (PND1) to PND10 with BPA in castor oil at 500 microg/50 microL [BPA500; approximately 10-4 M, a dose higher than the lowest observed adverse effect level (LOAEL) of 50 mg/kg], 50 microg/50 microL (BPA50), or 5 microg/50 microL (both BPA50 and BPA5 are doses lower than the LOAEL), or castor oil vehicle alone. In adults we studied a) the release of gonadotropin-releasing hormone (GnRH) from hypothalamic explants, b) serum sex hormone levels, and c) ovarian morphology, ovulation, and fertility. RESULTS: Neonatal exposure to BPA was associated with increased serum testosterone and estradiol levels, reduced progesterone in adulthood, and altered in vitro GnRH secretion. Animals exposed to BPA500 had altered ovarian morphology, showing a large number of cysts. Animals exposed to BPA50 had reduced fertility without changes in the number of oocytes on the morning of estrus, whereas animals exposed to BPA500 showed infertility. CONCLUSIONS: Exposure to high doses of BPA during the period of brain sexual differentiation altered the hypothalamic-pituitary-gonadal axis in female Sprague-Dawley rats. These results have the potential to link neonatal exposure to high doses of BPA in rats with the development of polycystic ovarian syndrome. Studies of doses and routes of administration more consistent with human exposures are needed to determine the relevance of these findings to human health.


Subject(s)
Endocrine System/drug effects , Phenols/toxicity , Polycystic Ovary Syndrome/blood , Polycystic Ovary Syndrome/metabolism , Reproduction/drug effects , Animals , Animals, Newborn , Benzhydryl Compounds , Endocrine System/metabolism , Estrogens/blood , Female , Gonadotropin-Releasing Hormone/metabolism , Ovary/drug effects , Ovary/pathology , Phenols/administration & dosage , Polycystic Ovary Syndrome/pathology , Progesterone/blood , Rats , Rats, Sprague-Dawley , Testosterone/blood
18.
Am J Physiol Endocrinol Metab ; 298(3): E683-96, 2010 Mar.
Article in English | MEDLINE | ID: mdl-20009027

ABSTRACT

GABA, the main inhibitory neurotransmitter, acts through GABA(A/C) and GABA(B) receptors (GABA(B)Rs); it is critical for gonadotropin regulation. We studied whether the lack of functional GABA(B)Rs in GABA(B1) knockout (GABA(B1)KO) mice affected the gonadotropin axis physiology. Adult male and female GABA(B1)KO and wild-type (WT) mice were killed to collect blood and tissue samples. Gonadotropin-releasing hormone (GnRH) content in whole hypothalami (HT), olfactory bulbs (OB), and frontoparietal cortexes (CT) were determined (RIA). GnRH expression by quantitative real-time PCR (qRT-PCR) was evaluated in preoptic area-anterior hypothalamus (POA-AH), medial basal-posterior hypothalamus (MBH-PH), OB, and CT. Pulsatile GnRH secretion from hypothalamic explants was measured by RIA. GABA, glutamate, and taurine contents in HT and CT were determined by HPLC. Glutamic acid decarboxylase-67 (GAD-67) mRNA was measured by qRT-PCR in POA-AH, MBH-PH, and CT. Gonadotropin content, serum levels, and secretion from adenohypophyseal cell cultures (ACC) were measured by RIA. GnRH mRNA expression was increased in POA-AH of WT males compared with females; this pattern of expression was inversed in GABA(B1)KO mice. MBH-PH, OB, and CT did not follow this pattern. In GABA(B1)KO females, GnRH pulse frequency was increased and GABA and glutamate contents were augmented. POA-AH GAD-67 mRNA showed the same expression pattern as GnRH mRNA in this area. Gonadotropin pituitary contents and serum levels showed no differences between genotypes. Increased basal LH secretion and decreased GnRH-stimulated gonadotropin response were observed in GABA(B1)KO female ACCs. These results support the hypothesis that the absence of functional GABA(B)Rs alters GnRH physiology and critically affects sexual dimorphic expression of GnRH and GAD-67 in POA-AH.


