Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 11 de 11
2.
Biosens Bioelectron ; 246: 115838, 2024 Feb 15.
Article En | MEDLINE | ID: mdl-38042052

Stem cell technology holds immense potential for revolutionizing medicine, particularly in regenerative treatment for heart disease. The unique capacity of stem cells to differentiate into diverse cell types offers promise in repairing damaged tissues and implanting organs. Ensuring the quality of differentiated cells, essential for specific functions, demands in-depth analysis. However, this process consumes time and incurs substantial costs while invasive methods may alter stem cell features during differentiation and deplete cell numbers. To address these challenges, we propose a non-invasive strategy, using cellular respiration, to assess the quality of differentiation-induced stem cells, notably cardiovascular stem cells. This evaluation employs an electronic nose (E-Nose) and neural pattern separation (NPS). Our goal is to assess differentiation-induced cardiac stem cells (DICs) quality through E-Nose data analysis and compare it with standard commercial human cells (SCHCs). Sensitivity and specificity were evaluated by interacting SCHCs and DICs with the E-Nose, achieving over 90% classification accuracy. Employing selective combinations optimized by NPS, E-Nose successfully classified all six cell types. Consequently, the relative similarity among DICs like cardiomyocytes, endothelial cells with SCHCs was established relied on comparing response data from the E-Nose sensor without resorting to complex evaluations.


Biosensing Techniques , Electronic Nose , Humans , Endothelial Cells , Cell Differentiation , Stem Cells
4.
Oral Dis ; 2023 Sep 19.
Article En | MEDLINE | ID: mdl-37724481

OBJECTIVE: This study investigated the effects of Lactobacillus fermentum BELF11 on periodontitis in mice (LIP). METHODS: Sixty mice were randomly assigned to a control group (CTL), LIP/PBS group (LIP and PBS applied), or LIP/BELF11 group (LIP and L. fermentum BELF11 applied). For 14 days, PBS or L. fermentum BELF11 was applied twice daily to the mice in the LIP/PBS or LIP/BELF11 group, respectively. After 14 days, radiographic, histological, and pro-inflammatory cytokine assessments were conducted. RESULTS: The LIP/PBS and LIP/BELF11 groups demonstrated greater alveolar bone loss than the CTL group (p < 0.05). The LIP/BELF11 group showed significantly reduced alveolar bone loss on the mesial side compared to the LIP/PBS group. Histologically, the LIP/BELF11 group showed consistent patterns of connective tissue fiber arrangement, lower levels of inflammatory infiltration, less alveolar bone loss, and higher alveolar bone density than the LIP/PBS group, despite showing more signs of destruction than the CTL group. The LIP/BELF11 group also exhibited significantly lower levels of pro-inflammatory cytokines than the LIP/PBS group. CONCLUSIONS: L. fermentum BELF11 inhibits alveolar bone loss and periodontitis progression by regulating pro-inflammatory cytokine production. These findings suggest that L. fermentum BELF11 may be a potential adjunctive therapy in periodontal treatment.

5.
Int J Mol Sci ; 24(15)2023 Jul 28.
Article En | MEDLINE | ID: mdl-37569446

This study investigated the protective effect of glutathione (GSH), an antioxidant drug, against doxorubicin (DOX)-induced cardiotoxicity. Human cardiac progenitor cells (hCPCs) treated with DOX (250 to 500 nM) showed increased viability and reduced ROS generation and apoptosis with GSH treatment (0.1 to 1 mM) for 24 h. In contrast to the 500 nM DOX group, pERK levels were restored in the group co-treated with GSH and suppression of ERK signaling improved hCPCs' survival. Similarly to the previous results, the reduced potency of hCPCs in the 100 nM DOX group, which did not affect cell viability, was ameliorated by co-treatment with GSH (0.1 to 1 mM). Furthermore, GSH was protected against DOX-induced cardiotoxicity in the in vivo model (DOX 20 mg/kg, GSH 100 mg/kg). These results suggest that GSH is a potential therapeutic strategy for DOX-induced cardiotoxicity, which performs its function via ROS reduction and pERK signal regulation.

