Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Small Methods ; : e2301328, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38441281

ABSTRACT

A new method for time-resolved X-ray absorption near edge structure (XANES) spectroscopy that enables faster data acquisition and requires smaller sample quantities for high-quality data, thus allowing the analysis of more samples in a shorter time is introduced. The method uses large bandwidth free electron laser pulses to measure laser-excited XANES spectra in transmission mode. A beam-splitting grating configuration allows simultaneous measurements of the spectra of the incoming X-ray Free Electron Laser (XFEL) pulses and transmission XANES, which is crucial for compensating the pulse-dependent intensity and spectrum fluctuations due to the self-amplified spontaneous emission operation. The implementation of this new methodology is applied on a liquid solution of ammonium iron(III) oxalate jet and is compared to previous results, showing great improvements in the speed of acquisition and spectral resolution, and the ability to measure a large 2-D spectral-time map quickly.

2.
J Am Chem Soc ; 145(25): 14070-14086, 2023 Jun 28.
Article in English | MEDLINE | ID: mdl-37327324

ABSTRACT

Femtosecond time-resolved X-ray absorption (XANES) at the Co K-edge, X-ray emission (XES) in the Co Kß and valence-to-core regions, and broadband UV-vis transient absorption are combined to probe the femtosecond to picosecond sequential atomic and electronic dynamics following photoexcitation of two vitamin B12 compounds, hydroxocobalamin and aquocobalamin. Polarized XANES difference spectra allow identification of sequential structural evolution involving first the equatorial and then the axial ligands, with the latter showing rapid coherent bond elongation to the outer turning point of the excited state potential followed by recoil to a relaxed excited state structure. Time-resolved XES, especially in the valence-to-core region, along with polarized optical transient absorption suggests that the recoil results in the formation of a metal-centered excited state with a lifetime of 2-5 ps. This combination of methods provides a uniquely powerful tool to probe the electronic and structural dynamics of photoactive transition-metal complexes and will be applicable to a wide variety of systems.

3.
Biochem Biophys Rep ; 29: 101193, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35128079

ABSTRACT

Immobilization of lipase from Burkholderia gladioli BRM58833 on octyl sepharose (OCT) resulted in catalysts with higher activity and stability. Following, strategies were studied to further stabilize and secure the enzyme to the support using functionalized polymers, like polyethylenimine (PEI) and aldehyde-dextran (DEXa), to cover the catalyst with layers at different combinations. Alternatively, the construction of a bifunctional layer was studied using methoxypolyethylene glycol amine (NH 2 -PEG) and glycine. The catalyst OCT-PEI-DEXa was the most thermostable, with a 263.8-fold increase in stability when compared to the control condition. When evaluated under alkaline conditions, OCT-DEXa-PEG 10 /Gly was the most stable, reaching stability 70.1 times greater than the control condition. Proportionally, the stabilization obtained for B. gladioli BRM58833 lipase was superior to that obtained for the commercial B. cepacia lipase. Preliminary results in the hydrolysis of fish oil demonstrated the potential of the coating technique with bifunctional polymers, resulting in a stable catalyst with greater catalytic capacity for the production of omega-3 PUFAs. According to the results obtained, it is possible to modulate B. gladioli BRM58833 lipase properties like stability and catalytic activity for enrichment of omega-3 fatty acids.

4.
Dalton Trans ; 48(9): 2900-2916, 2019 Feb 26.
Article in English | MEDLINE | ID: mdl-30462122

ABSTRACT

A systematic study of the influence of the first coordination sphere over the reactivity and structure of metallo-ß-lactamase (MßL) monozinc model complexes is reported. Three ZnII complexes with tripodal ligands forming the series [Zn(N-NNN)], [Zn(N-NNS)], and [Zn(N-NNO)] where N-NNX represents the tripodal donor atoms were investigated regarding their ability to mimic MßL. The tripodal series was inspired by MßL active sites in the respective subclasses, representing the (His, His, His) Zn1 site present in B1 and B3 subclasses, (His, His, Asp) present in the B3 subclass site and the thiolate present in B1 and B2 sites. The results were supported by electronic structure calculations. XAS analysis demonstrated that the ZnII electronic deficiency significantly changes in the order [Zn(N-NNS)] < [Zn(N-NNN)] < [Zn(N-NNO)]. This effect directly affects the reactivity over nitrocefin and amoxicillin, observed by the hydrolysis kinetics, which follows the same trend. NMR spectroscopy revealed the coordination of the carboxylic group in the substrate to the metal changes accordingly, affecting the hydrolysis kinetics. Our results also demonstrated that not only the Lewis acidity is changed by the ligand system but also the softness of the metal. [Zn(N-NNS)] is softened by the thiolate, promoting the ligand substitution reaction with solvents and favoring a secondary interaction with substrates, not observed for [Zn(N-NNO)]. XRD of the models reveals their similar geometric aspects in comparison to the crystal structure of GOB MßL. The present work demonstrates that the ZnII electronic details must be considered in the design of new MßL models that will further aid in the design of clinically useful inhibitors.


