Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
NPJ Breast Cancer ; 10(1): 60, 2024 Jul 19.
Article in English | MEDLINE | ID: mdl-39030225

ABSTRACT

Triple-negative breast cancers (TNBCs) are a subset of breast cancers that have remained difficult to treat. A proportion of TNBCs arising in non-carriers of BRCA pathogenic variants have genomic features that are similar to BRCA carriers and may also benefit from PARP inhibitor treatment. Using genomic data from 129 TNBC samples from the Malaysian Breast Cancer (MyBrCa) cohort, we developed a gene expression-based machine learning classifier for homologous recombination deficiency (HRD) in TNBCs. The classifier identified samples with HRD mutational signature at an AUROC of 0.93 in MyBrCa validation datasets and 0.84 in TCGA TNBCs. Additionally, the classifier strongly segregated HRD-associated genomic features in TNBCs from TCGA, METABRIC, and ICGC. Thus, our gene expression classifier may identify triple-negative breast cancer patients with homologous recombination deficiency, suggesting an alternative method to identify individuals who may benefit from treatment with PARP inhibitors or platinum chemotherapy.

2.
Cancer Res Commun ; 4(6): 1410-1429, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38717140

ABSTRACT

Encouraged by the observations of significant B7-H3 protein overexpression in many human solid tumors compared to healthy tissues, we directed our focus towards targeting B7-H3 using chimeric antigen receptor (CAR) T cells. We utilized a nanobody as the B7-H3-targeting domain in our CAR construct to circumvent the stability issues associated with single-chain variable fragment-based domains. In efforts to expand patient access to CAR T-cell therapy, we engineered our nanobody-based CAR into human Epstein-Barr virus-specific T cells (EBVST), offering a readily available off-the-shelf treatment. B7H3.CAR-armored EBVSTs demonstrated potent in vitro and in vivo activities against multiple B7-H3-positive human tumor cell lines and patient-derived xenograft models. Murine T cells expressing a murine equivalent of our B7H3.CAR exhibited no life-threatening toxicities in immunocompetent mice bearing syngeneic tumors. Further in vitro evaluation revealed that while human T, B, and natural killer cells were unaffected by B7H3.CAR EBVSTs, monocytes were targeted because of upregulation of B7-H3. Such targeting of myeloid cells, which are key mediators of cytokine release syndrome (CRS), contributed to a low incidence of CRS in humanized mice after B7H3.CAR EBVST treatment. Notably, we showed that B7H3.CAR EBVSTs can target B7-H3-expressing myeloid-derived suppressor cells (MDSC), thereby mitigating MDSC-driven immune suppression. In summary, our data demonstrate that our nanobody-based B7H3.CAR EBVSTs are effective as an off-the-shelf therapy for B7-H3-positive solid tumors. These cells also offer an avenue to modulate the immunosuppressive tumor microenvironment, highlighting their promising clinical potential in targeting solid tumors. SIGNIFICANCE: Clinical application of EBVSTs armored with B7-H3-targeting CARs offer an attractive solution to translate off-the-shelf CAR T cells as therapy for solid tumors.


Subject(s)
B7 Antigens , Herpesvirus 4, Human , Immunotherapy, Adoptive , Receptors, Chimeric Antigen , T-Lymphocytes , Xenograft Model Antitumor Assays , Animals , Humans , B7 Antigens/immunology , B7 Antigens/metabolism , Mice , Receptors, Chimeric Antigen/immunology , Receptors, Chimeric Antigen/metabolism , Herpesvirus 4, Human/immunology , Immunotherapy, Adoptive/methods , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Cell Line, Tumor , Neoplasms/therapy , Neoplasms/immunology , Female , Single-Domain Antibodies/immunology
3.
Breast Cancer Res ; 26(1): 67, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38649964

