Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.509
Filter
1.
Exp Cell Res ; 441(2): 114182, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-39094903

ABSTRACT

Kawasaki disease (KD) is a systemic vasculitis with an unknown cause that primarily affects children. The objective of this study was to explore the function and underlying mechanism of mitophagy in Mycoplasma pneumoniae (MP)-induced KD. To create MP-induced KD models, Human coronary endothelial cells (HCAECs) and DBA/2 mice were employed and treated with Mp-Lipid-associated membrane proteins (LAMPs). Lactate dehydrogenase (LDH) levels were tested to determine cellular damage or death. The inflammatory cytokines tumor necrosis factor (TNF)--α and interleukin (IL)-6 were measured using the Enzyme-Linked Immunosorbent Assay (ELISA) method. RT-qPCR and Western blotting were used to determine the expression of Intercellular Adhesion Molecule(ICAM)-1, vascular cell adhesion molecule (VCAM)-1, inducible nitric oxide synthase(iNOS), LC3, p62, PINK1(a mitochondrial serine/threonine-protein kinase), and PARKIN(a cytosolic E3-ubiquitin ligase). The adenosine triphosphate (ATP), reactive oxygen species (ROS), and mitochondrial membrane potential(MMP) levels were measured to determine mitochondrial function. Mitophagy was investigated using immunofluorescence and a mitophagy detection test. Autophagosome and mitochondrial morphology were examined using transmission electron microscopy. To identify inflammatory cell infiltration, hematoxylin and eosin staining was utilized. Mp-LAMPs increased the levels of TNF-α, IL-6, ICAM-1, VCAM-1, and iNOS in an HCAEC cell model, along with LDH release. After Mp-LAMPs exposure, there was a rise in LC3 and a reduction in p62. Meanwhile, the expression of PINK1 and Parkin was increased. Cyclosporin A dramatically increased ATP synthesis and MMP in HCAEC cells treated with Mp-LAMPs, while suppressing ROS generation, demonstrating excessive mitophagy-related mitochondrial dysfunction. Additionally, neither body weight nor artery tissue were affected due to PINK1 and Parkin suppression Cyclosporin A in Mp-LAMPs-treated mice. These findings indicated that PINK1/Parkin-mediated mitophagy inhibition may be a therapeutic target for MP-induced KD.


Subject(s)
Mitophagy , Mucocutaneous Lymph Node Syndrome , Mycoplasma pneumoniae , Protein Kinases , Ubiquitin-Protein Ligases , Animals , Mucocutaneous Lymph Node Syndrome/metabolism , Mucocutaneous Lymph Node Syndrome/pathology , Protein Kinases/metabolism , Humans , Mice , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/genetics , Mycoplasma pneumoniae/pathogenicity , Mice, Inbred DBA , Endothelial Cells/metabolism , Endothelial Cells/pathology , Pneumonia, Mycoplasma/metabolism , Pneumonia, Mycoplasma/pathology , Pneumonia, Mycoplasma/microbiology , Mitochondria/metabolism , Mitochondria/pathology , Reactive Oxygen Species/metabolism , Membrane Potential, Mitochondrial
2.
BMC Sports Sci Med Rehabil ; 16(1): 168, 2024 Aug 11.
Article in English | MEDLINE | ID: mdl-39129006