Subject(s)
Coordination Complexes/chemistry , Zinc/chemistry , beta-Lactamase Inhibitors/chemistry , beta-Lactamases/chemistry , Coordination Complexes/pharmacology , Kinetics , Ligands , Magnetic Resonance Spectroscopy , Models, Molecular , Molecular Structure , Zinc/pharmacology , beta-Lactamase Inhibitors/pharmacology , beta-Lactamases/metabolism
5.
Inorg Chem ; 57(1): 218-230, 2018 Jan 02.
Article in English | MEDLINE | ID: mdl-29227104

ABSTRACT

A combination of two elements' (Au, Zn) X-ray absorption spectroscopy (XAS) and time-dependent density functional theory (TD-DFT) allowed the elucidation of differential substitution pathways of Au(I) and Au(III) compounds reacting with biologically relevant zinc fingers (ZnFs). Gold L3-edge XAS probed the interaction of gold and the C-terminal Cys2HisCys finger of the HIV-1 nucleocapsid protein NCp7, and the Cys2His2 human transcription factor Sp1. The use of model compounds helped assign oxidation states and the identity of the gold-bound ligands. The computational studies accurately reproduced the experimental XAS spectra and allowed the proposition of structural models for the interaction products at early time points. The direct electrophilic attack on the ZnF by the highly thiophilic Au(I) resulted in a linear P-Au-Cys coordination sphere after zinc ejection whereas for the Sp1, loss of PEt3 results in linear Cys-Au-Cys or Cys-Au-His arrangements. Reactions with Au(III) compounds, on the other hand, showed multiple binding modes. Prompt reaction between [AuCl(dien)]2+ and [Au(dien)(DMAP)]3+ with Sp1 showed a partially reduced Au center and a final linear His-Au-His coordination. Differently, in the presence of NCp7, [AuCl(dien)]2+ readily reduces to Au(I) and changes from square-planar to linear geometry with Cys-Au-His coordination, while [Au(dien)(DMAP)]3+ initially maintains its Au(III) oxidation state and square-planar geometry and the same first coordination sphere. The latter is the first observation of a "noncovalent" interaction of a Au(III) complex with a zinc finger and confirms early hypotheses that stabilization of Au(III) occurs with N-donor ligands. Modification of the zinc coordination sphere, suggesting full or partial zinc ejection, is observed in all cases, and for [Au(dien)(DMAP)]3+ this represents a novel mechanism for nucleocapsid inactivation. The combination of XAS and TD-DFT presents the first direct experimental observation that not only compound reactivity, but also ZnF core specificity, can be modulated on the basis of the coordination sphere of Au(III) compounds.

6.
Elife ; 5: e14698, 2016 Apr 19.
Article in English | MEDLINE | ID: mdl-27090087

ABSTRACT

Elucidating cardiac evolution has been frustrated by lack of fossils. One celebrated enigma in cardiac evolution involves the transition from a cardiac outflow tract dominated by a multi-valved conus arteriosus in basal actinopterygians, to an outflow tract commanded by the non-valved, elastic, bulbus arteriosus in higher actinopterygians. We demonstrate that cardiac preservation is possible in the extinct fish Rhacolepis buccalis from the Brazilian Cretaceous. Using X-ray synchrotron microtomography, we show that Rhacolepis fossils display hearts with a conus arteriosus containing at least five valve rows. This represents a transitional morphology between the primitive, multivalvar, conal condition and the derived, monovalvar, bulbar state of the outflow tract in modern actinopterygians. Our data rescue a long-lost cardiac phenotype (119-113 Ma) and suggest that outflow tract simplification in actinopterygians is compatible with a gradual, rather than a drastic saltation event. Overall, our results demonstrate the feasibility of studying cardiac evolution in fossils.


Subject(s)
Fishes/anatomy & histology , Fossils , Heart/anatomy & histology , Animals , Biological Evolution , X-Ray Microtomography
SELECTION OF CITATIONS
SEARCH DETAIL
...