Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 187
Filter
1.
Front Public Health ; 12: 1457266, 2024.
Article in English | MEDLINE | ID: mdl-39253287

ABSTRACT

Background: Hybrid immunity (a combination of natural and vaccine-induced immunity) provides additional immune protection against the coronavirus disease 2019 (COVID-19) reinfection. Today, people are commonly infected and vaccinated; hence, hybrid immunity is the norm. However, the mitigation of the risk of Omicron variant reinfection by hybrid immunity and the durability of its protection remain uncertain. This meta-analysis aims to explore hybrid immunity to mitigate the risk of Omicron variant reinfection and its protective durability to provide a new evidence-based basis for the development and optimization of immunization strategies and improve the public's awareness and participation in COVID-19 vaccination, especially in vulnerable and at-risk populations. Methods: Embase, PubMed, Web of Science, Chinese National Knowledge Infrastructure, and Wanfang databases were searched for publicly available literature up to 10 June 2024. Two researchers independently completed the data extraction and risk of bias assessment and cross-checked each other. The Newcastle-Ottawa Scale assessed the risk of bias in included cohort and case-control studies, while criteria recommended by the Agency for Health Care Research and Quality (AHRQ) evaluated cross-sectional studies. The extracted data were synthesized in an Excel spreadsheet according to the predefined items to be collected. The outcome was Omicron variant reinfection, reported as an Odds Ratio (OR) with its 95% confidence interval (CI) and Protective Effectiveness (PE) with 95% CI. The data were pooled using a random- or fixed-effects model based on the I2 test. The Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines were followed. Results: Thirty-three articles were included. Compared with the natural immunity group, the hybrid immunity (booster vaccination) group had the highest level of mitigation in the risk of reinfection (OR = 0.43, 95% CI:0.34-0.56), followed by the complete vaccination group (OR = 0.58, 95% CI:0.45-0.74), and lastly the incomplete vaccination group (OR = 0.64, 95% CI:0.44-0.93). Compared with the complete vaccination-only group, the hybrid immunity (complete vaccination) group mitigated the risk of reinfection by 65% (OR = 0.35, 95% CI:0.27-0.46), and the hybrid immunity (booster vaccination) group mitigated the risk of reinfection by an additional 29% (OR = 0.71, 95% CI:0.61-0.84) compared with the hybrid immunity (complete vaccination) group. The effectiveness of hybrid immunity (incomplete vaccination) in mitigating the risk of reinfection was 37.88% (95% CI, 28.88-46.89%) within 270-364 days, and decreased to 33.23%% (95% CI, 23.80-42.66%) within 365-639 days; whereas, the effectiveness after complete vaccination was 54.36% (95% CI, 50.82-57.90%) within 270-364 days, and the effectiveness of booster vaccination was 73.49% (95% CI, 68.95-78.04%) within 90-119 days. Conclusion: Hybrid immunity was significantly more protective than natural or vaccination-induced immunity, and booster doses were associated with enhanced protection against Omicron. Although its protective effects waned over time, vaccination remains a crucial measure for controlling COVID-19. Systematic review registration: https://www.crd.york.ac.uk/PROSPERO/, identifier, CRD42024539682.


Subject(s)
COVID-19 Vaccines , COVID-19 , Reinfection , SARS-CoV-2 , Humans , COVID-19/prevention & control , COVID-19/immunology , Reinfection/immunology , Reinfection/prevention & control , SARS-CoV-2/immunology , COVID-19 Vaccines/immunology , COVID-19 Vaccines/administration & dosage , Vaccination
2.
Angew Chem Int Ed Engl ; : e202416856, 2024 Sep 18.
Article in English | MEDLINE | ID: mdl-39291894

ABSTRACT

Flexible crystals with unique mechanical properties have presented enormous applications in optoelectronics, soft robotics and sensors. However, there have been no reports of low-temperature-resistant flexible crystals with second-order nonlinear optical properties (NLO). Here, we report the flexible chiral Schiff-base crystals capable of efficient second harmonic generation (SHG). Both enantiomers and racemic modifications of these crystals are mechanically flexible in two directions at both room temperature and at -196 °C, although their mechanical responses differ. The enantiomers display SHG with an intensity of up to 12 times that of potassium dihydrogenphosphate (KDP) when pumped at 980 nm, and they also have high laser-induced damage thresholds (LDT). Even when bent, the crystals retain strong second harmonic generation, although with a different intensity distribution depending on the polarization, compared to when they are straight. This work describes the first instance of flexible organic crystal with NLO properties and lays the foundation for the development of mechanically flexible organic NLO materials.

