Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
bioRxiv ; 2023 Jul 11.
Article in English | MEDLINE | ID: mdl-37333270

ABSTRACT

Fungal infections are of mounting global concern, and the current limited treatment arsenal poses challenges when treating such infections. In particular, infections by Cryptococcus neoformans are associated with high mortality, emphasizing the need for novel therapeutic options. Calcineurin is a protein phosphatase that mediates fungal stress responses, and calcineurin inhibition by the natural product FK506 blocks C. neoformans growth at 37°C. Calcineurin is also required for pathogenesis. However, because calcineurin is conserved in humans, and inhibition with FK506 results in immunosuppression, the use of FK506 as an anti-infective agent is precluded. We previously elucidated the structures of multiple fungal calcineurin-FK506-FKBP12 complexes and implicated the C-22 position on FK506 as a key point for differential modification of ligand inhibition of the mammalian versus fungal target proteins. Through in vitro antifungal and immunosuppressive testing of FK520 (a natural analog of FK506) derivatives, we identified JH-FK-08 as a lead candidate for further antifungal development. JH-FK-08 exhibited significantly reduced immunosuppressive activity and both reduced fungal burden and prolonged survival of infected animals. JH-FK-08 exhibited additive activity in combination with fluconazole in vivo . These findings further advance calcineurin inhibition as an antifungal therapeutic approach. Importance: Fungal infections cause significant morbidity and mortality globally. The therapeutic armamentarium against these infections is limited and development of antifungal drugs has been hindered by the evolutionary conservation between fungi and the human host. With rising resistance to the current antifungal arsenal and an increasing at-risk population, there is an urgent need for the development of new antifungal compounds. The FK520 analogs described in this study display potent antifungal activity as a novel class of antifungals centered on modifying an existing orally-active FDA approved therapy. This research advances the development of much needed newer antifungal treatment options with novel mechanisms of action.

2.
mBio ; 13(3): e0104922, 2022 06 28.
Article in English | MEDLINE | ID: mdl-35604094

ABSTRACT

Calcineurin is an essential virulence factor that is conserved across human fungal pathogens, including Cryptococcus neoformans, Aspergillus fumigatus, and Candida albicans. Although an excellent target for antifungal drug development, the serine-threonine phosphatase activity of calcineurin is conserved in mammals, and inhibition of this activity results in immunosuppression. FK506 (tacrolimus) is a naturally produced macrocyclic compound that inhibits calcineurin by binding to the immunophilin FKBP12. Previously, our fungal calcineurin-FK506-FKBP12 structure-based approaches identified a nonconserved region of FKBP12 that can be exploited for fungus-specific targeting. These studies led to the design of an FK506 analog, APX879, modified at the C-22 position, which was less immunosuppressive yet maintained antifungal activity. We now report high-resolution protein crystal structures of fungal FKBP12 and a human truncated calcineurin-FKBP12 bound to a natural FK506 analog, FK520 (ascomycin). Based on information from these structures and the success of APX879, we synthesized and screened a novel panel of C-22-modified compounds derived from both FK506 and FK520. One compound, JH-FK-05, demonstrates broad-spectrum antifungal activity in vitro and is nonimmunosuppressive in vivo. In murine models of pulmonary and disseminated C. neoformans infection, JH-FK-05 treatment significantly reduced fungal burden and extended animal survival alone and in combination with fluconazole. Furthermore, molecular dynamic simulations performed with JH-FK-05 binding to fungal and human FKBP12 identified additional residues outside the C-22 and C-21 positions that could be modified to generate novel FK506 analogs with improved antifungal activity. IMPORTANCE Due to rising rates of antifungal drug resistance and a limited armamentarium of antifungal treatments, there is a paramount need for novel antifungal drugs to treat systemic fungal infections. Calcineurin has been established as an essential and conserved virulence factor in several fungi, making it an attractive antifungal target. However, due to the immunosuppressive action of calcineurin inhibitors, they have not been successfully utilized clinically for antifungal treatment in humans. Recent availability of crystal structures of fungal calcineurin-bound inhibitor complexes has enabled the structure-guided design of FK506 analogs and led to a breakthrough in the development of a compound with increased fungal specificity. The development of a calcineurin inhibitor with reduced immunosuppressive activity and maintained therapeutic antifungal activity would add a significant tool to the treatment options for these invasive fungal infections with exceedingly high rates of mortality.