ABSTRACT

BACKGROUND: The long-term monitoring of internal and external training load is crucial for the training effectiveness of athletes. This study aims to quantify the internal and external training loads of collegiate male volleyball players during the competitive season. The internal and external training load variables were analyzed across mesocycles and playing positions. METHODS: Fourteen participants with age of 20.2 ± 1.3 years, height of 1.81 ± 0.05 m, and body weight of 70.8 ± 5.9 kg were recruited. The data were collected over a 29-week period that was divided into four mesocycles: preparation 1 (P1, weeks 1-7), competition 1 (C1, weeks 8-14, including a 5-day tournament in week 14), preparation 2 (P2, weeks 15-23), and competition 2 (C2, weeks 24-29, including a 6-day tournament in week 29). Each participant wore an inertial measurement unit and reported the rating of perceived exertion in each training session. The internal training load variables included weekly session rating of perceived exertion, acute: chronic workload ratio, and training monotony and strain. The external training load variables included jump count and height and the percentage of jumps exceeding 80% of maximal height. RESULTS: C2 had the highest average weekly internal training load (3022 ± 849 AU), whereas P2 had the highest average weekly acute: chronic workload ratio (1.46 ± 0.13 AU). The number of weekly jumps in C1 (466.0 ± 176.8) was significantly higher than in other mesocycles. Weekly jump height was significantly higher in C1, P2, and C2. Internal training load was positively correlated with jump count (ρ = 0.477, p < 0.001). Jump count was negatively correlated with jump height (ρ = -0.089, p = 0.006) and the percentage of jumps exceeding 80% of maximal height (ρ = -0.388, p < 0.001). The internal and external training load variables were similar among different playing positions. CONCLUSION: The participants exhibited significantly higher internal training load in C2 and higher jump height after P1. A high jump count was associated with higher internal training load and lower jump height. Excessive jumps may result in fatigue and reduce height.

4.
Curr Med Sci ; 2024 Aug 03.
Article in English | MEDLINE | ID: mdl-39096474

ABSTRACT

OBJECTIVE: This study aimed to develop and test a model for predicting dysthyroid optic neuropathy (DON) based on clinical factors and imaging markers of the optic nerve and cerebrospinal fluid (CSF) in the optic nerve sheath. METHODS: This retrospective study included patients with thyroid-associated ophthalmopathy (TAO) without DON and patients with TAO accompanied by DON at our hospital. The imaging markers of the optic nerve and CSF in the optic nerve sheath were measured on the water-fat images of each patient and, together with clinical factors, were screened by Least absolute shrinkage and selection operator. Subsequently, we constructed a prediction model using multivariate logistic regression. The accuracy of the model was verified using receiver operating characteristic curve analysis. RESULTS: In total, 80 orbits from 44 DON patients and 90 orbits from 45 TAO patients were included in our study. Two variables (optic nerve subarachnoid space and the volume of the CSF in the optic nerve sheath) were found to be independent predictive factors and were included in the prediction model. In the development cohort, the mean area under the curve (AUC) was 0.994, with a sensitivity of 0.944, specificity of 0.967, and accuracy of 0.901. Moreover, in the validation cohort, the AUC was 0.960, the sensitivity was 0.889, the specificity was 0.893, and the accuracy was 0.890. CONCLUSIONS: A combined model was developed using imaging data of the optic nerve and CSF in the optic nerve sheath, serving as a noninvasive potential tool to predict DON.

5.
Gastrointest Endosc ; 2024 Jul 22.
Article in English | MEDLINE | ID: mdl-39048038

ABSTRACT

BACKGROUND AND AIMS: The risk and pathological factors of recurrence after endoscopic resection (ER) for superficial esophageal squamous cell carcinoma (ESCC) are inconsistent across studies. We evaluated this in a systematic review and meta-analysis. METHODS: The data of recurrence in such patients was extracted from all studies. Risk ratios (RRs) were combined using random-effects meta-analysis, to assess pooled recurrence rate and pathological risk factors. Relapse-free survival was combined using the Kaplan-Meier method to estimate the relationship between various pathological factors and recurrence time. RESULTS: We identified 26 studies, with a total of 5100 patients and 321 with recurrences (pooled rate, 6.2%). The risk of recurrence was significantly higher in positive vertical margin (VM) (RR [95% CI]: 4.51 [2.16 - 9.44]), positive horizontal margin (HM) (RR [95% CI]: 2.54 [1.57 - 4.13]), lymphovascular invasion (LVI) (RR [95% CI]: 2.33 [1.75 - 3.11], P < 0.001), lymphatic invasion (LI) (RR [95% CI]: 2.24 [1.24 - 4.06]), and tumor invading submucosa ≤200 µm (SM1) (RR [95% CI]: 1.71 [1.32 - 2.21], compared to muscularis mucosa). Patients with LI (HR 2.47; 95% CI 1.24 - 4.90; P = 0.02) and LVI (HR 2.36; 95% CI 2.22 - 4.59; P = 0.0006) tended to have earlier recurrence after ER. CONCLUSION: The recurrence rate of superficial ESCC after ER is acceptable. Patients with positive margins, LVI, LI and SM1 need to pay significant attention to the risk of recurrence. LI and VI should be evaluate separately. (PROSPERO CRD42023406309).