3.
Braz J Med Biol Res ; 57: e13661, 2024.
Article in English | MEDLINE | ID: mdl-39258671

ABSTRACT

Transarterial chemoembolization (TACE) is an established therapeutic strategy for intermediate stage Barcelona Clinic Liver Cancer (BCLC) hepatocellular carcinoma (HCC). However, patients who are early refractory to TACE may not benefit from repeated TACE treatment. Our primary objective was to assess the diagnostic value of inflammatory markers in identifying early TACE refractory for patients with early (BCLC 0 and A) or intermediate (BCLC B) stage HCC. We retrospectively reviewed the HCC patients who underwent TACE as the initial treatment in two hospitals. Patients with early TACE refractoriness had significantly poorer median overall survival (OS) (16 vs 40 months, P<0.001) and progression-free survival (PFS) (7 vs 23 months, P<0.001) compared to TACE non-refractory patients. In the multivariate regression analysis, tumor size (P<0.001), bilobular invasion (P=0.007), high aspartate aminotransferase-to-platelet ratio index (APRI) (P=0.007), and high alpha fetoprotein (AFP) level (P=0.035) were independent risk factors for early TACE refractoriness. The predictive model showcasing these factors exhibited high ability proficiency, with an area under curve (AUC) of 0.833 (95%CI=0.774-0.892) in the training cohort, 0.750 (95%CI: 0.640-0.861) in the internal-validation cohort, and 0.733 (95%CI: 0.594-0.872) in the external-validation cohort. Calibration curve analysis revealed good agreement between the actual and predicted probabilities of early TACE refractoriness. Our preliminary study estimated the potential value of inflammatory markers in predicting early TACE refractoriness and provides a predictive model to assist in identifying patients who may not benefit from repeat TACE treatment.


Subject(s)
Biomarkers, Tumor , Carcinoma, Hepatocellular , Chemoembolization, Therapeutic , Liver Neoplasms , Humans , Carcinoma, Hepatocellular/therapy , Carcinoma, Hepatocellular/blood , Carcinoma, Hepatocellular/diagnosis , Carcinoma, Hepatocellular/pathology , Liver Neoplasms/therapy , Liver Neoplasms/blood , Liver Neoplasms/pathology , Liver Neoplasms/diagnosis , Chemoembolization, Therapeutic/methods , Male , Female , Middle Aged , Retrospective Studies , Aged , Biomarkers, Tumor/blood , Neoplasm Staging , Predictive Value of Tests , Adult , alpha-Fetoproteins/analysis , alpha-Fetoproteins/metabolism
4.
Foods ; 13(16)2024 Aug 08.
Article in English | MEDLINE | ID: mdl-39200425

ABSTRACT

This work investigated the underlying mechanism of thermo-ultrasonic treatment to improve the nutritional properties and emulsion stability of sea bass fish head broth. The effects of ultrasonication on the processing of fish broth were compared with boiling water treatment. The nutritional properties of fish broth mainly include protein, fat, total sugar, 5'-nucleotide and free amino acid content. To achieve a similar effect of nutrient extraction, the thermo-ultrasonic treatment required a shorter time (30 min) than boiling water (120 min). The water-soluble protein, fat and total sugar contents were at their maximum at 120 min of the thermo-ultrasonic treatment. In particular, the fat content increased with the time of thermo-ultrasonic treatment from 0.58% to 2.70%. The emulsion structure of the fish soup was characterized by measuring its color and particle size, using optical microscopy and confocal laser scanning microscopy, and determining its storage stability. Thermo-ultrasonic treatment reduced the particle size of the fish broth emulsion and the fat globules became smaller and more homogeneous. Ultrasonication not only accelerated the nutritional and flavor content of the fish head broth, but also reduced the particle size and enhanced the stability of the emulsified system of the fish broth. The fish head tissue was more severely disrupted by the cavitation effect of an ultrasound, and nutrients migrated more and faster. This was mainly due to the cavitation and mechanical breaking force of the ultrasound on the fish head tissue and the fat globules of the fish broth. Altogether, these findings suggest that the thermo-ultrasonic treatment technique is useful for processing nutrient-rich, storage-stable and ready-to-eat fish head broth.