6.
Cells ; 12(15)2023 08 05.
Article En | MEDLINE | ID: mdl-37566085

Endothelial progenitor cell (EPC)-based stem cell therapy is a promising therapeutic strategy for vascular diseases. However, continuous in vitro expansion for clinical studies induces the loss of EPC functionality due to aging. In this study, we investigated the effects of StemRegenin-1 (SR-1), an antagonist of aryl hydrocarbon receptor (AhR), on replicative senescence in EPCs. We found that SR-1 maintained the expression of EPC surface markers, including stem cell markers, such as CD34, c-Kit, and CXCR4. Moreover, SR-1 long-term-treated EPCs preserved their characteristics. Subsequently, we demonstrated that SR-1 showed that aging phenotypes were reduced through senescence-associated phenotypes, such as ß-galactosidase activity, SMP30, p21, p53, and senescence-associated secretory phenotype (SASP). SR-1 treatment also increased the proliferation, migration, and tube-forming capacity of senescent EPCs. SR-1 inhibited the AhR-mediated cytochrome P450 (CYP)1A1 expression, reactive-oxygen species (ROS) production, and DNA damage under oxidative stress conditions in EPCs. Furthermore, as a result of CYP1A1-induced ROS inhibition, it was found that accumulated intracellular ROS were decreased in senescent EPCs. Finally, an in vivo Matrigel plug assay demonstrated drastically enhanced blood vessel formation via SR-1-treated EPCs. In summary, our results suggest that SR-1 contributes to the protection of EPCs against cellular senescence.


Endothelial Progenitor Cells , Reactive Oxygen Species/metabolism , Endothelial Progenitor Cells/metabolism , Receptors, Aryl Hydrocarbon/metabolism , Cytochrome P-450 CYP1A1/metabolism
8.
Exp Mol Med ; 53(9): 1423-1436, 2021 09.
Article En | MEDLINE | ID: mdl-34584195

Stem cell-based therapies with clinical applications require millions of cells. Therefore, repeated subculture is essential for cellular expansion, which is often complicated by replicative senescence. Cellular senescence contributes to reduced stem cell regenerative potential as it inhibits stem cell proliferation and differentiation as well as the activation of the senescence-associated secretory phenotype (SASP). In this study, we employed MHY-1685, a novel mammalian target of rapamycin (mTOR) inhibitor, and examined its long-term priming effect on the activities of senile human cardiac stem cells (hCSCs) and the functional benefits of primed hCSCs after transplantation. In vitro experiments showed that the MHY-1685‒primed hCSCs exhibited higher viability in response to oxidative stress and an enhanced proliferation potential compared to that of the unprimed senile hCSCs. Interestingly, priming MHY-1685 enhanced the expression of stemness-related markers in senile hCSCs and provided the differentiation potential of hCSCs into vascular lineages. In vivo experiment with echocardiography showed that transplantation of MHY-1685‒primed hCSCs improved cardiac function than that of the unprimed senile hCSCs at 4 weeks post-MI. In addition, hearts transplanted with MHY-1685-primed hCSCs exhibited significantly lower cardiac fibrosis and higher capillary density than that of the unprimed senile hCSCs. In confocal fluorescence imaging, MHY-1685‒primed hCSCs survived for longer durations than that of the unprimed senile hCSCs and had a higher potential to differentiate into endothelial cells (ECs) within the infarcted hearts. These findings suggest that MHY-1685 can rejuvenate senile hCSCs by modulating autophagy and that as a senescence inhibitor, MHY-1685 can provide opportunities to improve hCSC-based myocardial regeneration.


Autophagy , Cell Differentiation , Myoblasts, Cardiac/cytology , Myoblasts, Cardiac/metabolism , Regeneration , Stem Cells/cytology , Stem Cells/metabolism , Autophagy/drug effects , Cell Differentiation/drug effects , Cells, Cultured , Cellular Senescence/drug effects , Fibrosis , Humans , Male , Myocardium/metabolism , Myocardium/pathology , Reactive Oxygen Species/metabolism , Signal Transduction , Stem Cell Transplantation , TOR Serine-Threonine Kinases/metabolism
9.
Exp Mol Med ; 52(4): 615-628, 2020 04.
Article En | MEDLINE | ID: mdl-32273566

The mammalian target of rapamycin (mTOR) signaling pathway efficiently regulates the energy state of cells and maintains tissue homeostasis. Dysregulation of the mTOR pathway has been implicated in several human diseases. Rapamycin is a specific inhibitor of mTOR and pharmacological inhibition of mTOR with rapamycin promote cardiac cell generation from the differentiation of mouse and human embryonic stem cells. These studies strongly implicate a role of sustained mTOR activity in the differentiating functions of embryonic stem cells; however, they do not directly address the required effect for sustained mTOR activity in human cardiac progenitor cells. In the present study, we evaluated the effect of mTOR inhibition by rapamycin on the cellular function of human cardiac progenitor cells and discovered that treatment with rapamycin markedly attenuated replicative cell senescence in human cardiac progenitor cells (hCPCs) and promoted their cellular functions. Furthermore, rapamycin not only inhibited mTOR signaling but also influenced signaling pathways, including STAT3 and PIM1, in hCPCs. Therefore, these data reveal a crucial function for rapamycin in senescent hCPCs and provide clinical strategies based on chronic mTOR activity.