6.
Article in English | MEDLINE | ID: mdl-39012089

ABSTRACT

Autosomal recessive hypophosphatemic rickets (HR) type 2 (ARHR2) is a rare form of HR caused by variant of the gene encoding ectonucleotide pyrophosphatase/phosphodiesterase 1 (ENPP1). Our patient presented with a history of unsteady gait and progressively bowing legs that had commenced at the age of 1 year. Laboratory tests revealed an elevated level of fibroblast growth factor 23 (FGF23), hypophosphatemia, and a high urine phosphate level. Radiography revealed the typical features of rickets. Next-generation sequencing identified a previously reported c.783C>G (p.Tyr261Ter) and a novel c.1092-42A>G variant in the ENPP1 gene. The patient was prescribed oral phosphates and active vitamin D and underwent guided growth of both distal femora and proximal tibiae commencing at the age of 3 years. No evidence of generalized arterial calcification was apparent during follow-up, and growth rate was satisfactory.

7.
Nano Lett ; 24(28): 8770-8777, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-38968171

ABSTRACT

Oxygen-mediated triplet-triplet annihilation upconversion (TTA-UC) quenching limits the application of such organic upconversion materials. Here, we report that the photooxidation of organic amines is an effective and versatile strategy to suppress oxygen-mediated upconversion quenching in both organic solvents and aqueous solutions. The strategy is based on the dual role of organic amines in photooxidation, i.e., as singlet oxygen scavengers and electron donors. Under photoexcitation, the photosensitizer sensitizes oxygen to produce singlet oxygen for the oxidation of alkylamine, reducing the oxygen concentration. However, photoinduced electron transfer among photosensitizers, organic amines, and oxygen leads to the production of superoxide anions that suppress TTA-UC. To observe oxygen-tolerating TTA-UC, we find that alkyl secondary amines can balance the production of singlet oxygen and superoxide anions. We then utilize polyethyleneimine (PEI) to synthesize amphiphilic polymers to encapsulate TTA-UC pairs for the formation of water-dispersible, ultrasmall, and multicolor-emitting TTA-UC nanoparticles.

8.
Cancer Gene Ther ; 2024 Jul 13.
Article in English | MEDLINE | ID: mdl-38997438

ABSTRACT

Chaperonin-containing TCP1 (CCT) is a multi-subunit complex, known to participate the correct folding of many proteins. Currently, the mechanism underlying CCT subunits in cancer progression is incompletely understood. Based on data analysis, the expression of CCT subunit 6 A (CCT6A) is found higher than the other subunits of CCT and correlated with an unfavorable prognosis in colon cancer. Here, we find CCT6A silencing suppresses colon cancer proliferation and survival phenotype in vitro and in vivo. CCT6A plays a role in cellular process, including the cell cycle, p53, and apoptosis signaling pathways. Further investigations have shown direct binding between CCT6A and both Wtp53 and Mutp53, and BIRC5 is found to act downstream of CCT6A. The highlight is that CCT6A inhibition significantly reduces BIRC5 expression independent of Wtp53 levels in Wtp53 cells. Conversely, in Mutp53 cells, downregulation of BIRC5 by CCT6A inhibition mainly depends on Mutp53 levels. Additionally, combined CCT6A inhibition and Wtp53 overexpression in Mutp53 cell lines effectively suppresses cell proliferation. It is concluded CCT6A is a potential oncogene that influences BIRC5 through distinct pathways in Wtp53 and Mutp53 cells.