5.
Adv Sci (Weinh) ; : e2406381, 2024 Aug 29.
Article in English | MEDLINE | ID: mdl-39206871

ABSTRACT

Traditional light-driven metal-organic-frameworks (MOFs)-based micromotors (MOFtors) are typically constrained to two-dimensional (2D) motion under ultraviolet or near-infrared light and often demonstrate instability and susceptibility to ions in high-saline environments. This limitation is particularly relevant to employing micromotors in water purification, as real wastewater is frequently coupled with high salinity. In response to these challenges, ultrastable MOFtors capable of three-dimensional (3D) motion under a broad spectrum of light through thermophoresis and electrophoresis are successfully synthesized. The MOFtors integrated photocatalytic porphyrin MOFs (PCN-224) with a photothermal component made of polypyrrole (PPy) by three distinct methodologies, resulting in micromotors with different motion behavior and catalytic performance. Impressively, the optimized MOFtors display exceptional maximum velocity of 1305 ± 327 µm s-1 under blue light and 2357 ± 453 µm s-1 under UV light. In harsh saline environments, these MOFtors are not only maintain high motility but also exhibit superior tetracycline hydrochloride (TCH) removal efficiency of 3578 ± 510 mg g-1, coupling with sulfate radical-based advanced oxidation processes and peroxymonosulfate. This research underscores the significant potential of highly efficient MOFtors with robust photocatalytic activity in effectively removing TCH in challenging saline conditions, representing a substantial advancement in applying MOFtors within real-world water treatment technologies.

6.
Infect Genet Evol ; 123: 105647, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39067583

ABSTRACT

Mosquitoes are medically important insects, and accurate species identification is crucial to understanding vector biology, forming the cornerstone of successful vector control programs. Identification is difficult owing to morphologically similar species. Wing morphometrics can provide a simple, fast, and accurate way to classify species, and using it as a method to differentiate vector species among its cryptic congeners has been underexplored. Using a total of 227 mosquitoes and 20 landmarks per specimen, we demonstrated the utility of wing morphometrics in differentiating species two groups occurring in sympatry - Culex (Culex) vishnui group and Culex (Lophoceraomyia) subgenus, as well as explored population-level variation in the wing shape of Aedes albopictus across habitats. Cytochrome oxidase subunit I (COI) gene region was sequenced to validate the morphological and morphometric identification. Procrustes ANOVA regression and CVA based on wing shape reflected that the wing landmarks across all species differed significantly, and leave-one-out cross validation revealed an overall high accuracy of >97% for the two Culex groups. Wing morphometrics uncovered population-level variation within Aedes albopictus, but cross validation accuracy was low. Overall, we show that wing geomorphometric analysis is able to resolve cryptic Culex species (including vectors) occurring sympatrically, and is a robust tool for identifying mosquitoes reliably.


Subject(s)
Wings, Animal , Animals , Wings, Animal/anatomy & histology , Mosquito Vectors/anatomy & histology , Aedes/anatomy & histology , Aedes/genetics , Aedes/classification , Electron Transport Complex IV/genetics , Culicidae/anatomy & histology , Culicidae/classification , Phylogeny , Culex/anatomy & histology , Culex/classification , Culex/genetics , Species Specificity
7.
J Prosthet Dent ; 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39019724

