Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Invest Ophthalmol Vis Sci ; 65(2): 3, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38300557

ABSTRACT

Purpose: The choroid is critical for the regulation of eye growth and is involved in the pathogenesis of myopia-associated ocular complications. This study explores the relationship among choroidal biometry, photoreceptor activity, and myopic growth in marmosets (Callithrix jacchus) with lens-induced myopia. Methods: A total of 34 common marmosets aged 92 to 273 days old were included in this study. Axial myopia was induced in 17 marmosets using negative soft contact lenses and 17 marmosets served as untreated controls. Cycloplegic refraction (RE) and vitreous chamber depth (VCD) were measured using autorefraction and A-scan ultrasonography, respectively. Choroidal scans were obtained using spectral-domain optical coherence tomography and binarized to calculate subfoveal choroidal thickness (ChT), total choroidal area (TCA), luminal area (LA), stromal area (SA), choroidal vascularity index (CVI), and LA/SA. To assess photoreceptor activity, the a-wave of the full-field electroretinogram was measured. Regression models were used to investigate the relationship between outcome measures. Results: Eyes induced with axial myopia (RE = -7.14 ± 4.03 diopters [D], VCD = 6.86 ± 0.39 mm) showed significant reductions (4.92-21.24%) in all choroidal parameters (ChT, TCA, LA, SA, CVI, and LA/SA) compared to controls (RE = -1.25 ± 0.60 D, VCD = 6.58 ± 0.26 mm, all P < 0.05), which changed as a function of refraction and vitreous elongation, and were associated with a decrease in the a-wave amplitude. Further, multiple regression showed that a combination of ChT and CVI could well predict RE and VCD. Conclusions: This study reports the existence of significant alterations in choroidal morphology in non-human primate eyes induced with myopia. The changes in choroidal anatomy were associated with reduced light-adapted a-wave amplitude. These findings may represent early markers for reduced visual performance and chorioretinal complications known to occur in eyes with large degrees of myopia.


Subject(s)
Myopia , Posterior Eye Segment , Animals , Callithrix , Choroid , Myopia/etiology , Refraction, Ocular
2.
Front Med (Lausanne) ; 10: 1112396, 2023.
Article in English | MEDLINE | ID: mdl-37601788

ABSTRACT

The retinal vasculature supplies oxygen and nutrition to the cells and is crucial for an adequate retinal function. In myopia, excessive eye growth is associated with various anatomical changes that can lead to myopia-related complications. However, how myopia-induced ocular growth affects the integrity of the aged retinal microvasculature at the cellular level is not well understood. Here, we studied how aging interacts with myopia-induced alteration of the retinal microvasculature in fourteen marmoset retinas (Callithrix jacchus). String vessel and capillary branchpoint were imaged and quantified in all four capillary plexi of the retinal vasculature. As marmosets with lens-induced myopia aged, they developed increasing numbers of string vessels in all four vascular plexi, with increased vessel branchpoints in the parafoveal and peripapillary retina and decreased vessel branchpoints in the peripheral retina. These myopia-induced changes to the retinal microvasculature suggest an adaptive reorganization of the retinal microvascular cellular structure template with aging and during myopia development and progression.

SELECTION OF CITATIONS
SEARCH DETAIL