9.
J Biosci Bioeng ; 138(3): 218-224, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38997871

ABSTRACT

Gingerols are phenolic biomedical compounds found in ginger (Zingiber officinale) whose low aqueous solubility limits their medical application. To improve their solubility and produce novel glucosides, an α-glucosidase (glycoside hydrolase) from Agrobacterium radiobacter DSM 30147 (ArG) was subcloned, expressed, purified, and then confirmed to have additional α-glycosyltransferase activity. After optimization, the ArG could glycosylate gingerols into three mono-glucosides based on the length of their acyl side chains. Compound 1 yielded 63.0 %, compound 2 yielded 26.9 %, and compound 3 yielded 4.37 %. The production yield of the gingerol glucosides optimally increased in 50 mM phosphate buffer (pH 6) with 50 % (w/v) maltose and 1000 mM Li+ at 40 °C for an 24-h incubation. The structures of purified compound 1 and compound 2 were determined as 6-gingerol-5-O-α-glucoside (1) and novel 8-gingerol-5-O-α-glucoside (2), respectively, using nucleic magnetic resonance and mass spectral analyses. The aqueous solubility of the gingerol glucosides was greatly improved. Further assays showed that, unusually, 6-gingerol-5-O-α-glucoside had 10-fold higher anti-inflammatory activity (IC50 value of 15.3 ± 0.5 µM) than 6-gingerol, while the novel 8-gingerol-5-O-α-glucoside retained 42.7 % activity (IC50 value of 106 ± 4 µM) compared with 8-gingerol. The new α-glucosidase (ArG) was confirmed to have acidic α-glycosyltransferase activity and could be applied in the production of α-glycosyl derivatives. The 6-gingerol-5-O-α-glucoside can be applied as a clinical drug for anti-inflammatory activity.


Subject(s)
Agrobacterium tumefaciens , Anti-Inflammatory Agents , Catechols , Fatty Alcohols , Glucosides , alpha-Glucosidases , Fatty Alcohols/chemistry , Fatty Alcohols/pharmacology , Fatty Alcohols/metabolism , alpha-Glucosidases/metabolism , alpha-Glucosidases/chemistry , Catechols/chemistry , Catechols/pharmacology , Catechols/metabolism , Glucosides/chemistry , Glucosides/pharmacology , Glucosides/metabolism , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemistry , Solubility , Zingiber officinale/chemistry
10.
Article in English | MEDLINE | ID: mdl-38958673

ABSTRACT

OBJECTIVE: This population-based study explored emergency room visits (ERVs) from all-causes, circulatory and respiratory diseases among different occupational groups in Taiwan associated with ambient average temperature. METHOD: Daily area-age-sex specific ERVs records were obtained from the Taiwan's Ministry of Health and Welfare from 2009 to 2018. Distributed lag-nonlinear model (DLNM) was used to estimate the exposure-response relationships between daily average temperature and ERVs for all-causes, circulatory and respiratory diseases by occupational groups. Random-effects meta-analysis was used to pool the overall cumulative relative risk (RR) and 95% confidence interval (CI). RESULTS: The exposure-response curves showed ERVs of all-cause and respiratory diseases increased with rising temperature across all occupational groups. These effects were consistently stronger among younger (20-64 years old) and outdoor workers. In contrast, ERVs risk from circulatory diseases increased significantly during cold snaps, with a substantially higher risk for female workers. Interestingly, female workers, regardless of indoor or outdoor work, consistently showed a higher risk of respiratory ERVs during hot weather compared to males. Younger workers (20-64 years old) exhibited a higher risk of ERVs, likely due to job profiles with greater exposure to extreme temperatures. Notably, the highest risk of all-causes ERVs was observed in outdoor male laborers (union members), followed by farmers and private employees, with the lowest risk among indoor workers. Conversely, female indoor workers and female farmers faced the highest risk of respiratory ERVs. Again, female farmers with consistent outdoor exposure had the highest risk of circulatory ERVs during cold conditions. CONCLUSION: Our findings highlighted the complexity of temperature-related health risks associated with different occupational contexts. The population-level insights into vulnerable occupational groups could provide valuable comprehension for policymakers and healthcare practitioners.