ABSTRACT

STATEMENT OF PROBLEM: The complete arch implant-supported treatment concept with 2 angled implants has been widely used for the prosthetic rehabilitation of edentulous patients. While mechanical analysis plays a pivotal role in minimizing suboptimal outcomes or premature failure, it is notably time-consuming. Consequently, clinical treatment planning relies heavily on dentists' subjective judgment and an optimization process is needed. PURPOSE: The purpose of this study was to develop an optimization process for providing immediate recommendations to support decision-making in configuring complete arch implant-supported prostheses. MATERIAL AND METHODS: This research was carried out in 2 phases. The first consisted of collecting a dataset from a total of 2800 finite element simulations by randomly configuring 10 implant design variables with 4 types of mandibles. The dataset was used to train an artificial neural network to predict the biomechanical performance of a given complete arch implant-supported prosthesis design configuration. In the second phase, the artificial neural network was used as the objective function predictor in a particle swarm optimization process to enable immediate recommendations for the implant placement. The optimization process was evaluated for accuracy, computing performance, and adaptability for unseen mandibles. RESULTS: Within the specified design space, the optimization process was able to find an optimal design based on an imported mandible model in 30 seconds. The optimized designs were found to improve peri-implant stress by 11.08 ±6.43%. When verified through finite element analysis, the prediction error was found to be 10.4 ±8.1%. Furthermore, the prediction of the optimal design was highly accurate when tested on 2 unseen mandibles, yielding an error of less than 1.7%. CONCLUSIONS: The suggested approach can quickly provide an optimal implant configuration for each individual and effectively reduce the average peri-implant stress in the mandible.

8.
Front Chem ; 12: 1419287, 2024.
Article in English | MEDLINE | ID: mdl-38966860

ABSTRACT

In this study, phosphoric acid activation was employed to synthesize nitrogen-doped mesoporous activated carbon (designated as MR1) from Lentinus edodes (shiitake mushroom) residue, while aiming to efficiently remove acetaminophen (APAP), carbamazepine (CBZ), and metronidazole (MNZ) from aqueous solutions. We characterized the physicochemical properties of the produced adsorbents using scanning electron microscopy (SEM), nitrogen adsorption isotherms, and X-ray photoelectron spectroscopy (XPS). MR1, MR2, and MR3 were prepared using phosphoric acid impregnation ratios of 1, 2, and 3 mL/g, respectively. Notably, MR1 exhibited a significant mesoporous structure with a volume of 0.825 cm3/g and a quaternary nitrogen content of 2.6%. This endowed MR1 with a high adsorption capacity for APAP, CBZ, and MNZ, positioning it as a promising candidate for water purification applications. The adsorption behavior of the contaminants followed the Freundlich isotherm model, suggesting a multilayer adsorption process. Notably, MR1 showed excellent durability and recyclability, maintaining 95% of its initial adsorption efficiency after five regeneration cycles and indicating its potential for sustainable use in water treatment processes.

9.
Dalton Trans ; 53(24): 10235-10243, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38828765

ABSTRACT

Organic-inorganic metal halides (OIMHs) have drawn considerable attention due to their remarkable optoelectronic properties and substantial promise for nonlinear optical applications. In this research, phenazine has been selected as the organic cation because of its π-conjugated feature. Three compounds, (C12H9N2)PbCl3, (C12H9N2)SbCl4, and (C12H9N2)2InBr4·Br, were synthesized. Initial space group assignments were centrosymmetric for (C12H9N2)PbCl3 and (C12H9N2)SbCl4. However, under 1550 nm laser excitation, (C12H9N2)PbCl3 and (C12H9N2)SbCl4 exhibited second harmonic generation intensities ∼1.7 times greater than that of the benchmark KH2PO4. Structural reevaluation ultimately confirmed non-centrosymmetric P1 and P21 space groups for (C12H9N2)PbCl3 and (C12H9N2)SbCl4, respectively. Upon excitation at 335 nm and 470 nm, (C12H9N2)PbCl3, (C12H9N2)SbCl4, and (C12H9N2)2InBr4·Br emit fluorescence at room temperature. (C12H9N2)2InBr4·Br exhibits reversible phase transitions, showing potential for phase change energy storage. Our research underscores the critical role of comprehensive experimental validation in determining the precise crystallographic space groups and reveals the extensive potential of OIMHs as versatile candidates for advanced optoelectronic applications.

