Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 166
Filter
Add more filters










Publication year range
1.
Plant Physiol ; 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39077775

ABSTRACT

Plasma membranes (PMs) are highly dynamic structures where lipids and proteins can theoretically diffuse freely. However, reports indicate that PM proteins do not freely diffuse within their planes but are constrained by cytoskeleton networks, though the mechanisms for how the cytoskeleton restricts lateral diffusion of plant PM proteins are unclear. Through single-molecule tracking, we investigated the dynamics of six Arabidopsis (Arabidopsis thaliana) PM proteins with diverse structures and found distinctions in sizes and dynamics among these proteins. Moreover, we showed that the cytoskeleton, particularly microtubules, limits the diffusion of PM proteins, including transmembrane and membrane-anchoring proteins. Interestingly, the microfilament skeleton regulates intracellular transport of endocytic cargo. Therefore, these findings indicate that the cytoskeleton controls signal transduction by limiting diffusion of PM proteins in specific membrane compartments and participating in transport of internalized cargo vesicles, thus actively regulating plant signal transduction.

2.
Elife ; 122024 Jul 24.
Article in English | MEDLINE | ID: mdl-39046447

ABSTRACT

The Arabidopsis thaliana FLAGELLIN-SENSITIVE2 (FLS2), a typical receptor kinase, recognizes the conserved 22 amino acid sequence in the N-terminal region of flagellin (flg22) to initiate plant defense pathways, which was intensively studied in the past decades. However, the dynamic regulation of FLS2 phosphorylation at the plasma membrane after flg22 recognition needs further elucidation. Through single-particle tracking, we demonstrated that upon flg22 treatment the phosphorylation of Ser-938 in FLS2 impacts its spatiotemporal dynamics and lifetime. Following Förster resonance energy transfer-fluorescence lifetime imaging microscopy and protein proximity indexes assays revealed that flg22 treatment increased the co-localization of GFP-tagged FLS2/FLS2S938D but not FLS2S938A with AtRem1.3-mCherry, a sterol-rich lipid marker, indicating that the phosphorylation of FLS2S938 affects FLS2 sorting efficiency to AtRem1.3-associated nanodomains. Importantly, we found that the phosphorylation of Ser-938 enhanced flg22-induced FLS2 internalization and immune responses, demonstrating that the phosphorylation may activate flg22-triggered immunity through partitioning FLS2 into functional AtRem1.3-associated nanodomains, which fills the gap between the FLS2S938 phosphorylation and FLS2-mediated immunity.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Flagellin , Protein Kinases , Single Molecule Imaging , Phosphorylation , Arabidopsis Proteins/metabolism , Arabidopsis Proteins/genetics , Arabidopsis/metabolism , Arabidopsis/genetics , Arabidopsis/immunology , Protein Kinases/metabolism , Protein Kinases/genetics , Flagellin/metabolism , Flagellin/pharmacology , Plant Immunity , Fluorescence Resonance Energy Transfer , Cell Membrane/metabolism
3.
Oncol Lett ; 28(2): 339, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38855503

ABSTRACT

3,3'-Diindolylmethane (DIM) is a natural phytochemical derived from cruciferous plants that has inhibitory effects on a wide range of tumor cells; however, its relevant effects on esophageal cancer cells have been poorly studied. Therefore, in the present study, a pharmacology network approach was used to predict the possible core targets of DIM acting on esophageal cancer. Subsequently, using in vitro experiments, TE-1 human esophageal cancer cells were treated with different concentrations of DIM (0, 40, 60 and 80 µM) for 24 h. Changes in cell activity were detected by Cell Counting Kit-8 assay, and changes in the expression levels of stromal interaction molecule 1 (STIM1) and apoptosis-related proteins, B-cell lymphoma-2 (Bcl-2) and Bax, were assessed by western blotting, followed by the upregulation of STIM1 by thapsigargin (Tg). Network pharmacology analysis showed that there were 39 potential core targets of DIM in esophageal cancer. The results of the in vitro experiments showed that DIM could inhibit the viability of esophageal cancer cells, downregulate the expression of STIM1 and Bcl-2 proteins and upregulate the expression of Bax protein, all in a concentration-dependent manner. The results also demonstrated that toxic carotenoids were agonist against STIM1 protein and upregulated STIM1 and Bax protein expression. After agonizing STIM1 protein expression using Tg, DIM was able to counteract the expression trend of STIM1, Bcl-2 and Bax protein in TE-1 cells. In summary, DIM induced apoptosis and inhibited the viability of esophageal cancer cells by downregulating the expression of STIM1 protein; therefore, the natural phytochemical, DIM, may be a potential substance for the early prevention and treatment of esophageal cancer cells.