11.
Oncol Rep ; 52(4)2024 10.
Article in English | MEDLINE | ID: mdl-39054954

ABSTRACT

Zinc finger protein 180 (ZNF180) is a multifunctional protein that interacts with nucleic acids and regulates various cellular processes; however, the function of ZNF180 in colorectal cancer (CRC) remains unclear. The present study investigated the role and function of ZNF180 in CRC, and aimed to reveal the underlying molecular mechanism. The results revealed that ZNF180 was downregulated in CRC tissues and was associated with a good prognosis in patients with CRC. Additionally, the expression of ZNF180 was downregulated by methylation in CRC. In vivo and in vitro experiments revealed that ZNF180 overexpression was functionally associated with the inhibition of cell proliferation and the induction of apoptosis. Mechanistically, chromatin immunoprecipitation­PCR and luciferase assays demonstrated that ZNF180 markedly regulated the transcriptional activity of methyltransferase 14, N6­adenosine­methyltransferase non­catalytic subunit (METTL14) by directly binding to and activating its promoter region. Simultaneous overexpression of ZNF180 and knockdown of METTL14 indicated that the reduction of METTL14 could suppress the effects of ZNF180 on the induction of apoptosis. Clinically, the present study observed a significant positive correlation between ZNF180 and METTL14 expression levels, and low expression of ZNF180 and METTL14 predicted a poor prognosis in CRC. Overall, these findings revealed a novel mechanism by which the ZNF180/METTL14 axis may modulate apoptosis and cell proliferation in CRC. This evidence suggests that this axis may serve as a prognostic biomarker and therapeutic target in patients with CRC.


Subject(s)
Apoptosis , Cell Proliferation , Colorectal Neoplasms , Gene Expression Regulation, Neoplastic , Methyltransferases , Humans , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , Colorectal Neoplasms/metabolism , Methyltransferases/genetics , Methyltransferases/metabolism , Apoptosis/genetics , Cell Proliferation/genetics , Male , Female , Prognosis , Middle Aged , Cell Line, Tumor , Animals , Transcriptional Activation , Mice , Promoter Regions, Genetic , Aged , Down-Regulation , DNA Methylation
12.
Dig Dis Sci ; 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38965159

ABSTRACT

BACKGROUND: Chronic hepatitis C (CHC) increases the risk of liver cirrhosis (LC) and hepatocellular carcinoma (HCC). This nationwide cohort study assessed the effectiveness of viral eradication of CHC. METHODS: The Taiwanese chronic hepatitis C cohort and Taiwan hepatitis C virus (HCV) registry are nationwide HCV registry cohorts incorporating data from 23 and 53 hospitals in Taiwan, respectively. This study included 27,577 individuals from these cohorts that were given a diagnosis of CHC and with data linked to the Taiwan National Health Insurance Research Database. Patients received either pegylated interferon and ribavirin or direct-acting antiviral agent therapy for > 4 weeks for new-onset LC and liver-related events. RESULTS: Among the 27,577 analyzed patients, 25,461 (92.3%) achieved sustained virologic response (SVR). The mean follow-up duration was 51.2 ± 48.4 months, totaling 118,567 person-years. In the multivariable Cox proportional hazard analysis, the hazard ratio (HR) for incident HCC was 1.39 (95% confidence interval [CI]: 1.00-1.95, p = 0.052) among noncirrhotic patients without SVR compared with those with SVR and 1.82 (95% CI 1.34-2.48) among cirrhotic patients without SVR. The HR for liver-related events, including HCC and decompensated LC, was 1.70 (95% CI 1.30-2.24) among cirrhotic patients without SVR. Patients with SVR had a lower 10-year cumulative incidence of new-onset HCC than those without SVR did (21.7 vs. 38.7% in patients with LC, p < 0.001; 6.0 vs. 18.4% in patients without LC, p < 0.001). CONCLUSION: HCV eradication reduced the incidence of HCC in patients with and without LC and reduced the incidence of liver-related events in patients with LC.