10.
Front Med (Lausanne) ; 11: 1254467, 2024.
Article in English | MEDLINE | ID: mdl-38695016

ABSTRACT

Background: Preeclampsia (PE) is a pregnancy complication defined by new onset hypertension and proteinuria or other maternal organ damage after 20 weeks of gestation. Although non-invasive prenatal testing (NIPT) has been widely used to detect fetal chromosomal abnormalities during pregnancy, its performance in combination with maternal risk factors to screen for PE has not been extensively validated. Our aim was to develop and validate classifiers that predict early- or late-onset PE using the maternal plasma cell-free DNA (cfDNA) profile and clinical risk factors. Methods: We retrospectively collected and analyzed NIPT data of 2,727 pregnant women aged 24-45 years from four hospitals in China, which had previously been used to screen for fetal aneuploidy at 12 + 0 ~ 22 + 6 weeks of gestation. According to the diagnostic criteria for PE and the time of diagnosis (34 weeks of gestation), a total of 143 early-, 580 late-onset PE samples and 2,004 healthy controls were included. The wilcoxon rank sum test was used to identify the cfDNA profile for PE prediction. The Fisher's exact test and Mann-Whitney U-test were used to compare categorical and continuous variables of clinical risk factors between PE samples and healthy controls, respectively. Machine learning methods were performed to develop and validate PE classifiers based on the cfDNA profile and clinical risk factors. Results: By using NIPT data to analyze cfDNA coverages in promoter regions, we found the cfDNA profile, which was differential cfDNA coverages in gene promoter regions between PE and healthy controls, could be used to predict early- and late-onset PE. Maternal age, body mass index, parity, past medical histories and method of conception were significantly differential between PE and healthy pregnant women. With a false positive rate of 10%, the classifiers based on the combination of the cfDNA profile and clinical risk factors predicted early- and late-onset PE in four datasets with an average accuracy of 89 and 80% and an average sensitivity of 63 and 48%, respectively. Conclusion: Incorporating cfDNA profiles in classifiers might reduce performance variations in PE models based only on clinical risk factors, potentially expanding the application of NIPT in PE screening in the future.

11.
Synth Syst Biotechnol ; 9(4): 647-657, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38817827

ABSTRACT

Utilizing standardized artificial regulatory sequences to fine-tuning the expression of multiple metabolic pathways/genes is a key strategy in the creation of efficient microbial cell factories. However, when regulatory sequence expression strengths are characterized using only a few reporter genes, they may not be applicable across diverse genes. This introduces great uncertainty into the precise regulation of multiple genes at multiple expression levels. To address this, our study adopted a fluorescent protein fusion strategy for a more accurate assessment of target protein expression levels. We combined 41 commonly-used metabolic genes with 15 regulatory sequences, yielding an expression dataset encompassing 520 unique combinations. This dataset highlighted substantial variation in protein expression level under identical regulatory sequences, with relative expression levels ranging from 2.8 to 176-fold. It also demonstrated that improving the strength of regulatory sequences does not necessarily lead to significant improvements in the expression levels of target proteins. Utilizing this dataset, we have developed various machine learning models and discovered that the integration of promoter regions, ribosome binding sites, and coding sequences significantly improves the accuracy of predicting protein expression levels, with a Spearman correlation coefficient of 0.72, where the promoter sequence exerts a predominant influence. Our study aims not only to provide a detailed guide for fine-tuning gene expression in the metabolic engineering of Escherichia coli but also to deepen our understanding of the compatibility issues between regulatory sequences and target genes.

12.
ACS Omega ; 9(20): 22352-22359, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38799330

ABSTRACT

Low-dimensional tin-based halide perovskites are considered as eco-friendly substitutions of the iconic lead-based perovskites to host the potential as optoelectronic materials. However, a fundamental understanding of the structure-property relationship of these Sn(II)-based hybrids is still inadequate due to the limited members of this material family. To our knowledge, there is still lack of reports on a series of Sn(II)-based halide perovskites with the same organic cation but covering chloride, bromide, and iodide. In this work, three new halide perovskites TMPDASnX4 (X = Cl, Br, I) (TMPDA = N,N,N',N'-tetramethyl-1,4-phenylenediamine) are successfully synthesized, which provide the ideal paradigm to study the halogen-dependent evolution of the structure and properties of Sn(II)-based hybrid perovskites. Despite sharing the same monoclinic lattice (P21/m space group), it is demonstrated that TMPDASnCl4 adopts a one-dimensional structure composed of a five-coordinated pyramid configuration due to an extremely long Sn···Cl distance, while the typical two-dimensional motif is still maintained in TMPDASnBr4 and TMPDASnI4. The ambient stability is declined in the order from chloride to bromide and then to iodide. TMPDASnCl4 exhibits a broad-band bluish-white-light emission (centered at 515 nm, full width at half-maximum (fwhm) = 193 nm) with the Commission Internationale de l' Elairage (CIE) coordinates as (0.29, 0.34). Further, the correlated color temperature and color-rendering index were determined as 7617 K and 80.5, respectively. Based on the synthesis of new crystals, our work sheds light on the composition-structure-property relationship of hybrid Sn(II)-based halide perovskites.