4.
Int J Biol Macromol ; 268(Pt 1): 131619, 2024 May.
Article in English | MEDLINE | ID: mdl-38692998

ABSTRACT

The plant cell wall is a complex, heterogeneous structure primarily composed of cellulose, hemicelluloses, and lignin. Exploring the variations in these three macromolecules over time is crucial for understanding wood formation to enhance chemical processing and utilization. Here, we comprehensively analyzed the chemical composition of cell walls in the trunks of Pinus tabulaeformis using multiple techniques. In situ analysis showed that macromolecules accumulated gradually in the cell wall as the plant aged, and the distribution pattern of lignin was opposite that of polysaccharides, and both showed heterogenous distribution patterns. In addition, gel permeation chromatography (GPC) results revealed that the molecular weights of hemicelluloses decreased while that of lignin increased with age. Two-dimensional heteronuclear single quantum coherence nuclear magnetic resonance (2D-HSQC NMR) analysis indicated that hemicelluloses mainly comprised galactoglucomannan and arabinoglucuronoxylan, and the lignin types were mainly comprised guaiacyl (G) and p-hydroxyphenyl (H) units with three main linkage types: ß-O-4, ß-ß, and ß-5. Furthermore, the C-O bond (ß-O-4) signals of lignin decreased while the C-C bonds (ß-ß and ß-5) signals increased over time. Taken together, these findings shed light on wood formation in P. tabulaeformis and lay the foundation for enhancing the processing and use of wood and timber products.


Subject(s)
Cell Wall , Cellulose , Lignin , Pinus , Polysaccharides , Lignin/chemistry , Pinus/chemistry , Cell Wall/chemistry , Polysaccharides/chemistry , Cellulose/chemistry , Molecular Weight , Trees/chemistry , Magnetic Resonance Spectroscopy/methods , Wood/chemistry
5.
Plant Physiol Biochem ; 212: 108766, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38797011

ABSTRACT

Glutathione S-transferases (GSTs) constitute a protein superfamily encoded by a large gene family and play a crucial role in plant growth and development. However, their precise functions in wood plant responses to abiotic stress are not fully understood. In this study, we isolated a Phi class glutathione S-transferase-encoding gene, PtrGSTF8, from poplar (Populus alba × P. glandulosa), which is significantly up-regulated under salt stress. Moreover, compared with wild-type (WT) plants, transgenic tobacco plants exhibited significant salt stress tolerance. Under salt stress, PtrGSTF8-overexpressing tobacco plants showed a significant increase in plant height and root length, and less accumulation of reactive oxygen species. In addition, these transgenic tobacco plants exhibited higher superoxide dismutase, peroxidase, and catalase activities and reduced malondialdehyde content compared with WT plants. Quantitative real-time PCR experiments showed that the overexpression of PtrGSTF8 increased the expression of numerous genes related to salt stress. Furthermore, PtrMYB108, a MYB transcription factor involved in salt resistance in poplar, was found to directly activate the promoter of PtrGSTF8, as demonstrated by yeast one-hybrid assays and luciferase complementation assays. Taken together, these findings suggest that poplar PtrGSTF8 contributes to enhanced salt tolerance and confers multiple growth advantages when overexpressed in tobacco.


