Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Language
Publication year range
1.
Rev. bras. med. esporte ; Rev. bras. med. esporte;27(2): 201-206, Apr.-June 2021. tab, graf
Article in English | LILACS | ID: biblio-1280061

ABSTRACT

ABSTRACT Introduction: We applied three-dimensional gait analysis to assess the effects of enhanced active contraction of the transversus abdominis (EACTA) during walking. We sought to evaluate the effect of EACTA during walking in order to improve walking quality. Methods: Thirty college students were recruited and trained to perform EACTA during walking. We examined gait parameters under different conditions, including EACTA and habitual ACTA (natural walking with mild contraction of the feedforward mechanism of ACTA, HACTA) during walking using three-dimensional gait analysis. We compared differences in gait parameters under the two walking conditions using SPSS 16.0 statistical software. Results: The following gait parameters were significantly lower under EACTA conditions than under HACTA conditions (P < 0.05): stance phase, 59.151% ± 1.903% vs. 59.825% ± 1.495%; stride time, 1.104 s ± 0.080 s vs. 1.134 s ± 0.073 s:; stance time, 0.656 s ± 0.057 s vs. 0.678 s ± 0.053 s; and swing time, 0.447 s ± 0.028 s vs. 0.454 s ± 0.031 s, respectively. Gait parameters single support phase and mean velocity were significantly higher for EACTA than for HACTA conditions (both P < 0.05). Conclusions: Overall, the results revealed that EACTA during walking can improve gait. This method is simple, and EACTA training during walking to improve gait quality in daily life could provide a positive basis for people to strengthen the transverse abdominal muscle. Level of evidence III; Retrospective comparative study .


RESUMEN Introducción: Aplicamos el análisis tridimensional de la marcha para evaluar los efectos del aumento de la contracción activa del músculo transverso del abdomen (EACTA) durante la caminata. Buscamos evaluar el efecto del EACTA durante la caminata para mejorar su calidad. Métodos: Treinta estudiantes universitarios fueron reclutados y entrenados para realizar el EACTA durante la caminata. Examinamos los parámetros de la marcha en diferentes condiciones, incluyendo EACTA y ACTA habitual (caminata natural con leve contracción del mecanismo de feedforward del ACTA, HACTA) durante la caminata usando análisis tridimensional de la marcha. Comparamos las diferencias en los parámetros de la marcha en las dos condiciones de caminata en el software estadístico SPSS 16.0. Resultados: Los siguientes parámetros de marcha fueron significativamente más bajos en la condición EACTA que en condiciones HACTA (P <0,05): fase de apoyo 59,151 ± 1,903% vs 59,825 ± 1,495%, tiempo de zancada 1,104 s ± 0,080 s vs 1,134 s ± 0,073 s, tiempo de apoyo 0,656 s ± 0,057 s vs 0,678 s ± 0,053 s y tiempo de balance 0,447 s ± 0,028 s vs 0,454 s ± 0,031 s, respectivamente. Los parámetros de la marcha, fase de apoyo simple y velocidad promedio fueron significativamente mayores en el EACTA que en las condiciones HACTA (ambos P <0,05). Conclusiones: En general, los resultados revelaron que el EACTA durante la caminata puede mejorar la marcha. Este método es simple, y el entrenamiento del EACTA durante la caminata para mejorar la calidad de la marcha en la vida diaria puede ser una base positiva para el fortalecimiento del músculo transverso del abdomen. Nivel de evidencia III; Estudio retrospectivo comparativo .


RESUMO Introdução: Aplicamos a análise tridimensional da marcha para avaliar os efeitos do aumento da contração ativa do músculo transverso do abdome (EACTA) durante a caminhada. Procuramos avaliar o efeito do EACTA durante a caminhada para melhorar sua qualidade. Métodos: Trinta estudantes universitários foram recrutados e treinados para realizar o EACTA durante a caminhada. Examinamos os parâmetros da marcha em diferentes condições, incluindo EACTA e ACTA habitual (caminhada natural com leve contração do mecanismo de feedforward do ACTA, HACTA) durante a caminhada usando análise tridimensional da marcha. Comparamos as diferenças nos parâmetros da marcha nas duas condições de caminhada no software estatístico SPSS 16.0. Resultados: Os seguintes parâmetros da marcha foram significativamente mais baixos na condição EACTA do que em condições HACTA (P < 0,05): fase de apoio 59,151 ± 1,903% vs. 59,825 ± 1,495%, tempo de passada 1,104 s ± 0,080 s vs. 1,134 s ± 0,073 s, tempo de apoio 0,656 s ± 0,057 s vs. 0,678 s ± 0,053 s e tempo de balanço 0,447 s ± 0,028 s vs. 0,454 s ± 0,031 s, respectivamente. Os parâmetros da marcha fase de apoio simples e velocidade média foram significativamente maiores no EACTA do que nas condições HACTA (ambos P < 0,05). Conclusões: No geral, os resultados revelaram que o EACTA durante a caminhada pode melhorar a marcha. Esse método é simples, e o treinamento do EACTA durante a caminhada para melhorar a qualidade da marcha na vida diária pode ser uma base positiva para o fortalecimento do músculo transverso do abdome. Nível de evidência III; Estudo retrospectivo comparativo .