13.
Psychiatry Investig ; 21(6): 618-628, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38960439

ABSTRACT

OBJECTIVE: Schizophrenia is a common mental disorder, and mitochondrial function represents a potential therapeutic target for psychiatric diseases. The role of mitochondrial metabolism-related genes (MRGs) in the diagnosis of schizophrenia remains unknown. This study aimed to identify candidate genes that may influence the diagnosis and treatment of schizophrenia based on MRGs. METHODS: Three schizophrenia datasets were obtained from the Gene Expression Omnibus database. MRGs were collected from relevant literature. The differentially expressed genes between normal samples and schizophrenia samples were screened using the limma package. Venn analysis was performed to identify differentially expressed MRGs (DEMRGs) in schizophrenia. Based on the STRING database, hub genes in DEMRGs were identified using the MCODE algorithm in Cytoscape. A diagnostic model containing hub genes was constructed using LASSO regression and logistic regression analysis. The relationship between hub genes and drug sensitivity was explored using the DSigDB database. An interaction network between miRNA-transcription factor (TF)-hub genes was created using the Network-Analyst website. RESULTS: A total of 1,234 MRGs, 172 DEMRGs, and 6 hub genes with good diagnostic performance were identified. Ten potential candidate drugs (rifampicin, fulvestrant, pentadecafluorooctanoic acid, etc.) were selected. Thirty-four miRNAs targeting genes in the diagnostic model (ANGPTL4, CPT2, GLUD1, MED1, and MED20), as well as 137 TFs, were identified. CONCLUSION: Six potential candidate genes showed promising diagnostic significance. rifampicin, fulvestrant, and pentadecafluorooctanoic acid were potential drugs for future research in the treatment of schizophrenia. These findings provided valuable evidence for the understanding of schizophrenia pathogenesis, diagnosis, and drug treatment.

14.
J Am Chem Soc ; 146(31): 21791-21805, 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39069661

ABSTRACT

The diagnosis of disease biomarkers is crucial for the identification, monitoring, and prognostic assessment of malignant disease. However, biological samples with autofluorescence, complex components, and heterogeneity pose major challenges to reliable biosensing. Here, we report the self-assembly of natural proteins and the triplet-triplet annihilation upconversion (TTA-UC) pair to form upconverted protein clusters (∼8.2 ± 1.1 nm), which were further assembled into photon upconversion supramolecular assemblies (PUSA). This PUSA exhibited unique features, including a small size (∼44.1 ± 4.1 nm), oxygen tolerance, superior biocompatibility, and easy storage via lyophilization, all of which are long sought after for photon upconversion materials. Further, we have revealed that the steric hindrance of the annihilator suppresses the stacking of the annihilator in PUSA, which is vital for maintaining the water dispersibility and enhancing the upconversion performance of PUSA. In conjunction with sarcosine oxidase, this near infrared (NIR)-excitable PUSA nanoprobe could perform background-free biosensing of urinary sarcosine, which is a common biomarker for prostatic carcinoma (PCa). More importantly, this nanoprobe not only allows for qualitative identification of urinary samples from PCa patients by the unaided eye under NIR-light-emitting diode (LED) illumination but also quantifies the concentration of urinary sarcosine. These remarkable findings have propelled photon upconversion materials to a new evolutionary stage and expedited the progress of upconversion biosensing in clinical diagnostics.


Subject(s)
Biosensing Techniques , Photons , Humans , Sarcosine/urine , Sarcosine/chemistry , Sarcosine Oxidase/chemistry , Proteins/analysis , Proteins/chemistry
15.
J Urban Health ; 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38987523

ABSTRACT

Depression is a relevant mental illness affecting hundreds of millions of people worldwide. As urbanization accelerates, agglomeration of populations has altered individual social network distances and life crowding, which in turn affects depressive prevalence. However, the association between depression and population agglomeration (PA) remains controversial. This study aims to explore whether and how PA could influence individual depression. Based on the China Health and Retirement Longitudinal Study (CHARLS) 2018, the empirical results showed that there was a U-shaped association between PA and individual CES-D scores. As PA increases, the risk of depression first decreases and then increases. CES-D was lowest at moderate aggregation. Dialect diversity (DD) was positively related to the incidence of individual depression. The higher the DD, the higher the risk of depression. Meanwhile, DD also played a moderating role in the association between PA and individual depression. Our observations suggest that the optimistic level of agglomeration for individual mental health is within 1500 to 2000 persons per square kilometer.