Cellular Senescence/drug effects , Myoblasts, Cardiac/drug effects , Myoblasts, Cardiac/metabolism , Proto-Oncogene Proteins c-pim-1/metabolism , STAT3 Transcription Factor/metabolism , Signal Transduction/drug effects , TOR Serine-Threonine Kinases/antagonists & inhibitors , Cell Differentiation , Cell Proliferation , Cells, Cultured , Computational Biology/methods , Gene Expression Profiling , Humans , Sirolimus/pharmacology , Stem Cells/metabolism
10.
Tissue Eng Regen Med ; 17(3): 323-333, 2020 06.
Article En | MEDLINE | ID: mdl-32227286

BACKGROUND: Despite promising advances in stem cell-based therapy, the treatment of ischemic cardiovascular diseases remains a big challenge due to both the insufficient in vivo viability of transplanted cells and poor angiogenic potential of stem cells. The goal of this study was to develop therapeutic human cardiac progenitor cells (hCPCs) for ischemic cardiovascular diseases with a novel M13 peptide carrier. METHOD: In this study, an engineered M13 peptide carrier was successfully generated using a QuikChange Kit. The cellular function of M13 peptide carrier-treated hCPCs was assessed using a tube formation assay and scratch wound healing assay. The in vivo engraftment and cell survival bioactivities of transplanted cells were demonstrated by immunohistochemistry after hCPC transplantation into a myocardial infarction animal model. RESULTS: The engineered M13RGD+SDKP peptide carrier, which expressed RGD peptide on PIII site and SDKP peptide on PVIII site, did not affect morphologic change and proliferation ability in hCPCs. In contrast, hCPCs treated with M13RGD+SDKP showed enhanced angiogenic capacity, including tube formation and migration capacity. Moreover, transplanted hCPCs with M13RGD+SDKP were engrafted into the ischemic region and promoted in vivo cell survival. CONCLUSION: Our present data provides a promising protocol for CPC-based cell therapy via short-term cell priming of hCPCs with engineered M13RGD+SDKP before cell transplantation for treatment of cardiovascular disease.


Angiogenesis Inducing Agents/pharmacology , Myocardial Infarction/therapy , Peptides/metabolism , Stem Cell Transplantation , Stem Cells/drug effects , Animals , Bacteriophage M13/genetics , Cardiovascular Diseases , Cell Survival , Endothelial Cells , Genetic Engineering , Humans , Male , Mice, Inbred BALB C , Myocytes, Cardiac/transplantation , Peptides/pharmacology , Wound Healing
11.
Mar Drugs ; 17(6)2019 Jun 21.
Article En | MEDLINE | ID: mdl-31234277

Cardiac progenitor cells (CPCs) are resident stem cells present in a small portion of ischemic hearts and function in repairing the damaged heart tissue. Intense oxidative stress impairs cell metabolism thereby decreasing cell viability. Protecting CPCs from undergoing cellular apoptosis during oxidative stress is crucial in optimizing CPC-based therapy. Histochrome (sodium salt of echinochrome A-a common sea urchin pigment) is an antioxidant drug that has been clinically used as a pharmacologic agent for ischemia/reperfusion injury in Russia. However, the mechanistic effect of histochrome on CPCs has never been reported. We investigated the protective effect of histochrome pretreatment on human CPCs (hCPCs) against hydrogen peroxide (H2O2)-induced oxidative stress. Annexin V/7-aminoactinomycin D (7-AAD) assay revealed that histochrome-treated CPCs showed significant protective effects against H2O2-induced cell death. The anti-apoptotic proteins B-cell lymphoma 2 (Bcl-2) and Bcl-xL were significantly upregulated, whereas the pro-apoptotic proteins BCL2-associated X (Bax), H2O2-induced cleaved caspase-3, and the DNA damage marker, phosphorylated histone (γH2A.X) foci, were significantly downregulated upon histochrome treatment of hCPCs in vitro. Further, prolonged incubation with histochrome alleviated the replicative cellular senescence of hCPCs. In conclusion, we report the protective effect of histochrome against oxidative stress and present the use of a potent and bio-safe cell priming agent as a potential therapeutic strategy in patient-derived hCPCs to treat heart disease.


Myocytes, Cardiac/drug effects , Naphthoquinones/pharmacology , Oxidative Stress/drug effects , Stem Cells/drug effects , Annexin A5/metabolism , Apoptosis/drug effects , Apoptosis Regulatory Proteins/metabolism , Caspase 3/metabolism , Cell Survival/drug effects , Cells, Cultured , Cellular Senescence/drug effects , DNA Damage/drug effects , Humans , Hydrogen Peroxide/pharmacology , Myocytes, Cardiac/metabolism , Reperfusion Injury/chemically induced , Reperfusion Injury/drug therapy , Reperfusion Injury/metabolism , Russia , bcl-2-Associated X Protein/metabolism
...