Subject(s)
Glutathione Transferase , Nicotiana , Plant Proteins , Plants, Genetically Modified , Populus , Reactive Oxygen Species , Salt Tolerance , Populus/genetics , Populus/enzymology , Populus/metabolism , Salt Tolerance/genetics , Nicotiana/genetics , Reactive Oxygen Species/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Glutathione Transferase/metabolism , Glutathione Transferase/genetics , Gene Expression Regulation, Plant/drug effects , Salt Stress/genetics
6.
Plant Commun ; 5(7): 100929, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38678366

ABSTRACT

The endoplasmic reticulum (ER) and the plasma membrane (PM) form ER-PM contact sites (EPCSs) that allow the ER and PM to exchange materials and information. Stress-induced disruption of protein folding triggers ER stress, and the cell initiates the unfolded protein response (UPR) to resist the stress. However, whether EPCSs play a role in ER stress in plants remains unclear. VESICLE-ASSOCIATED MEMBRANE PROTEIN (VAMP)-ASSOCIATED PROTEIN 27-1 (VAP27-1) functions in EPCS tethering and is encoded by a family of 10 genes (VAP27-1-10) in Arabidopsis thaliana. Here, we used CRISPR-Cas9-mediated genome editing to obtain a homozygous vap27-1 vap27-3 vap27-4 (vap27-1/3/4) triple mutant lacking three of the key VAP27 family members in Arabidopsis. The vap27-1/3/4 mutant exhibits defects in ER-PM connectivity and EPCS architecture, as well as excessive UPR signaling. We further showed that relocation of VAP27-1 to the PM mediates specific VAP27-1-related EPCS remodeling and expansion under ER stress. Moreover, the spatiotemporal dynamics of VAP27-1 at the PM increase ER-PM connectivity and enhance Arabidopsis resistance to ER stress. In addition, we revealed an important role for intracellular calcium homeostasis in the regulation of UPR signaling. Taken together, these results broaden our understanding of the molecular and cellular mechanisms of ER stress and UPR signaling in plants, providing additional clues for improving plant broad-spectrum resistance to different stresses.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Cell Membrane , Endoplasmic Reticulum Stress , Endoplasmic Reticulum , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Endoplasmic Reticulum Stress/genetics , Endoplasmic Reticulum/metabolism , Cell Membrane/metabolism , Unfolded Protein Response/genetics
9.
Plant Physiol ; 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38630866

ABSTRACT

Ginkgo (Ginkgo biloba L.) is one of the earliest extant species in seed plant phylogeny. Embryo development patterns can provide fundamental evidence for the origin, evolution, and adaptation of seeds. However, the architectural and morphological dynamics during embryogenesis in Ginkgo biloba (G. biloba) remain elusive. Herein, we obtained over 2200 visual slices from three stages of embryo development using micro-computed tomography imaging with improved staining methods. Based on 3D spatio-temporal pattern analysis, we found that a shoot apical meristem with seven highly differentiated leaf primordia, including apical and axillary leaf buds, is present in mature Ginkgo embryos. 3D rendering from the front, top, and side views showed two separate transport systems of tracheids located in the hypocotyl and cotyledon, representing a unique pattern of embryogenesis. Furthermore, the morphological dynamic analysis of secretory cavities indicated their strong association with cotyledons during development. In addition, we identified genes GbLBD25a (lateral organ boundaries domain 25a), GbCESA2a (cellulose synthase 2a), GbMYB74c (myeloblastosis 74c), GbPIN2 (PIN-FORMED 2) associated with vascular development regulation, and GbWRKY1 (WRKYGOK 1), GbbHLH12a (basic helix-loop-helix 12a), GbJAZ4 (jasmonate zim-domain 4) potentially involved in the formation of secretory cavities. Moreover, we found that flavonoid accumulation in mature embryos could enhance post-germinative growth and seedling establishment in harsh environments. Our 3D spatial reconstruction technique combined with multi-omics analysis opens avenues for investigating developmental architecture and molecular mechanisms during embryogenesis and lays the foundation for evolutionary studies of embryo development and maturation.

11.
J Plant Physiol ; 296: 154235, 2024 May.
Article in English | MEDLINE | ID: mdl-38531181

ABSTRACT

Aptamers, serving as highly efficient molecular recognition and biotechnology tools, have garnered increasing interest in the realm of plant science in recent years. Aptamers are synthetic single-stranded short nucleotides or peptides, that bind targets with high specificity and affinity, triggering precise biological responses. As an alternative to antibodies, aptamers present promising avenues for advancement in biological researches. Aptamers function in a range of fields, encompassing cell signaling, drug development, biosensor technology, as well as botany, agricultural and forestry sciences. In this review, we introduce classifications and screening methods of aptamers, as well as aptamer-based technologies, highlighting their significant contributions to recent advancements. With their powerful functionality and ability to bind targets with high specificity and affinity, aptamers offer promising opportunities for breakthroughs in plant research.


Subject(s)
Aptamers, Nucleotide , Biosensing Techniques , Biotechnology
12.
Plant Biotechnol J ; 22(8): 2201-2215, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38492213

ABSTRACT

Wood formation, which occurs mainly through secondary xylem development, is important not only for supplying raw material for the 'ligno-chemical' industry but also for driving the storage of carbon. However, the complex mechanisms underlying the promotion of xylem formation remain to be elucidated. Here, we found that overexpression of Auxin-Regulated Gene involved in Organ Size (ARGOS) in hybrid poplar 84 K (Populus alba × Populus tremula var. glandulosa) enlarged organ size. In particular, PagARGOS promoted secondary growth of stems with increased xylem formation. To gain further insight into how PagARGOS regulates xylem development, we further carried out yeast two-hybrid screening and identified that the auxin transporter WALLS ARE THIN1 (WAT1) interacts with PagARGOS. Overexpression of PagARGOS up-regulated WAT1, activating a downstream auxin response promoting cambial cell division and xylem differentiation for wood formation. Moreover, overexpressing PagARGOS caused not only higher wood yield but also lower lignin content compared with wild-type controls. PagARGOS is therefore a potential candidate gene for engineering fast-growing and low-lignin trees with improved biomass production.


Subject(s)
Gene Expression Regulation, Plant , Lignin , Plant Proteins , Populus , Wood , Xylem , Populus/genetics , Populus/growth & development , Populus/metabolism , Lignin/metabolism , Wood/growth & development , Wood/genetics , Wood/metabolism , Xylem/metabolism , Xylem/growth & development , Xylem/genetics , Plant Proteins/metabolism , Plant Proteins/genetics , Plants, Genetically Modified , Indoleacetic Acids/metabolism
13.
Plant Sci ; 342: 112056, 2024 May.
Article in English | MEDLINE | ID: mdl-38438082

ABSTRACT

Most of mRNAs in Eukaryote were matured after the removal of introns in their pre-mRNA transcripts. Serine/arginine-rich (SR) proteins are a group of splicing regulators regulating the splicing processes globally. Expressions of SR proteins themselves were extensively regulated, at both transcription and splicing levels, under different environmental conditions, specially heat stress conditions. The pine genome is characterized by super-long and easily methylated introns in a large number of genes that derived from the extensive accumulation of transposons (TEs). Here, we identified and analyzed the phylogenetic characteristics of 24 SR proteins and their encoding genes from the pine genome. Then we explored transcription and pre-mRNA splicing expression patterns of SR genes in P. massoniana seedlings under normal and heat stress temperature conditions. Our results showed that the transcription patterns of SR genes in pine exhibited significant changes compared to other plant species, and these changes were not strictly correlated with the intron length and DNA methylation intensity of the SR genes. Interestingly, none of the long introns of SR genes underwent alternative splicing (AS) in our experiment. Furthermore, the intensity of AS regulation may be related to the potential DNA methylation intensity of SR genes. Taken together, this study explores for the first time the characteristics of significant variations in the transcription and splicing patterns of SR proteins in a plant species with an over-accumulation of super-long introns.


Subject(s)
Arabidopsis , RNA Precursors , Introns/genetics , RNA Precursors/genetics , Phylogeny , Arabidopsis/genetics , RNA Splicing , Alternative Splicing/genetics
14.
New Phytol ; 242(1): 137-153, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38366280

ABSTRACT

The precise functions of suberized apoplastic barriers in root water and nutrient transport physiology have not fully been elucidated. While lots of research has been performed with mutants of Arabidopsis, little to no data are available for mutants of agricultural crop or tree species. By employing a combined set of physiological, histochemical, analytical, and transport physiological methods as well as RNA-sequencing, this study investigated the implications of remarkable CRISPR/Cas9-induced suberization defects in young roots of the economically important gray poplar. While barely affecting overall plant development, contrary to literature-based expectations significant root suberin reductions of up to 80-95% in four independent mutants were shown to not evidently affect the root hydraulic conductivity during non-stress conditions. In addition, subliminal iron deficiency symptoms and increased translocation of a photosynthesis inhibitor as well as NaCl highlight the involvement of suberin in nutrient transport physiology. The multifaceted nature of the root hydraulic conductivity does not allow drawing simplified conclusions such as that the suberin amount must always be correlated with the water transport properties of roots. However, the decreased masking of plasma membrane surface area could facilitate the uptake but also leakage of beneficial and harmful solutes.


Subject(s)
Arabidopsis , Plant Roots , Plant Roots/metabolism , Lipids/chemistry , Biological Transport , Arabidopsis/metabolism , Water/metabolism , Crops, Agricultural/metabolism
15.
JOR Spine ; 7(1): e1309, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38222802

ABSTRACT

Background: Intervertebral disc degeneration (IDD) is a significant cause of low back pain and poses a significant public health concern. Genetic factors play a crucial role in IDD, highlighting the need for a better understanding of the underlying mechanisms. Aim: The aim of this study was to identify potential IDD-related biomarkers using a comprehensive bioinformatics approach and validate them in vitro. Materials and Methods: In this study, we employed several analytical approaches to identify the key genes involved in IDD. We utilized weighted gene coexpression network analysis (WGCNA), MCODE, LASSO algorithms, and ROC curves to identify the key genes. Additionally, immune infiltrating analysis and a single-cell sequencing dataset were utilized to further explore the characteristics of the key genes. Finally, we conducted in vitro experiments on human disc tissues to validate the significance of these key genes in IDD. Results: we obtained gene expression profiles from the GEO database (GSE23130 and GSE15227) and identified 1015 DEGs associated with IDD. Using WGCNA, we identified the blue module as significantly related to IDD. Among the DEGs, we identified 47 hub genes that overlapped with the genes in the blue module, based on criteria of |logFC| ≥ 2.0 and p.adj <0.05. Further analysis using both MCODE and LASSO algorithms enabled us to identify five key genes, of which CKAP4 and SSR1 were validated by GSE70362, demonstrating significant diagnostic value for IDD. Additionally, immune infiltrating analysis revealed that monocytes were significantly correlated with the two key genes. We also analyzed a single-cell sequencing dataset, GSE199866, which showed that both CKAP4 and SSR1 were highly expressed in fibrocartilage chondrocytes. Finally, we validated our findings in vitro by performing real time polymerase chain reaction (RT-PCR) and immunohistochemistry (IHC) on 30 human disc samples. Our results showed that CKAP4 and SSR1 were upregulated in degenerated disc samples. Taken together, our findings suggest that CKAP4 and SSR1 have the potential to serve as disease biomarkers for IDD.

16.
Plant Physiol ; 193(4): 2260-2277, 2023 Nov 22.
Article in English | MEDLINE | ID: mdl-37549378

ABSTRACT

Cell polarity results from the asymmetric distribution of cellular structures, molecules, and functions. Polarity is a fundamental cellular trait that can determine the orientation of cell division, the formation of particular cell shapes, and ultimately the development of a multicellular body. To maintain the distinct asymmetric distribution of proteins and lipids in cellular membranes, plant cells have developed complex trafficking and regulatory mechanisms. Major advances have been made in our understanding of how membrane microdomains influence the asymmetric distribution of proteins and lipids. In this review, we first give an overview of cell polarity. Next, we discuss current knowledge concerning membrane microdomains and their roles as structural and signaling platforms to establish and maintain membrane polarity, with a special focus on the asymmetric distribution of proteins and lipids, and advanced microscopy techniques to observe and characterize membrane microdomains. Finally, we review recent advances regarding membrane trafficking in cell polarity establishment and how the balance between exocytosis and endocytosis affects membrane polarity.


Subject(s)
Cell Polarity , Signal Transduction , Cell Membrane/metabolism , Membrane Microdomains/metabolism , Lipids
17.
Nat Commun ; 14(1): 4285, 2023 07 18.
Article in English | MEDLINE | ID: mdl-37463897

ABSTRACT

The conversion of lignocellulosic feedstocks to fermentable sugar for biofuel production is inefficient, and most strategies to enhance efficiency directly target lignin biosynthesis, with associated negative growth impacts. Here we demonstrate, for both laboratory- and field-grown plants, that expression of Pag-miR408 in poplar (Populus alba × P. glandulosa) significantly enhances saccharification, with no requirement for acid-pretreatment, while promoting plant growth. The overexpression plants show increased accessibility of cell walls to cellulase and scaffoldin cellulose-binding modules. Conversely, Pag-miR408 loss-of-function poplar shows decreased cell wall accessibility. Overexpression of Pag-miR408 targets three Pag-LACCASES, delays lignification, and modestly reduces lignin content, S/G ratio and degree of lignin polymerization. Meanwhile, the LACCASE loss of function mutants exhibit significantly increased growth and cell wall accessibility in xylem. Our study shows how Pag-miR408 regulates lignification and secondary growth, and suggest an effective approach towards enhancing biomass yield and saccharification efficiency in a major bioenergy crop.


Subject(s)
MicroRNAs , Populus , Lignin/metabolism , Plants, Genetically Modified/genetics , MicroRNAs/genetics , Biomass , Populus/metabolism
18.
J Plant Physiol ; 287: 154055, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37506405

ABSTRACT

Long noncoding RNAs (lncRNAs) play essential roles in numerous biological processes in plants, such as regulating the gene expression. However, only a few studies have looked into their potential functions in xylem development. High-throughput sequencing of P. euramericana 'Zhonglin46' developing and mature xylem was performed in this study. Through sequencing analysis, 14,028 putative lncRNA transcripts were identified, including 4525 differentially expressed lncRNAs (DELs). Additional research revealed that in mature xylem, a total of 2320 DELs were upregulated and 2205 were downregulated compared to developing xylem. Meanwhile, there were a total of 8122 differentially expressed mRNAs (DEMs) that were upregulated and 16,424 that were downregulated in mature xylem compared with developing xylem. The cis- and trans-target genes of DELs were analyzed for Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment, which indicated that these DELs participate in controlling the phenylpropanoid and lignin biosynthesis pathway as well as the starch and sucrose metabolism pathway. Among the cis-regulated DELs, LNC_006291, LNC_006292, and LNC_006532 all participate in regulating multiple HCT gene family membranes. As targets, POPTR_001G045900v3 (CCR2) and POPTR_018G063500v3 (SUS) both have only one cis-regulatory lncRNA, referred to as LNC_000057 and LNC_006212, respectively. Moreover, LNC_004484 and two DELs named LNC_008014 and LNC_010781 were revealed to be important nodes in the co-expression network of trans-lncRNAs and mRNAs associated to the lignin biosynthesis pathway and cellulose and xylan biosynthetic pathways, respectively. Finally, quantitative real-time PCR (qRT-PCR) was used to confirme 34 pairs of lncRNA-mRNA. Taken together, these findings may help to clarify the regulatory role that lncRNAs play in xylem development and wood formation.


Subject(s)
Populus , RNA, Long Noncoding , RNA, Messenger/genetics , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Populus/genetics , Lignin , Xylem/genetics , Xylem/metabolism , Gene Regulatory Networks , Gene Expression Profiling
19.
J Exp Bot ; 74(15): 4401-4414, 2023 08 17.
Article in English | MEDLINE | ID: mdl-37210666

ABSTRACT

Plasmodesmata (PD) are plasma membrane-lined cytoplasmic nanochannels that mediate cell-to-cell communication across the cell wall. A range of proteins are embedded in the PD plasma membrane and endoplasmic reticulum (ER), and function in regulating PD-mediated symplasmic trafficking. However, knowledge of the nature and function of the ER-embedded proteins in the intercellular movement of non-cell-autonomous proteins is limited. Here, we report the functional characterization of two ER luminal proteins, AtBiP1/2, and two ER integral membrane proteins, AtERdj2A/B, which are located within the PD. These PD proteins were identified as interacting proteins with cucumber mosaic virus (CMV) movement protein (MP) in co-immunoprecipitation studies using an Arabidopsis-derived plasmodesmal-enriched cell wall protein preparation (PECP). The AtBiP1/2 PD location was confirmed by TEM-based immunolocalization, and their AtBiP1/2 signal peptides (SPs) function in PD targeting. In vitro/in vivo pull-down assays revealed the association between AtBiP1/2 and CMV MP, mediated by AtERdj2A, through the formation of an AtBiP1/2-AtERdj2-CMV MP complex within PD. The role of this complex in CMV infection was established, as systemic infection was retarded in bip1/bip2w and erdj2b mutants. Our findings provide a model for a mechanism by which the CMV MP mediates cell-to-cell trafficking of its viral ribonucleoprotein complex.


Subject(s)
Arabidopsis , Cucumovirus , Cytomegalovirus Infections , Arabidopsis/metabolism , Plasmodesmata/metabolism , Cucumovirus/metabolism , Endoplasmic Reticulum/metabolism , Cytomegalovirus Infections/metabolism , Plant Viral Movement Proteins/genetics , Plant Viral Movement Proteins/metabolism , Nicotiana/metabolism
20.
Plant Physiol ; 192(4): 2902-2922, 2023 08 03.
Article in English | MEDLINE | ID: mdl-37226859

ABSTRACT

Amur honeysuckle (Lonicera maackii) is a widely used medicinal plant of the Caprifoliaceae family that produces chlorogenic acid. Research on this plant mainly focuses on its ornamental value and medicinal compounds, but a reference genome sequence and molecular resources for accelerated breeding are currently lacking. Herein, nanopore sequencing and high-throughput chromosome conformation capture (Hi-C) allowed a chromosome-level genome assembly of L. maackii (2n = 18). A global view of the gene regulatory network involved in the biosynthesis of chlorogenic acid and the dynamics of fruit coloration in L. maackii was established through metabolite profiling and transcriptome analyses. Moreover, we identified the genes encoding hydroxycinnamoyl-CoA quinate transferase (LmHQT) and hydroxycinnamoyl-CoA shikimic/quinate transferase (LmHCT), which localized to the cytosol and nucleus. Heterologous overexpression of these genes in Nicotiana benthamiana leaves resulted in elevated chlorogenic acid contents. Importantly, HPLC analyses revealed that LmHCT and LmHQTs recombinant proteins modulate the accumulation of chlorogenic acid (CGA) using quinic acid and caffeoyl CoA as substrates, highlighting the importance of LmHQT and LmHCT in CGA biosynthesis. These results confirmed that LmHQTs and LmHCT catalyze the biosynthesis of CGA in vitro. The genomic data presented in this study will offer a valuable resource for the elucidation of CGA biosynthesis and facilitating selective molecular breeding.


Subject(s)
Chlorogenic Acid , Lonicera , Chlorogenic Acid/metabolism , Lonicera/genetics , Lonicera/metabolism , Quinic Acid/metabolism , Plant Breeding , Chromosome Mapping
SELECTION OF CITATIONS
SEARCH DETAIL