13.
Nucleic Acids Res ; 52(W1): W299-W305, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38769057

ABSTRACT

A key challenge in pathway design is finding proper enzymes that can be engineered to catalyze a non-natural reaction. Although existing tools can identify potential enzymes based on similar reactions, these tools encounter several issues. Firstly, the calculated similar reactions may not even have the same reaction type. Secondly, the associated enzymes are often numerous and identifying the most promising candidate enzymes is difficult due to the lack of data for evaluation. Thirdly, existing web tools do not provide interactive functions that enable users to fine-tune results based on their expertise. Here, we present REME (https://reme.biodesign.ac.cn/), the first integrated web platform for reaction enzyme mining and evaluation. Combining atom-to-atom mapping, atom type change identification, and reaction similarity calculation enables quick ranking and visualization of reactions similar to an objective non-natural reaction. Additional functionality enables users to filter similar reactions by their specified functional groups and candidate enzymes can be further filtered (e.g. by organisms) or expanded by Enzyme Commission number (EC) or sequence homology. Afterward, enzyme attributes (such as kcat, Km, optimal temperature and pH) can be assessed with deep learning-based methods, facilitating the swift identification of potential enzymes that can catalyze the non-natural reaction.


Subject(s)
Enzymes , Software , Enzymes/chemistry , Enzymes/metabolism , Data Mining/methods , Internet , Deep Learning , Biocatalysis
14.
Angew Chem Int Ed Engl ; 63(29): e202400554, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38708923

ABSTRACT

Hybrid metal halides are an extraordinary class of optoelectronic materials with extensive applications. To further diversify and study the in-depth structure-property relations, we report here a new family of 21 zero-dimensional hybrid bimetallic chlorides with the general formula A(L)n[BClm] (A=rare earth (RE), alkaline earth metals and Mn; L=solvent ligand; and B=Sb, Bi and Te). The RE(DMSO)8[BCl6] (RE=La, Ce, Sm, Eu, Tb, and Dy; DMSO=dimethyl sulfoxide) series shows broadband emission attributed to triplet radiative recombination from Sb and Bi, incorporating the characteristic emission of RE metals, where Eu(DMSO)8[BiCl6] shows a staggering PL quantum yield of 94 %. The pseudo-octahedral [SbCl5] with Cl vacancy in AII(DMSO)6[SbCl5] (AII=Mg, Ca and Mn) and the square pyramidal [SbCl5] in AII(TMSO)6[SbCl5] (TMSO=tetramethylene sulfoxide) enhance the stereoactive expression of the 5 s2 lone pairs of Sb3+, giving rise to the observation of dual-band emission of singlet and triplet emission, respectively. A series of Te(IV) analogues have been characterized, showing blue-light-excitable single-band emission. This work expands the materials space for hybrid bimetallic halides with an emphasis on harnessing the RE elements, and provides important insights into designing new emitters and regulating their properties.

15.
Int J Mol Sci ; 25(9)2024 Apr 28.
Article in English | MEDLINE | ID: mdl-38732022

ABSTRACT

The molecular weight (MW) of an enzyme is a critical parameter in enzyme-constrained models (ecModels). It is determined by two factors: the presence of subunits and the abundance of each subunit. Although the number of subunits (NS) can potentially be obtained from UniProt, this information is not readily available for most proteins. In this study, we addressed this gap by extracting and curating subunit information from the UniProt database to establish a robust benchmark dataset. Subsequently, we propose a novel model named DeepSub, which leverages the protein language model and Bi-directional Gated Recurrent Unit (GRU), to predict NS in homo-oligomers solely based on protein sequences. DeepSub demonstrates remarkable accuracy, achieving an accuracy rate as high as 0.967, surpassing the performance of QUEEN. To validate the effectiveness of DeepSub, we performed predictions for protein homo-oligomers that have been reported in the literature but are not documented in the UniProt database. Examples include homoserine dehydrogenase from Corynebacterium glutamicum, Matrilin-4 from Mus musculus and Homo sapiens, and the Multimerins protein family from M. musculus and H. sapiens. The predicted results align closely with the reported findings in the literature, underscoring the reliability and utility of DeepSub.