Subject(s)
Cryptococcus neoformans , Tacrolimus , Animals , Antifungal Agents/metabolism , Antifungal Agents/pharmacology , Calcineurin/metabolism , Calcineurin Inhibitors/pharmacology , Cryptococcus neoformans/metabolism , Imidazoles , Immunosuppressive Agents/metabolism , Immunosuppressive Agents/pharmacology , Mammals/metabolism , Mice , Sulfonamides , Tacrolimus/pharmacology , Tacrolimus Binding Protein 1A/metabolism , Thiophenes , Virulence Factors/metabolism
3.
Res Sq ; 2022 Apr 14.
Article in English | MEDLINE | ID: mdl-35441168

ABSTRACT

The repertoire of coronavirus disease 2019 (COVID-19)-mediated adverse health outcomes has continued to expand in infected patients, including the susceptibility to developing long-COVID; however, the molecular underpinnings at the cellular level are poorly defined. In this study, we report that SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) infection triggers host cell genome instability by modulating the expression of molecules of DNA repair and mutagenic translesion synthesis. Further, SARS-CoV-2 infection causes genetic alterations, such as increased mutagenesis, telomere dysregulation, and elevated microsatellite instability (MSI). The MSI phenotype was coupled to reduced MLH1, MSH6, and MSH2 in infected cells. Strikingly, pre-treatment of cells with the REV1-targeting translesion DNA synthesis inhibitor, JH-RE-06, suppresses SARS-CoV-2 proliferation and dramatically represses the SARS-CoV-2-dependent genome instability. Mechanistically, JH-RE-06 treatment induces autophagy, which we hypothesize limits SARS-CoV-2 proliferation and, therefore, the hijacking of host-cell genome instability pathways. These results have implications for understanding the pathobiological consequences of COVID-19.

4.
Eur J Med Chem ; 215: 113272, 2021 Apr 05.
Article in English | MEDLINE | ID: mdl-33607457

ABSTRACT

Antibiotic resistance is one of the most challenging global health issues and presents an urgent need for the development of new antibiotics. In this regard, phospho-MurNAc-pentapeptide translocase (MraY), an essential enzyme in the early stages of peptidoglycan biosynthesis, has emerged as a promising new antibiotic target. We recently reported the crystal structures of MraY in complex with representative members of naturally occurring nucleoside antibiotics, including muraymycin D2. However, these nucleoside antibiotics are synthetically challenging targets, which limits the scope of medicinal chemistry efforts on this class of compounds. To gain access to active muraymycin analogs with reduced structural complexity and improved synthetic tractability, we prepared and evaluated cyclopentane-based muraymycin analogs for targeting MraY. For the installation of the 1,2-syn-amino alcohol group of analogs, the diastereoselective isocyanoacetate aldol reaction was explored. The structure-activity relationship analysis of the synthesized analogs suggested that a lipophilic side chain is essential for MraY inhibition. Importantly, the analog 20 (JH-MR-23) showed antibacterial efficacy against Staphylococcus aureus. These findings provide insights into designing new muraymycin-based MraY inhibitors with improved chemical tractability.


Subject(s)
Anti-Bacterial Agents/pharmacology , Bacterial Proteins/antagonists & inhibitors , Cyclopentanes/pharmacology , Transferases/antagonists & inhibitors , Uridine/analogs & derivatives , Uridine/pharmacology , Anti-Bacterial Agents/chemical synthesis , Arginine/analogs & derivatives , Arginine/pharmacology , Cyclopentanes/chemical synthesis , Enzyme Assays , Microbial Sensitivity Tests , Molecular Structure , Staphylococcus aureus/drug effects , Structure-Activity Relationship , Transferases (Other Substituted Phosphate Groups)
5.
Bioorg Chem ; 102: 104055, 2020 09.
Article in English | MEDLINE | ID: mdl-32663666

ABSTRACT

The UDP-2,3-diacylglucosamine pyrophosphate hydrolase LpxH is essential in lipid A biosynthesis and has emerged as a promising target for the development of novel antibiotics against multidrug-resistant Gram-negative pathogens. Recently, we reported the crystal structure of Klebsiella pneumoniae LpxH in complex with 1 (AZ1), a sulfonyl piperazine LpxH inhibitor. The analysis of the LpxH-AZ1 co-crystal structure and ligand dynamics led to the design of 2 (JH-LPH-28) and 3 (JH-LPH-33) with enhanced LpxH inhibition. In order to harness our recent findings, we prepared and evaluated a series of sulfonyl piperazine analogs with modifications in the phenyl and N-acetyl groups of 3. Herein, we describe the synthesis and structure-activity relationship of sulfonyl piperazine LpxH inhibitors. We also report the structural analysis of an extended N-acyl chain analog 27b (JH-LPH-41) in complex with K. pneumoniae LpxH, revealing that 27b reaches an untapped polar pocket near the di-manganese cluster in the active site of K. pneumoniae LpxH. We expect that our findings will provide designing principles for new LpxH inhibitors and establish important frameworks for the future development of antibiotics against multidrug-resistant Gram-negative pathogens.


Subject(s)
Antinematodal Agents/therapeutic use , Enzyme Inhibitors/therapeutic use , Piperazine/chemical synthesis , Piperazine/therapeutic use , Antinematodal Agents/pharmacology , Enzyme Inhibitors/pharmacology , Humans , Piperazine/pharmacology , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...