16.
Transl Psychiatry ; 14(1): 289, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39009558

ABSTRACT

Prenatal exposure to infections is a risk factor for neurodevelopmental disorders in offspring, and alterations in mitochondrial function are discussed as a potential underlying factor. Here, using a mouse model of viral-like maternal immune activation (MIA) based on poly(I:C) (POL) treatment at gestational day (GD) 12, we show that adult offspring exhibit behavioral deficits, such as reduced levels of social interaction. In addition, we found increased nicotinamidadenindinucleotid (NADH)- and succinate-linked mitochondrial respiration and maximal electron transfer capacity in the prefrontal cortex (PFC) and in the amygdala (AMY) of males and females. The increase in respiratory capacity resulted from an increase in mitochondrial mass in neurons (as measured by complex IV activity and transcript expression), presumably to compensate for a reduction in mitochondrion-specific respiration. Moreover, in the PFC of control (CON) male offspring a higher excess capacity compared to females was observed, which was significantly reduced in the POL-exposed male offspring, and, along with a higher leak respiration, resulted in a lower mitochondrial coupling efficiency. Transcript expression of the uncoupling proteins (UCP4 and UCP5) showed a reduction in the PFC of POL male mice, suggesting mitochondrial dysfunction. In addition, in the PFC of CON females, a higher expression of the antioxidant enzyme superoxide dismutase (SOD1) was observed, suggesting a higher antioxidant capacity as compared to males. Finally, transcripts analysis of genes involved in mitochondrial biogenesis and dynamics showed reduced expression of fission/fusion transcripts in PFC of POL offspring of both sexes. In conclusion, we show that MIA causes alterations in neuronal mitochondrial function and mass in the PFC and AMY of adult offspring with some effects differing between males and females.


Subject(s)
Mitochondria , Prefrontal Cortex , Prenatal Exposure Delayed Effects , Animals , Female , Prenatal Exposure Delayed Effects/immunology , Pregnancy , Mitochondria/metabolism , Mice , Male , Prefrontal Cortex/metabolism , Prefrontal Cortex/immunology , Poly I-C/pharmacology , Disease Models, Animal , Brain/immunology , Brain/metabolism , Amygdala/metabolism , Amygdala/immunology , Behavior, Animal , Mice, Inbred C57BL , Neurons/metabolism , Neurons/immunology
17.
Accid Anal Prev ; 205: 107687, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38943983

ABSTRACT

Autonomous driving technology has the potential to significantly reduce the number of traffic accidents. However, before achieving full automation, drivers still need to take control of the vehicle in complex and diverse scenarios that the autonomous driving system cannot handle. Therefore, appropriate takeover request (TOR) designs are necessary to enhance takeover performance and driving safety. This study focuses on takeover tasks in hazard scenarios with varied hazard visibility, which can be categorized as overt hazards and covert hazards. Through ergonomic experiments, the impact of TOR interface visual information, including takeover warning, hazard direction, and time to collision, on takeover performance is investigated, and specific analyses are conducted using eye-tracking data. The following conclusions are drawn from the experiments: (1) The visibility of hazards significantly affects takeover performance. (2) Providing more TOR visual information in hazards with different visibility has varying effects on drivers' visual attention allocation but can improve takeover performance. (3) More TOR visual information helps reduce takeover workload and increase human-machine trust. Based on these findings, this paper proposes the following TOR visual interface design strategies: (1) In overt hazard scenarios, only takeover warning is necessary, as additional visual information may distract drivers' attention. (2) In covert hazard scenarios, the TOR visual interface should better assist drivers in understanding the current hazard situation by providing information on hazard direction and time to collision to enhance takeover performance.


Subject(s)
Accidents, Traffic , Attention , Automation , Automobile Driving , Humans , Male , Accidents, Traffic/prevention & control , Adult , Female , Young Adult , Eye-Tracking Technology , Safety , Ergonomics , Man-Machine Systems , Eye Movements , Visual Perception , User-Computer Interface , Trust
18.
J Hazard Mater ; 476: 134765, 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-38905981

ABSTRACT

Photocatalytic membrane reactors (PMRs) are a promising technology for micropollutant removal. Sunlight utilization and catalyst surface sites limit photodegradation. A poly(vinylidene fluoride) (PVDF) nanofiber composite membrane (NCM) with immobilized visible-light-responsive g-C3N4/Bi2MoO6 (BMCN) were developed. Photodegradation of steroid hormones with the PVDF-BMCN NCM was investigated with varying catalyst properties, operating conditions, and relevant solution chemistry under solar irradiation. Increasing CN ratio (0-65 %) enhanced estradiol (E2) degradation from 20 ± 10 to 75 ± 7 % due to improved sunlight utilization and photon lifetime. PVDF nanofibers reduced self-aggregation of catalysts. Hydraulic residence time and light intensity enhanced the photodegradation. With the increasing pH value, the E2 removal decreased from 84 ± 4 to 67 ± 7 % owing to electrical repulsion and thus reduced adsorption between catalysts and E2. A removal of 96 % can be attained at environmentally relevant feed concentration (100 ng.L-1) with a flux of 60 L.m-2.h-1, irradiance of 100 mW.cm-2, and 1 mg.cm-2 BMCN65 loading. This confirmed that heterojunction photocatalysts can enhance micropollutants degradation in PMRs.

19.
Fa Yi Xue Za Zhi ; 40(2): 172-178, 2024 Apr 25.
Article in English, Chinese | MEDLINE | ID: mdl-38847033

ABSTRACT

OBJECTIVES: To explore the biomarkers and potential mechanisms of chronic restraint stress-induced myocardial injury in hyperlipidemia ApoE-/- mice. METHODS: The hyperlipidemia combined with the chronic stress model was established by restraining the ApoE-/- mice. Proteomics and bioinformatics techniques were used to describe the characteristic molecular changes and related regulatory mechanisms of chronic stress-induced myocardial injury in hyperlipidemia mice and to explore potential diagnostic biomarkers. RESULTS: Proteomic analysis showed that there were 43 significantly up-regulated and 58 significantly down-regulated differentially expressed proteins in hyperlipidemia combined with the restraint stress group compared with the hyperlipidemia group. Among them, GBP2, TAOK3, TFR1 and UCP1 were biomarkers with great diagnostic potential. KEGG pathway enrichment analysis indicated that ferroptosis was a significant pathway that accelerated the myocardial injury in hyperlipidemia combined with restraint stress-induced model. The mmu_circ_0001567/miR-7a/Tfr-1 and mmu_circ_0001042/miR-7a/Tfr-1 might be important circRNA-miRNA-mRNA regulatory networks related to ferroptosis in this model. CONCLUSIONS: Chronic restraint stress may aggravate myocardial injury in hyperlipidemia mice via ferroptosis. Four potential biomarkers are selected for myocardial injury diagnosis, providing a new direction for sudden cardiac death (SCD) caused by hyperlipidemia combined with the restraint stress.


Subject(s)
Apolipoproteins E , Biomarkers , Disease Models, Animal , Hyperlipidemias , Restraint, Physical , Animals , Hyperlipidemias/metabolism , Hyperlipidemias/complications , Mice , Biomarkers/metabolism , Apolipoproteins E/genetics , Proteomics/methods , Stress, Psychological/complications , MicroRNAs/metabolism , MicroRNAs/genetics , Ferroptosis , Male , Myocardium/metabolism , Myocardium/pathology , Mice, Knockout , Uncoupling Protein 1/metabolism , Computational Biology
20.
Small ; : e2402575, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38860359

ABSTRACT

Effective and rapid heat transfer is critical to improving electronic components' performance and operational stability, particularly for highly integrated and miniaturized devices in complex scenarios. However, current thermal manipulation approaches, including the recent advancement in thermal metamaterials, cannot realize fast and unidirectional heat flow control. In addition, any defects in thermal conductive materials cause a significant decrease in thermal conductivity, severely degrading heat transfer performance. Here, the utilization of silicon-based valley photonic crystals (VPCs) is proposed and numerically demonstrated to facilitate ultrafast, unidirectional heat transfer through thermal radiation on a microscale. Utilizing the infrared wavelength region, the approach achieves a significant thermal rectification effect, ensuring continuous heat flow along designed paths with high transmission efficiency. Remarkably, the process is unaffected by temperature gradients due to the unidirectional property, maintaining transmission directionality. Furthermore, the VPCs' inherent robustness affords defect-immune heat transfer, overcoming the limitations of traditional conduction methods that inevitably cause device heating, performance degradation, and energy waste. The design is fully CMOS compatible, thus will find broad applications, particularly for integrated optoelectronic devices.

SELECTION OF CITATIONS
SEARCH DETAIL