ABSTRACT

Breast cancer exhibits significant heterogeneity, manifesting in various subtypes that are critical in guiding treatment decisions. This study aimed to investigate the existence of distinct subtypes of breast cancer within the Asian population, by analysing the transcriptomic profiles of 934 breast cancer patients from a Malaysian cohort. Our findings reveal that the HR + /HER2- breast cancer samples display a distinct clustering pattern based on immune phenotypes, rather than conforming to the conventional luminal A-luminal B paradigm previously reported in breast cancers from women of European descent. This suggests that the activation of the immune system may play a more important role in Asian HR + /HER2- breast cancer than has been previously recognized. Analysis of somatic mutations by whole exome sequencing showed that counter-intuitively, the cluster of HR + /HER2- samples exhibiting higher immune scores was associated with lower tumour mutational burden, lower homologous recombination deficiency scores, and fewer copy number aberrations, implicating the involvement of non-canonical tumour immune pathways. Further investigations are warranted to determine the underlying mechanisms of these pathways, with the potential to develop innovative immunotherapeutic approaches tailored to this specific patient population.


Subject(s)
Breast Neoplasms , Mutation , Phenotype , Receptor, ErbB-2 , Adult , Aged , Female , Humans , Middle Aged , Asian People/genetics , Biomarkers, Tumor/genetics , Breast Neoplasms/genetics , Breast Neoplasms/immunology , Breast Neoplasms/pathology , Cluster Analysis , Cohort Studies , DNA Copy Number Variations , Exome Sequencing , Gene Expression Profiling , Malaysia/epidemiology , Receptor, ErbB-2/genetics , Receptor, ErbB-2/metabolism , Receptors, Estrogen/metabolism , Receptors, Estrogen/genetics , Receptors, Progesterone/metabolism , Receptors, Progesterone/genetics , Transcriptome
5.
Lancet Reg Health West Pac ; 44: 101017, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38333895

ABSTRACT

Background: Clinical management of Asian BRCA1 and BRCA2 pathogenic variants (PV) carriers remains challenging due to imprecise age-specific breast (BC) and ovarian cancer (OC) risks estimates. We aimed to refine these estimates using six multi-ethnic studies in Asia. Methods: Data were collected on 271 BRCA1 and 301 BRCA2 families from Malaysia and Singapore, ascertained through population/hospital-based case-series (88%) and genetic clinics (12%). Age-specific cancer risks were estimated using a modified segregation analysis method, adjusted for ascertainment. Findings: BC and OC relative risks (RRs) varied across age groups for both BRCA1 and BRCA2. The age-specific RR estimates were similar across ethnicities and country of residence. For BRCA1 carriers of Malay, Indian and Chinese ancestry born between 1950 and 1959 in Malaysia, the cumulative risk (95% CI) of BC by age 80 was 40% (36%-44%), 49% (44%-53%) and 55% (51%-60%), respectively. The corresponding estimates for BRCA2 were 29% (26-32%), 36% (33%-40%) and 42% (38%-45%). The corresponding cumulative BC risks for Singapore residents from the same birth cohort, where the underlying population cancer incidences are higher compared to Malaysia, were higher, varying by ancestry group between 57 and 61% for BRCA1, and between 43 and 47% for BRCA2 carriers. The cumulative risk of OC by age 80 was 31% (27-36%) for BRCA1 and 12% (10%-15%) for BRCA2 carriers in Malaysia born between 1950 and 1959; and 42% (34-50%) for BRCA1 and 20% (14-27%) for BRCA2 carriers of the same birth cohort in Singapore. There was evidence of increased BC and OC risks for women from >1960 birth cohorts (p-value = 3.6 × 10-5 for BRCA1 and 0.018 for BRCA2). Interpretation: The absolute age-specific cancer risks of Asian carriers vary depending on the underlying population-specific cancer incidences, and hence should be customised to allow for more accurate cancer risk management. Funding: Wellcome Trust [grant no: v203477/Z/16/Z]; CRUK (PPRPGM-Nov20∖100002).

SELECTION OF CITATIONS
SEARCH DETAIL