Subject(s)
Databases, Protein , Deep Learning , Protein Subunits , Protein Subunits/chemistry , Protein Subunits/metabolism , Animals , Humans , Protein Multimerization , Mice , Computational Biology/methods
16.
Molecules ; 29(7)2024 Mar 28.
Article in English | MEDLINE | ID: mdl-38611805

ABSTRACT

Cobalt-nitrogen co-doped carbon nanotubes (Co3@NCNT-800) were synthesized via a facile and economical approach to investigate the efficient degradation of organic pollutants in aqueous environments. This material demonstrated high catalytic efficiency in the degradation of carbamazepine (CBZ) in the presence of peroxymonosulfate (PMS). The experimental data revealed that at a neutral pH of 7 and an initial CBZ concentration of 20 mg/L, the application of Co3@NCNT-800 at 0.2 g/L facilitated a degradation rate of 64.7% within 60 min. Mechanistic investigations indicated that the presence of pyridinic nitrogen and cobalt species enhanced the generation of reactive oxygen species. Radical scavenging assays and electron spin resonance spectroscopy confirmed that radical and nonradical pathways contributed to CBZ degradation, with the nonradical mechanism being predominant. This research presents the development of a novel PMS catalyst, synthesized through an efficient and stable method, which provides a cost-effective solution for the remediation of organic contaminants in water.


Subject(s)
Nanotubes, Carbon , Peroxides , Benzodiazepines , Carbamazepine , Cobalt , Nitrogen , Water
17.
Gland Surg ; 13(3): 374-382, 2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38601287

ABSTRACT

Background: The effectiveness and safety of pyrotinib have been substantiated in human epidermal growth factor receptor 2 (HER2)-positive advanced breast cancer (BC). However, the role of pyrotinib as a single HER2 blockade in neoadjuvant setting among BC patients has not been studied. The objective of this study was to evaluate the efficacy and tolerability of pyrotinib plus taxanes as a novel neoadjuvant regimen in patients with HER2-positive early or locally advanced BC. Methods: In this single-arm exploratory phase II trial, patients with treatment-naïve HER2-positive BC (stage IIA-IIIC) received pyrotinib 400 mg once daily and taxanes [docetaxel 75 mg/m2 or nanoparticle albumin-bound (nab)-paclitaxel 260 mg/m2 every 3 weeks, or paclitaxel 80 mg/m2 weekly] for a total of four 21-day cycles before surgery. Efficacy assessment was based on pathological and clinical measurements. The primary endpoint of this study was the total pathological complete response (tpCR) rate. The secondary endpoints included breast pCR (bpCR) rate, investigator-assessed objective response rate (ORR) and adverse events (AEs) profiles. Results: From 1 September 2021 to 30 December 2022, a total of 31 patients were enrolled. One patient was withdrawn due to unbearable skin rash after the second cycle of neoadjuvant therapy. The majority of the intention-to-treat (ITT) population was premenopausal (54.8%), had large tumors (90.3%) and metastatic nodes (58.1%) at diagnosis and hormone-receptor positive tumors (64.5%). Most participants used nab-paclitaxel (74.2%) and received mastectomy (67.7%) after neoadjuvant treatment. The tpCR and bpCR rates were 48.4% [95% confidence interval (CI): 30.8-66%] and 51.6% (95% CI: 34-69.2%), respectively. Grade ≥3 treatment-related AEs were observed in 16.1% (5/31) of the ITT population, including diarrhea (n=2, 6.5%), hand and foot numbness (n=1, 3.2%), loss of appetite (n=1, 3.2%), and skin rash (n=1, 3.2%). AE related dose reduction or pyrotinib interruption was not required. Conclusions: In female patients with HER2-positive non-metastatic BC, neoadjuvant pyrotinib monotherapy plus taxanes appears to show promising clinical benefit and controllable AEs [Chinese Clinical Trial Registry (ChiCTR2100050870)]. The long-term efficacy and safety of this regime warrant further verification.