Subject(s)
Brain/metabolism , Glutamate Decarboxylase/metabolism , Gonadotropin-Releasing Hormone/metabolism , Receptors, GABA-B/metabolism , Sex Characteristics , Animals , Female , Gene Expression/physiology , Male , Mice , Mice, Inbred BALB C , Mice, Knockout , Signal Transduction/physiology , Tissue Distribution
19.
Regul Pept ; 158(1-3): 121-6, 2009 Nov 27.
Article in English | MEDLINE | ID: mdl-19699765

ABSTRACT

Orexins A and B (hypocretins A and B) are regulatory peptides that control a variety of neuroendocrine and autonomic functions including feeding and sleep-wakefulness. Previously, we described a clear relationship between the hormonal milieu of the estrous cycle and the mRNA expression of the components of the orexinergic system, in the hypothalamus, pituitary and ovary. Here, we investigate whether steroid hormones are involved in the modulation of the hypocretin/orexin type-1 receptor expression at the protein level, and its time of the day dependence, in hypothalamus and pituitary of castrated male and female rats and castrated receiving hormone replacement. Orchidectomy decreased the hypocretin/orexin type-1 receptor expression in anterior hypothalamus, but not in mediobasal hypothalamus or cortex; in pituitary this treatment resulted in an increase. Testosterone and dihydrotestosterone were able to restore receptor expression and gonadotropins. In females, pituitary and ovarian hormones increased during proestrous afternoon. Hypocretin/orexin type-1 receptor expression was higher at 19:00 of proestrus in hypothalamus and pituitary. Ovariectomized treated with estradiol or oil and sacrificed at 11:00 h showed the receptor expression similar to 11:00 h of proestrus in hypothalamus and pituitary. At 19:00 h, low expression persisted in these areas in oil-treated ovariectomized rats; in contrast, estradiol replacement increased the expression to high levels of normal cycling rats at 19:00 h. Sexual steroids modulate the orexinergic system and the anatomical regions, hormones and times of the day all have to be considered when the roles of orexins, and probably other peptides, are under consideration.


Subject(s)
Brain/metabolism , Gonadal Steroid Hormones/physiology , Receptors, G-Protein-Coupled/metabolism , Receptors, Neuropeptide/metabolism , Animals , Blotting, Western , Female , Male , Orchiectomy , Orexin Receptors , Ovariectomy , Rats , Rats, Sprague-Dawley
20.
Environ Health Perspect ; 117(5): 757-62, 2009 May.
Article in English | MEDLINE | ID: mdl-19479018

ABSTRACT

BACKGROUND: Bisphenol A (BPA) is a component of polycarbonate plastics, epoxy resins, and polystyrene and is found in many products. Several reports have revealed potent in vivo effects, because BPA acts as an estrogen agonist and/or antagonist and as an androgen and thyroid hormone antagonist. OBJECTIVES: We analyzed the effects of neonatal exposure to BPA on the reproductive axis of female Sprague-Dawley rats. METHODS: Female rats were injected subcutaneously, daily, from postnatal day 1 (PND1) to PND10 with BPA [500 microg/50 microL (high) or 50 microg/50 microL (low)] in castor oil or with castor oil vehicle alone. We studied body weight and age at vaginal opening, estrous cycles, and pituitary hormone release in vivo and in vitro, as well as gonadotropin-releasing hormone (GnRH) pulsatility at PND13 and in adults. We also analyzed two GnRH-activated signaling pathways in the adults: inositol-triphosphate (IP(3)), and extracellular signal-regulated kinase(1/2) (ERK(1/2)). RESULTS: Exposure to BPA altered pituitary function in infantile rats, lowering basal and GnRH-induced luteinizing hormone (LH) and increasing GnRH pulsatility. BPA dose-dependently accelerated puberty onset and altered estrous cyclicity, with the high dose causing permanent estrus. In adults treated neonatally with BPA, GnRH-induced LH secretion in vivo was decreased and GnRH pulsatility remained disrupted. In vitro, pituitary cells from animals treated with BPA showed lower basal LH and dose-dependently affected GnRH-induced IP(3) formation; the high dose also impaired GnRH-induced LH secretion. Both doses altered ERK(1/2) activation. CONCLUSIONS: Neonatal exposure to BPA altered reproductive parameters and hypothalamic-pituitary function in female rats. To our knowledge, these results demonstrate for the first time that neonatal in vivo BPA permanently affects GnRH pulsatility and pituitary GnRH signaling.


Subject(s)
Gonadotropin-Releasing Hormone/metabolism , Phenols/toxicity , Reproduction/drug effects , Signal Transduction/drug effects , Water Pollutants, Chemical/toxicity , Animals , Animals, Newborn , Benzhydryl Compounds , Estrous Cycle/drug effects , Female , Rats , Rats, Sprague-Dawley
SELECTION OF CITATIONS
SEARCH DETAIL
...