Subject(s)
Humans , Male , Female , Adolescent , Adult , Young Adult , Abdominal Muscles/physiology , Gait , Muscle Contraction/physiology , Imaging, Three-Dimensional , Gait Analysis
2.
Braz. j. microbiol ; Braz. j. microbiol;43(2): 627-634, Apr.-June 2012. tab
Article in English | LILACS | ID: lil-644479

ABSTRACT

Microbial lipids, which are also known as single cell oils (SCO), are produced by oleaginous microorganisms including oleaginous bacteria, yeast, fungus and algae through converting carbohydrates into lipids under certain conditions. Due to its unique environment having extremely low temperature and anoxia, the Tibetan Plateau is amongst the regions with numerous rare ecotypes such as arid desert, salt marsh, alpine permafrost, hot spring, and lawn. By using a rapid, convenient screening method, we identified 31 strains of oleaginous microorganisms from different habitats in the Tibetan Plateau, which include wetlands, lawn, hot spring, alpine permafrost, and saline-alkali soil. Molecular identity analysis showed that they belong to 15 different species, 7 of which are reported for the first time as lipid-producing microorganisms, that is, Cladosporium sp., Gibberella fujikuro, Ochrobactrum sp., Plectosphaerella sp., Tilletiopsis albescens, Backusella ctenidia, and Davidiella tassiana. The distribution of the oleaginous microorganisms varies with habitats. 11 strains were found in hot spring (35.5%), 10 in farmland (32.3%), 6 in lawn (19.4%), 2 in sand (6.4%), 1 in wetland (3.2%), and 1 in permafrost (3.2%). Carbon utilization analysis indicated that most of these filamentous fungi can use xylose and carboxymethyl cellulose (CMC) as carbon source, where Backusella ctenidia, Fusarium sp. and Gibberella fujikuroi have the strongest capability.


Subject(s)
Carboxymethylcellulose Sodium , Fermentation , Fungi/genetics , Fungi/isolation & purification , In Vitro Techniques , Yeasts/genetics , Yeasts/isolation & purification , Plant Oils/analysis , Polymerase Chain Reaction/methods , Xylose/analysis , Enzyme Activation , Methodology as a Subject
3.
Braz J Microbiol ; 43(2): 627-34, 2012 Apr.
Article in English | MEDLINE | ID: mdl-24031873

ABSTRACT

Microbial lipids, which are also known as single cell oils (SCO), are produced by oleaginous microorganisms including oleaginous bacteria, yeast, fungus and algae through converting carbohydrates into lipids under certain conditions. Due to its unique environment having extremely low temperature and anoxia, the Tibetan Plateau is amongst the regions with numerous rare ecotypes such as arid desert, salt marsh, alpine permafrost, hot spring, and lawn. By using a rapid, convenient screening method, we identified 31 strains of oleaginous microorganisms from different habitats in the Tibetan Plateau, which include wetlands, lawn, hot spring, alpine permafrost, and saline-alkali soil. Molecular identity analysis showed that they belong to 15 different species, 7 of which are reported for the first time as lipid-producing microorganisms, that is, Cladosporium sp., Gibberella fujikuro, Ochrobactrum sp., Plectosphaerella sp., Tilletiopsis albescens, Backusella ctenidia, and Davidiella tassiana. The distribution of the oleaginous microorganisms varies with habitats. 11 strains were found in hot spring (35.5%), 10 in farmland (32.3%), 6 in lawn (19.4%), 2 in sand (6.4%), 1 in wetland (3.2%), and 1 in permafrost (3.2%). Carbon utilization analysis indicated that most of these filamentous fungi can use xylose and carboxymethyl cellulose (CMC) as carbon source, where Backusella ctenidia, Fusarium sp. and Gibberella fujikuroi have the strongest capability.

4.
Article in English | VETINDEX | ID: vti-444901

ABSTRACT

Microbial lipids, which are also known as single cell oils (SCO), are produced by oleaginous microorganisms including oleaginous bacteria, yeast, fungus and algae through converting carbohydrates into lipids under certain conditions. Due to its unique environment having extremely low temperature and anoxia, the Tibetan Plateau is amongst the regions with numerous rare ecotypes such as arid desert, salt marsh, alpine permafrost, hot spring, and lawn. By using a rapid, convenient screening method, we identified 31 strains of oleaginous microorganisms from different habitats in the Tibetan Plateau, which include wetlands, lawn, hot spring, alpine permafrost, and saline-alkali soil. Molecular identity analysis showed that they belong to 15 different species, 7 of which are reported for the first time as lipid-producing microorganisms, that is, Cladosporium sp., Gibberella fujikuro, Ochrobactrum sp., Plectosphaerella sp., Tilletiopsis albescens, Backusella ctenidia, and Davidiella tassiana. The distribution of the oleaginous microorganisms varies with habitats. 11 strains were found in hot spring (35.5%), 10 in farmland (32.3%), 6 in lawn (19.4%), 2 in sand (6.4%), 1 in wetland (3.2%), and 1 in permafrost (3.2%). Carbon utilization analysis indicated that most of these filamentous fungi can use xylose and carboxymethyl cellulose (CMC) as carbon source, where Backusella ctenidia, Fusarium sp. and Gibberella fujikuroi have the strongest capability.

SELECTION OF CITATIONS
SEARCH DETAIL