18.
Adv Healthc Mater ; : e2401005, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38663447

ABSTRACT

In chronic wound management, efficacious handling of exudate and bacterial infections stands as a paramount challenge. Here a novel biomimetic fabric, inspired by the natural transpiration mechanisms in plants, is introduced. Uniquely, the fabric combines a commercial polyethylene terephthalate (PET) fabric with asymmetrically grown 1D rutile titanium dioxide (TiO2) micro/nanostructures, emulating critical plant features: hierarchically porous networks and hydrophilic water conduction channels. This structure endows the fabric with exceptional antigravity wicking-evaporation performance, evidenced by a 780% one-way transport capability and a 0.75 g h-1 water evaporation rate, which significantly surpasses that of conventional moisture-wicking textiles. Moreover, the incorporated 1D rutile TiO2 micro/nanostructures present solar-light induced antibacterial activity, crucial for disrupting and eradicating wound biofilms. The biomimetic transpiration fabric is employed to drain exudate and eradicate biofilms in Staphylococcus aureus (S. aureus)-infected wounds, demonstrating a much faster infection eradication capability compared to clinically common ciprofloxacin irrigation. These findings illuminate the path for developing high-performance, textile-based wound dressings, offering efficient clinical platforms to combat biofilms associated with chronic wounds.

19.
Nat Commun ; 15(1): 3633, 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38684679

ABSTRACT

Various mechanical effects have been reported with molecular materials, yet organic crystals capable of multiple dynamic effects are rare, and at present, their performance is worse than some of the common actuators. Here, we report a confluence of different mechanical effects across three polymorphs of an organic crystal that can efficiently convert light into work. Upon photodimerization, acicular crystals of polymorph I display output work densities of about 0.06-3.94 kJ m-3, comparable to ceramic piezoelectric actuators. Prismatic crystals of the same form exhibit very high work densities of about 1.5-28.5 kJ m-3, values that are comparable to thermal actuators. Moreover, while crystals of polymorph II roll under the same conditions, crystals of polymorph III are not photochemically reactive; however, they are mechanically flexible. The results demonstrate that multiple and possibly combined mechanical effects can be anticipated even for a simple organic crystal.

20.
Adv Sci (Weinh) ; 11(21): e2401195, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38582501

ABSTRACT

Neutrophil extracellular traps (NETs) seriously impede diabetic wound healing. The disruption or scavenging of NETs using deoxyribonuclease (DNase) or cationic nanoparticles has been limited by liberating trapped bacteria, short half-life, or potential cytotoxicity. In this study, a positive correlation between the NETs level in diabetic wound exudation and the severity of wound inflammation in diabetic patients is established. Novel NETs scavenging bio-based hydrogel microspheres 'micro-cage', termed mPDA-PEI@GelMA, is engineered by integrating methylacrylyl gelatin (GelMA) hydrogel microspheres with cationic polyethyleneimine (PEI)-functionalized mesoporous polydopamine (mPDA). This unique 'micro-cage' construct is designed to non-contact scavenge of NETs between nanoparticles and the diabetic wound surface, minimizing biological toxicity and ensuring high biosafety. NETs are introduced into 'micro-cage' along with wound exudation, and cationic mPDA-PEI immobilizes them inside the 'micro-cage' through a strong binding affinity to the cfDNA web structure. The findings demonstrate that mPDA-PEI@GelMA effectively mitigates pro-inflammatory responses associated with diabetic wounds by scavenging NETs both in vivo and in vitro. This work introduces a novel nanoparticle non-contact NETs scavenging strategy to enhance diabetic wound healing processes, with potential benefits in clinical applications.


Subject(s)
Extracellular Traps , Hydrogels , Microspheres , Wound Healing , Wound Healing/drug effects , Extracellular Traps/metabolism , Extracellular Traps/drug effects , Hydrogels/chemistry , Animals , Mice , Humans , Diabetes Mellitus, Experimental , Disease Models, Animal , Male , Indoles/chemistry , Indoles/pharmacology , Polymers/chemistry , Neutrophils/metabolism , Polyethyleneimine/chemistry , Polyethyleneimine/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL