Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.222
Filter
1.
Chem Sci ; 15(26): 10207-10213, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38966362

ABSTRACT

NiII porphyrin (P) and NiII 5,15-diazaporphyrin (DAP) hybrid tapes were synthesized by Suzuki-Miyaura cross-coupling reactions of meso- or ß-borylated P with ß-brominated DAP followed by intramolecular oxidative fusion reactions. Meso-ß doubly linked hybrid tapes were synthesized by oxidation of singly linked precursors with DDQ-FeCl3. Synthesis of triply linked hybrid tapes was achieved by oxidation with DDQ-FeCl3-AgOTf with suppression of peripheral ß-chlorination. In these tapes, DAP segments were present as a 20π-electronic unit, but their local antiaromatic contribution was trivial. Remarkably, these hybrid tapes were stable and exhibited extremely enhanced absorption bands in the NIR region and multiple reversible redox waves. A pentameric hybrid tape showed a remarkably sharp and red-shifted band at 1168 nm with ε = 5.75 × 105 M-1 cm-1. Singly linked P-DAP dyads were oxidized with DDQ-FeCl3 to give stable radicals, which were oxidized further to afford dimeric hybrid tapes possessing a nitrogen atom at the peripheral-side meso-position.

2.
BMC Oral Health ; 24(1): 742, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38937712

ABSTRACT

BACKGROUND: Head and neck squamous cell carcinoma (HNSCC) is the sixth most common malignancy worldwide, characterized by high morbidity, high mortality, and poor prognosis. Collagen triple helix repeat containing 1 (CTHRC1) has been shown to be highly expressed in various cancers. However, its biological functions, potential role as a biomarker, and its relationship with immune infiltrates in HNSCC remain unclear. Our principal objective was to analyze CTHRC1 expression, its prognostic implications, biological functions, and its effects on the immune system in HNSCC patients using bioinformatics analysis. METHODS: The expression matrix was obtained from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO). CTHRC1 expression in HNSCC was analyzed between tumor and adjacent normal tissues, different stages were compared, and its impact on clinical prognosis was assessed using Kaplan-Meier analysis. Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and Gene Set Variation Analysis (GSVA) were employed for enrichment analysis. The Search Tool for the Retrieval of Interacting Genes database (STRING) was used to analyze protein-protein interactions. Pearson correlation tests were used to investigate the association between CTHRC1 expression and immune checkpoints. The correlation between CTHRC1 and immune infiltration was investigated using CIBERSORT, TIMER, and ESTIMATE. RESULTS: Compared to adjacent normal tissues, CTHRC1 was found to be highly overexpressed in tumors. Increased expression of CTHRC1 was more evident in the advanced stage of HNSCC and predicted a poor prognosis. Most genes related to CTHRC1 in HNSCC were enriched in physiological functions of Extracellular matrix(ECM) and tumor. Furthermore, several immune checkpoints, such as TNFSF4 and CD276 have been shown to be associated with CTHRC1 expression. Notably, the level of CTHRC1 expression correlated significantly with immune infiltration levels, particularly activated macrophages in HNSCC. CONCLUSIONS: High expression of CTHRC1 predicts poor prognosis and is associated with immune infiltration in HNSCC, confirming its utility as a tumor marker for HNSCC. TRIAL REGISTRATION: Not applicable. All data are from public databases and do not contain any clinical trials.


Subject(s)
Biomarkers, Tumor , Extracellular Matrix Proteins , Head and Neck Neoplasms , Squamous Cell Carcinoma of Head and Neck , Humans , Biomarkers, Tumor/metabolism , Prognosis , Squamous Cell Carcinoma of Head and Neck/immunology , Squamous Cell Carcinoma of Head and Neck/genetics , Extracellular Matrix Proteins/genetics , Extracellular Matrix Proteins/metabolism , Head and Neck Neoplasms/immunology , Head and Neck Neoplasms/genetics , Head and Neck Neoplasms/metabolism , Computational Biology , Male
3.
Adv Mater ; : e2405761, 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38923441

ABSTRACT

Abdominal aortic aneurysm (AAA) is a highly lethal cardiovascular disease that currently lacks effective pharmacological treatment given the complex pathophysiology of the disease. Here, single-cell RNA-sequencing data from patients with AAA and a mouse model are analyzed, which reveals pivotal pathological changes, including the M1-like polarization of macrophages and the loss of contractile function in smooth muscle cells (SMCs). Both cell types express the integrin αvß3, allowing for their dual targeting with a single rationally designed molecule. To this end, a biocompatible nanodrug, which is termed EVMS@R-HNC, that consists of the multifunctional drug everolimus (EVMS) encapsulated by the hepatitis B virus core protein modifies to contain the RGD sequence to specifically bind to integrin αvß3 is designed. Both in vitro and in vivo results show that EVMS@R-HNC can target macrophages as well as SMCs. Upon binding of the nanodrug, the EVMS is released intracellularly where it exhibits multiple functions, including inhibiting M1 macrophage polarization, thereby suppressing the self-propagating inflammatory cascade and immune microenvironment imbalance, while preserving the normal contractile function of SMCs. Collectively, these results suggest that EVMS@R-HNC presents a highly promising therapeutic approach for the management of AAA.

4.
J Am Chem Soc ; 146(25): 17201-17210, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38874405

ABSTRACT

As one of the most lethal cardiovascular diseases, aortic dissection (AD) is initiated by overexpression of reactive oxygen species (ROS) in the aorta that damages the vascular structure and finally leads to massive hemorrhage and sudden death. Current drugs used in clinics for AD treatment fail to efficiently scavenge ROS to a large extent, presenting undesirable therapeutic effect. In this work, a nanocatalytic antioxidation concept has been proposed to elevate the therapeutic efficacy of AD by constructing a cobalt nanocatalyst with a biomimetic structure that can scavenge pathological ROS in an efficient and sustainable manner. Theoretical calculations demonstrate that the antioxidation reaction is catalyzed by the redox transition between hydroxocobalt(III) and oxo-hydroxocobalt(V) accompanied by inner-sphere proton-coupled two-electron transfer, forming a nonassociated activation catalytic cycle. The efficient antioxidation action of the biomimetic nanocatalyst in the AD region effectively alleviates oxidative stress, which further modulates the aortic inflammatory microenvironment by promoting phenotype transition of macrophages. Consequently, vascular smooth muscle cells are also protected from inflammation in the meantime, suppressing AD progression. This study provides a nanocatalytic antioxidation approach for the efficient treatment of AD and other cardiovascular diseases.


Subject(s)
Antioxidants , Aortic Dissection , Cobalt , Catalysis , Cobalt/chemistry , Cobalt/pharmacology , Aortic Dissection/drug therapy , Aortic Dissection/pathology , Antioxidants/chemistry , Antioxidants/pharmacology , Animals , Biomimetic Materials/chemistry , Biomimetic Materials/pharmacology , Biomimetic Materials/chemical synthesis , Mice , Reactive Oxygen Species/metabolism , Humans , Oxidative Stress/drug effects , Metal Nanoparticles/chemistry
5.
Heliyon ; 10(11): e31816, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38841440

ABSTRACT

Objective: This study aimed to delineate the clear cell renal cell carcinoma (ccRCC) intrinsic subtypes through unsupervised clustering of radiomics and transcriptomics data and to evaluate their associations with clinicopathological features, prognosis, and molecular characteristics. Methods: Using a retrospective dual-center approach, we gathered transcriptomic and clinical data from ccRCC patients registered in The Cancer Genome Atlas and contrast-enhanced computed tomography images from The Cancer Imaging Archive and local databases. Following the segmentation of images, radiomics feature extraction, and feature preprocessing, we performed unsupervised clustering based on the "CancerSubtypes" package to identify distinct radiotranscriptomic subtypes, which were then correlated with clinical-pathological, prognostic, immune, and molecular characteristics. Results: Clustering identified three subtypes, C1, C2, and C3, each of which displayed unique clinicopathological, prognostic, immune, and molecular distinctions. Notably, subtypes C1 and C3 were associated with poorer survival outcomes than subtype C2. Pathway analysis highlighted immune pathway activation in C1 and metabolic pathway prominence in C2. Gene mutation analysis identified VHL and PBRM1 as the most commonly mutated genes, with more mutated genes observed in the C3 subtype. Despite similar tumor mutation burdens, microsatellite instability, and RNA interference across subtypes, C1 and C3 demonstrated greater tumor immune dysfunction and rejection. In the validation cohort, the various subtypes showed comparable results in terms of clinicopathological features and prognosis to those observed in the training cohort, thus confirming the efficacy of our algorithm. Conclusion: Unsupervised clustering based on radiotranscriptomics can identify the intrinsic subtypes of ccRCC, and radiotranscriptomic subtypes can characterize the prognosis and molecular features of tumors, enabling noninvasive tumor risk stratification.

6.
Biomater Sci ; 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38881248

ABSTRACT

As promising luminescence nanoparticles, near-infrared (NIR) persistent luminescence nanoparticles (PLNPs) have received extensive attention in the field of high-sensitivity bioimaging in recent years. However, NIR PLNPs face problems such as short excitation wavelengths and single imaging modes, which limit their applications in in vivo reactivated imaging and multimodal imaging. Here, we report for the first time novel Gd2GaTaO7:Cr3+,Yb3+ (GGTO) NIR PLNPs that integrate X-ray activated NIR persistent luminescence (PersL), high X-ray attenuation and excellent magnetic properties into a single nanoparticle (NP). In this case, Cr3+ is used as the luminescence center. The co-doped Yb3+ and coating effectively enhance the X-ray activated NIR PersL. At the same time, the presence of the high-Z element Ta also makes the GGTO NPs exhibit high X-ray attenuation performance, which can be used as a CT contrast agent to achieve in vivo CT imaging. In addition, since the matrix contains a large amount of Gd, the GGTO NPs show remarkable magnetic properties, which can realize in vivo MR imaging. GGTO NPs combine the trimodal benefits of X-ray reactivated PersL, CT and MR imaging and are suitable for single or combined applications that require high sensitivity and spatial resolution imaging.

7.
Clin Oral Investig ; 28(7): 384, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38888691

ABSTRACT

OBJECTIVES: The study was to explore the causal effects of sleep characteristics on temporomandibular disorder (TMD)-related pain using Mendelian randomization (MR) analysis. MATERIALS AND METHODS: Five sleep characteristics (short sleep, insomnia, chronotype, snoring, sleep apnea) were designated as exposure factors. Data were obtained from previous publicized genome-wide association studies and single nucleotide polymorphisms (SNPs) strongly associated with them were utilized as instrumental variables (IVs). TMD-related pain was designed as outcome variable and sourced from the FinnGens database. MR analysis was employed to explore the causal effects of the five sleep characteristics on TMD-related pain. The causal effect was analyzed using the inverse variance-weighted (IVW), weighted median, and MR-Egger methods. Subsequently, sensitivity analyses were conducted using Cochran's Q tests, funnel plots, leave-one-out analyses, and MR-Egger intercept tests. RESULTS: A causal effect of short sleep on TMD-related pain was revealed by IVW (OR: 1.60, 95% CI: 1.06-2.41, P = 0.026). No causal relationship was identified between other sleep characteristics (insomnia, chronotype, snoring, sleep apnea) and TMD-related pain. CONCLUSIONS: Our study suggests that short sleep may increase the risk of TMD-related pain, while there was no causal relationship between other sleep characteristics and TMD-related pain. Further studies are warranted to deepen and definitively clarify their relationship. CLINICAL RELEVANCE: These findings reveal that the short sleep may be a risk factor of TMD-related pain and highlight the potential therapeutical effect of extending sleep time on alleviating TMD-related pain.


Subject(s)
Mendelian Randomization Analysis , Polymorphism, Single Nucleotide , Temporomandibular Joint Disorders , Humans , Temporomandibular Joint Disorders/genetics , Genome-Wide Association Study , Risk Factors , Snoring , Sleep Wake Disorders/genetics , Sleep Apnea Syndromes/genetics
8.
Materials (Basel) ; 17(11)2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38893970

ABSTRACT

Throughout the nuclear power production process, the disposal of radioactive waste has consistently raised concerns about environmental safety. When the metal tanks used for waste disposal are corroded, radionuclides seep into the groundwater environment and eventually into the biosphere, causing significant damage to the environment. Hence, investigating the adsorption behavior of radionuclides on the corrosion products of metal tanks used for waste disposal is an essential component of safety and evaluation protocols at disposal sites. In order to understand the adsorption behavior of important radionuclides 60Co, 59Ni, 90Sr, 135Cs and 129I on α-FeOOH, the influences of different pH values, contact time, temperature and ion concentration on the adsorption rate were studied. The adsorption mechanism was also discussed. It was revealed that the adsorption of key nuclides onto α-FeOOH is significantly influenced by both pH and temperature. This change in surface charge corresponds to alterations in the morphology of nuclide ions within the system, subsequently impacting the adsorption efficiency. Sodium ions (Na+) and chlorate ions (ClO3-) compete for coordination with nuclide ions, thereby exerting an additional influence on the adsorption process. The XPS analysis results demonstrate the formation of an internal coordination bond (Ni-O bond) between Ni2+ and iron oxide, which is adsorbed onto α-FeOOH.

9.
Adv Sci (Weinh) ; : e2400611, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38873823

ABSTRACT

Immunosuppression is a major hallmark of tumor progression in non-small cell lung cancer (NSCLC). Cluster of differentiation 147 (CD147), an important pro-tumorigenic factor, is closely linked to NSCLC immunosuppression. However, the role of CD147 di-methylation in the immunosuppressive tumor microenvironment (TME) remains unclear. Here, di-methylation of CD147 at Lys148 (CD147-K148me2) is identified as a common post-translational modification (PTM) in NSCLC that is significantly associated with unsatisfying survival outcomes among NSCLC sufferers, especially those in the advanced stages of the disease. The methyltransferase NSD2 catalyzes CD147 to generate CD147-K148me2. Further analysis demonstrates that CD147-K148me2 reestablishes the immunosuppressive TME and promotes NSCLC progression. Mechanistically, this modification promotes the interaction between cyclophilin A (CyPA) and CD147, and in turn, increases CCL5 gene transcription by activating p38-ZBTB32 signaling, leading to increased NSCLC cell-derived CCL5 secretion. Subsequently, CD147-K148me2-mediated CCL5 upregulation facilitates M2-like tumor-associated macrophage (TAM) infiltration in NSCLC tissues via CCL5/CCR5 axis-dependent intercellular crosstalk between tumor cells and macrophages, which is inhibited by blocking CD147-K148me2 with the targeted antibody 12C8. Overall, this study reveals the role of CD147-K148me2-driven intercellular crosstalk in the development of NSCLC immunosuppression, and provides a potential interventional strategy for PTM-targeted NSCLC therapy.

10.
Mar Pollut Bull ; 203: 116404, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38718546

ABSTRACT

This study aims to address the suboptimal performance of conventional denitrifying strains in treating mariculture tail water (MTW) containing inorganic nitrogen (IN). The concentration of inorganic nitrogen in the mariculture tail water is about 5-20 mg·L-1. A biofilm treatment process was developed and evaluated using an anoxic-anoxic-aerobic biofilter composite system inoculated with the denitrifying strain Meyerozyma guilliermondii Y8. The removal effect of total nitrogen (TN), IN, and Chemical Oxygen Demand (CODMn) from MTW was investigated. The results indicate that the A2O composite biological filter has excellent pollutant removal efficiency within 25 days of operation, after the acclimation of the denitrifying microorganisms. The initial concentrations of TN, IN, and CODMn ranged between 10.24 and 12.89 mg·L-1, 7.84-10.49 mg·L-1, and 9.44-11.52 mg·L-1, respectively, and the removal rates of these indexes reached 38-68 %, 45-70 %, and 55-70 %, respectively. The experiments with different hydraulic retention times (HRT = 6 h, 8 h, 10 h) demonstrated that longer HRT was more conducive to the removal of inorganic nitrogen. Moreover, scanning electron microscopy observations revealed that the target strain successfully grew and attached to the filler in large quantities. The findings of this study provide practical guidance for the development of efficient biofilm processes for the treatment of MTW.


Subject(s)
Nitrogen , Water Pollutants, Chemical , Anaerobiosis , Biofilms , Waste Disposal, Fluid/methods , Denitrification , Biological Oxygen Demand Analysis , Aquaculture , Biodegradation, Environmental , Water Purification/methods
11.
Int J Hyperthermia ; 41(1): 2353309, 2024.
Article in English | MEDLINE | ID: mdl-38749506

ABSTRACT

OBJECTIVE: Incomplete thermal ablation (ITA) fosters the malignancy of residual cells in Hepatocellular carcinoma (HCC) with unclear mechanisms now. This study aims to investigate the expression changes of NDST2 following ITA of HCC and its impact on residual cancer cells. METHODS: An in vitro model of heat stress-induced liver cancer was constructed to measure the expression of NDST2 using Quantitative Real-Time PCR and Western blotting experiments. The sequencing data from nude mice were used for validation. The clinical significance of NDST2 in HCC was evaluated by integrating datasets. Gene ontology and pathway analysis were conducted to explore the potential signaling pathways regulated by NDST2. Additionally, NDST2 was knocked down in heat stress-induced HCC cells, and the effects of NDST2 on these cells were verified using Cell Counting Kit-8 assays, scratch assays, and Transwell assays. RESULTS: NDST2 expression levels are elevated in HCC, leading to a decrease in overall survival rates of HCC patients. Upregulation of immune checkpoint levels in high NDST2-expressing HCC may contribute to immune evasion by liver cancer cells. Additionally, the low mutation rate of NDST2 in HCC suggests a relatively stable expression of NDST2 in this disease. Importantly, animal and cell models treated with ITA demonstrate upregulated expression of NDST2. Knockdown of NDST2 in heat stress-induced liver cancer cells results in growth inhibition associated with gene downregulation. CONCLUSION: The upregulation of NDST2 can accelerate the progression of residual HCC after ITA, suggesting a potential role for NDST2 in the therapeutic efficacy and prognosis of residual HCC.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Carcinoma, Hepatocellular/pathology , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/metabolism , Liver Neoplasms/pathology , Liver Neoplasms/genetics , Liver Neoplasms/metabolism , Humans , Mice , Animals , Mice, Nude , Cell Line, Tumor
12.
Ther Adv Respir Dis ; 18: 17534666241249150, 2024.
Article in English | MEDLINE | ID: mdl-38757612

ABSTRACT

BACKGROUND: Although electromagnetic navigation bronchoscopy (ENB) is highly sensitive in the diagnosis of peripheral pulmonary nodules (PPNs), its diagnostic yield for subgroups of smaller PPNs is under evaluation. OBJECTIVES: Diagnostic yield evaluation of biopsy using ENB for PPNs <2 cm. DESIGN: The diagnostic yield, sensitivity, specificity, positive predictive value, and negative predictive value of the ENB-mediated biopsy for PPNs were evaluated. METHODS: Patients who had PPNs with diameters <2 cm and underwent ENB-mediated biopsy between May 2015 and February 2020 were consecutively enrolled. The final diagnosis was made via pathological examination after surgery. RESULTS: A total of 82 lesions from 65 patients were analyzed. The median tumor size was 11 mm. All lesions were subjected to ENB-mediated biopsy, of which 29 and 53 were classified as malignant and benign, respectively. Subsequent segmentectomy, lobectomy, or wedge resection, following pathological examinations were performed on 64 nodules from 57 patients. The overall sensitivity, specificity, positive predictive value, and negative predictive value for nodules <2 cm were 53.3%, 91.7%, 92.3%, and 51.2%, respectively. The receiver operating curve showed an area under the curve of 0.721 (p < 0.001). Additionally, the sensitivity, specificity, positive predictive value, and negative predictive value were 62.5%, 100%, 100%, and 42.9%, respectively, for nodules with diameters equal to or larger than 1 cm; and 30.8%, 86.7%, 66.7%, and 59.1%, respectively, for nodules less than 1 cm. In the subgroup analysis, neither the lobar location nor the distance of the PPNs to the pleura affected the accuracy of the ENB diagnosis. However, the spiculated sign had a negative impact on the accuracy of the ENB biopsy (p = 0.010). CONCLUSION: ENB has good specificity and positive predictive value for diagnosing PPNs <2 cm; however, the spiculated sign may negatively affect ENB diagnostic accuracy. In addition, the diagnostic reliability may only be limited to PPNs equal to or larger than 1 cm.


Subject(s)
Bronchoscopy , Electromagnetic Phenomena , Lung Neoplasms , Multiple Pulmonary Nodules , Predictive Value of Tests , Humans , Bronchoscopy/methods , Male , Female , Middle Aged , Aged , Lung Neoplasms/pathology , Lung Neoplasms/diagnosis , Multiple Pulmonary Nodules/pathology , Multiple Pulmonary Nodules/diagnosis , Multiple Pulmonary Nodules/surgery , Retrospective Studies , Tumor Burden , Adult , Solitary Pulmonary Nodule/pathology , Solitary Pulmonary Nodule/diagnosis , Solitary Pulmonary Nodule/surgery , Solitary Pulmonary Nodule/diagnostic imaging , Reproducibility of Results , Aged, 80 and over , Image-Guided Biopsy/methods
13.
Nat Commun ; 15(1): 4318, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38773067

ABSTRACT

Neural circuits with specific structures and diverse neuronal firing features are the foundation for supporting intelligent tasks in biology and are regarded as the driver for catalyzing next-generation artificial intelligence. Emulating neural circuits in hardware underpins engineering highly efficient neuromorphic chips, however, implementing a firing features-driven functional neural circuit is still an open question. In this work, inspired by avoidance neural circuits of crickets, we construct a spiking feature-driven sensorimotor control neural circuit consisting of three memristive Hodgkin-Huxley neurons. The ascending neurons exhibit mixed tonic spiking and bursting features, which are used for encoding sensing input. Additionally, we innovatively introduce a selective communication scheme in biology to decode mixed firing features using two descending neurons. We proceed to integrate such a neural circuit with a robot for avoidance control and achieve lower latency than conventional platforms. These results provide a foundation for implementing real brain-like systems driven by firing features with memristive neurons and put constructing high-order intelligent machines on the agenda.


Subject(s)
Action Potentials , Models, Neurological , Neural Networks, Computer , Neurons , Robotics , Robotics/instrumentation , Robotics/methods , Neurons/physiology , Animals , Action Potentials/physiology , Gryllidae/physiology , Nerve Net/physiology , Artificial Intelligence , Avoidance Learning/physiology
14.
Mil Med Res ; 11(1): 33, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38816888

ABSTRACT

Orthopedic conditions have emerged as global health concerns, impacting approximately 1.7 billion individuals worldwide. However, the limited understanding of the underlying pathological processes at the cellular and molecular level has hindered the development of comprehensive treatment options for these disorders. The advent of single-cell RNA sequencing (scRNA-seq) technology has revolutionized biomedical research by enabling detailed examination of cellular and molecular diversity. Nevertheless, investigating mechanisms at the single-cell level in highly mineralized skeletal tissue poses technical challenges. In this comprehensive review, we present a streamlined approach to obtaining high-quality single cells from skeletal tissue and provide an overview of existing scRNA-seq technologies employed in skeletal studies along with practical bioinformatic analysis pipelines. By utilizing these methodologies, crucial insights into the developmental dynamics, maintenance of homeostasis, and pathological processes involved in spine, joint, bone, muscle, and tendon disorders have been uncovered. Specifically focusing on the joint diseases of degenerative disc disease, osteoarthritis, and rheumatoid arthritis using scRNA-seq has provided novel insights and a more nuanced comprehension. These findings have paved the way for discovering novel therapeutic targets that offer potential benefits to patients suffering from diverse skeletal disorders.


Subject(s)
Sequence Analysis, RNA , Single-Cell Analysis , Humans , Sequence Analysis, RNA/methods , Single-Cell Analysis/methods , Bone Diseases/therapy , Bone Diseases/physiopathology , Bone and Bones , Computational Biology/methods
15.
Natl Sci Rev ; 11(5): nwae102, 2024 May.
Article in English | MEDLINE | ID: mdl-38689713

ABSTRACT

Spiking neural networks (SNNs) are gaining increasing attention for their biological plausibility and potential for improved computational efficiency. To match the high spatial-temporal dynamics in SNNs, neuromorphic chips are highly desired to execute SNNs in hardware-based neuron and synapse circuits directly. This paper presents a large-scale neuromorphic chip named Darwin3 with a novel instruction set architecture, which comprises 10 primary instructions and a few extended instructions. It supports flexible neuron model programming and local learning rule designs. The Darwin3 chip architecture is designed in a mesh of computing nodes with an innovative routing algorithm. We used a compression mechanism to represent synaptic connections, significantly reducing memory usage. The Darwin3 chip supports up to 2.35 million neurons, making it the largest of its kind on the neuron scale. The experimental results showed that the code density was improved by up to 28.3× in Darwin3, and that the neuron core fan-in and fan-out were improved by up to 4096× and 3072× by connection compression compared to the physical memory depth. Our Darwin3 chip also provided memory saving between 6.8× and 200.8× when mapping convolutional spiking neural networks onto the chip, demonstrating state-of-the-art performance in accuracy and latency compared to other neuromorphic chips.

16.
Int J Nanomedicine ; 19: 4377-4409, 2024.
Article in English | MEDLINE | ID: mdl-38774029

ABSTRACT

Angiogenesis, or the formation of new blood vessels, is a natural defensive mechanism that aids in the restoration of oxygen and nutrition delivery to injured brain tissue after an ischemic stroke. Angiogenesis, by increasing vessel development, may maintain brain perfusion, enabling neuronal survival, brain plasticity, and neurologic recovery. Induction of angiogenesis and the formation of new vessels aid in neurorepair processes such as neurogenesis and synaptogenesis. Advanced nano drug delivery systems hold promise for treatment stroke by facilitating efficient transportation across the the blood-brain barrier and maintaining optimal drug concentrations. Nanoparticle has recently been shown to greatly boost angiogenesis and decrease vascular permeability, as well as improve neuroplasticity and neurological recovery after ischemic stroke. We describe current breakthroughs in the development of nanoparticle-based treatments for better angiogenesis therapy for ischemic stroke employing polymeric nanoparticles, liposomes, inorganic nanoparticles, and biomimetic nanoparticles in this study. We outline new nanoparticles in detail, review the hurdles and strategies for conveying nanoparticle to lesions, and demonstrate the most recent advances in nanoparticle in angiogenesis for stroke treatment.


Subject(s)
Ischemic Stroke , Nanoparticles , Neovascularization, Physiologic , Humans , Ischemic Stroke/drug therapy , Animals , Nanoparticles/chemistry , Neovascularization, Physiologic/drug effects , Blood-Brain Barrier/drug effects , Liposomes/chemistry , Drug Delivery Systems/methods , Nanoparticle Drug Delivery System/chemistry , Angiogenesis
17.
Curr Med Imaging ; 2024 May 27.
Article in English | MEDLINE | ID: mdl-38803184

ABSTRACT

OBJECTIVE: This study aimed to develop an ultrasomics model for predicting lymph node metastasis preoperative in patients with gastric cancer (GC). METHODS: This study enrolled GC patients who underwent preoperative ultrasound examination. Manual segmentation of the region of interest (ROI) was performed by an experienced radiologist to extract radiomics features using the Pyradiomics software. The Z-score algorithm was used for feature normalization, followed by the Wilcoxon test to identify the most informative features. Linear prediction models were constructed using the least absolute shrinkage and selection operator (LASSO). The performance of the ultrasomics model was evaluated using the area under curve (AUC), sensitivity, specificity, and the corresponding 95% confidence intervals (CIs). RESULTS: A total of 464 GC patients (mean age: 60.4 years ±11.3 [SD]; 328 men [70.7%]) were analyzed, of whom 291 had lymph node metastasis. The patients were randomly assigned to either the training (n=324) or test (n=140) sets, using a 7:3 ratio. An ultrasomics model that consisted of 19 radiomics features was developed using Wilcoxon and LASSO algorithms in the training set. Our ultrasomics model showed moderate performance for lymph node metastasis prediction in both the training (AUC: 0.802, 95%CI: 0.752-0.851, P<0.001) and test sets (AUC: 0.802, 95%CI: 0.724-0.879, P<0.001). The calibration curve analysis indicated good agreement between the predicted probabilities of ultrasomics and actual lymph node metastasis status. CONCLUSION: Our study highlights the potential of a machine learning-based ultrasomics model in predicting lymph node metastasis in GC patients, offering implications for personalized therapy approaches.

18.
J Asian Nat Prod Res ; 26(8): 993-1000, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38629616

ABSTRACT

A new 14-membered resorcylic acid lactone (RAL14), chaetolactone A (1), along with three known ones (2-4), was obtained from the fermentation of the soil-derived fungus Chaetosphaeronema sp. SSJZ001. Their structures were established based on extensive spectroscopic data analyses (UV, IR, HRESIMS, 1D, and 2D NMR),13C NMR chemical shifts calculations coupled with the DP4+ probability method, theoretical calculations of ECD spectra, as well as X-ray diffraction analysis. All compounds were evaluated for their cytotoxic effects against A549, HO-8910, and MCF-7 cell lines.


Subject(s)
Ascomycota , Lactones , Lactones/chemistry , Lactones/pharmacology , Lactones/isolation & purification , Ascomycota/chemistry , Molecular Structure , Humans , Drug Screening Assays, Antitumor , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/isolation & purification , MCF-7 Cells , Crystallography, X-Ray , Nuclear Magnetic Resonance, Biomolecular
19.
Gynecol Oncol Rep ; 53: 101381, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38584802

ABSTRACT

Introduction: Lynch syndrome is caused by a germline mutation in mismatch repair (MMR) genes, leading to the loss of expression of MMR heterodimers, either MLH1/PMS2 or MSH2/MSH6, or isolated loss of PMS2 or MSH6. Concurrent loss of both heterodimers is uncommon, and patients carrying pathogenic variants affecting different MMR genes are rare, leading to the lack of cancer screening recommendation for these patients.Case presentation:Here, we reported a female with a family history of Lynch syndrome with MLH1 c.676C > T mutation. She developed endometrial cancer at 37 years old, with loss of MLH1/PMS2 expression. Immunohistochemical staining on tumor samples incidentally detected the additional loss of MSH6 expression. Whole exome sequencing on genomic DNA from peripheral blood revealed MSH6 c.2731C > T mutation, which was confirmed to be inherited from her mother, who had an early-onset ascending colon cancer without cancer family history. Conclusion: This is a rare case of the Lynch syndrome harboring germline mutations simultaneously in two different MMR genes inherited from two families with Lynch syndrome. The diagnosis of endometrial cancer at the age less than 40 years is uncommon for Lynch syndrome-related endometrial cancer. This suggests an earlier cancer screening for patients carrying two MMR mutations.

20.
Abdom Radiol (NY) ; 49(5): 1432-1443, 2024 05.
Article in English | MEDLINE | ID: mdl-38584190

ABSTRACT

PURPOSE: To assess whether the diagnostic performance of Sonazoid contrast-enhanced ultrasound (SZUS) is non-inferior to that of SonoVue contrast-enhanced ultrasound (SVUS) in diagnosing hepatocellular carcinoma (HCC) in individuals with high risk. MATERIALS AND METHODS: This prospective study was conducted from October 2020 to May 2022 and included participants with a high risk of HCC who underwent SZUS and SVUS. All lesions were confirmed by clinical or pathological diagnosis. Each nodule was classified according to the Contrast-Enhanced Ultrasound Liver Imaging Reporting and Data System version 2017 (CEUS LI-RADS v2017) for SVUS and SZUS and the modified CEUS LI-RADS (using Kupffer phase defect instead of late and mild washout) for SZUS. The diagnostic performance of both two modalities for all observations was compared. Analysis of the vascular phase and Kupffer phase imaging characteristics of CEUS was performed. RESULTS: One hundred and fifteen focal liver lesions from 113 patients (94 HCCs, 12 non-HCC malignancies, and 9 benign lesions) were analysed. According to CEUS LI-RADS (v2017), SVUS and SZUS showed similar sensitivity (71.3% vs. 72.3%) and specificity (85.7% vs. 81.0%) in HCC diagnosis. However, the modified CEUS LI-RADS did not significantly improve the diagnostic efficacy of Sonazoid compared to CEUS LI-RADS v2017, having equivalent sensitivity (73.4% vs. 72.3%) and specificity (81.0% vs. 81.0%). The agreement between SVUS and SZUS for all observations was 0.610 (95% CI 0.475, 0.745), while for HCCs it was 0.452 (95% CI 0.257, 0.647). CONCLUSION: Using LI-RADS v2017, SZUS and SVUS showed non-inferior efficacy in evaluating HCC lesions. In addition, adding Kupffer phase defects to SZUS does not notably improve its diagnostic efficacy.


Subject(s)
Carcinoma, Hepatocellular , Contrast Media , Ferric Compounds , Iron , Liver Neoplasms , Oxides , Ultrasonography , Humans , Liver Neoplasms/diagnostic imaging , Carcinoma, Hepatocellular/diagnostic imaging , Male , Prospective Studies , Female , Ultrasonography/methods , Middle Aged , Aged , Phospholipids , Image Enhancement/methods , Sensitivity and Specificity , Adult , Sulfur Hexafluoride
SELECTION OF CITATIONS
SEARCH DETAIL
...