Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 259
Filter
1.
Metabolism ; 161: 156043, 2024 Sep 30.
Article in English | MEDLINE | ID: mdl-39357599

ABSTRACT

AIMS: To compare the efficacy of thyroid hormone receptor beta (THR-ß) agonists, fibroblast growth factor 21 (FGF-21) analogues, glucagon-like peptide-1 receptor agonists (GLP-1RAs), GLP-1-based polyagonists, and pan-peroxisome proliferator-activated receptor (Pan-PPAR) agonists in the treatment of metabolic dysfunction-associated steatotic liver disease (MASLD). METHODS: A database search for relevant randomized double-blind controlled trials published until July 11, 2024, was conducted. Primary outcomes were the relative change in hepatic fat fraction (HFF) and liver stiffness assessed non-invasively by magnetic resonance imaging proton density fat fraction and elastography. Secondary outcomes included histology, liver injury index, lipid profile, glucose metabolism, blood pressure, and body weight. RESULTS: Twenty-seven trials (5357 patients with MASLD) were identified. For HFF reduction, GLP-1-based polyagonists were most potentially effective (mean difference [MD] -51.47; 95 % confidence interval [CI]: -68.25 to -34.68; surface under the cumulative ranking curve [SUCRA] 84.9) vs. placebo, followed by FGF-21 analogues (MD -47.08; 95 % CI: -58.83 to -35.34; SUCRA 75.5), GLP-1R agonists (MD -37.36; 95 % CI: -69.52 to -5.21; SUCRA 52.3) and THR-ß agonists (MD -33.20; 95 % CI: -43.90 to -22.51; SUCRA 36.9). For liver stiffness, FGF-21 analogues were most potentially effective (MD -9.65; 95 % CI: -19.28 to -0.01; SUCRA 82.2) vs. placebo, followed by THR-ß agonists (MD -5.79; 95 % CI: -9.50 to -2.09; SUCRA 58.2), and GLP-1RAs (MD -5.58; 95 % CI: -15.02 to 3.86; SUCRA 54.7). For fibrosis improvement in histology, GLP-1-based polyagonists were most potentially effective, followed by FGF-21 analogues, THR-ß agonists, Pan-PPAR agonists, and GLP-1R agonists; For MASH resolution in histology, GLP-1-based polyagonists were most potentially effective, followed by THR-ß agonists, GLP-1R agonists, FGF-21 analogues, and Pan-PPAR agonists. THR-ß agonists are well-balanced in liver steatosis and fibrosis, and excel at improving lipid profiles; FGF-21 analogues are effective at improving steatosis and particularly exhibit strong antifibrotic abilities. GLP-1R agonists showed significant benefits in improving liver steatosis, glucose metabolism, and body weight. GLP-1-based polyagonists have demonstrated the most potential efficacy overall in terms of comprehensive curative effect. Pan-PPAR agonists showed distinct advantages in improving liver function and glucose metabolism. CONCLUSION: These results illustrate the relative superiority of the five classes of therapy in the treatment of MASLD and may serve as guidance for the development of combination therapies.

2.
Acta Biomater ; 2024 Sep 21.
Article in English | MEDLINE | ID: mdl-39307259

ABSTRACT

Understanding the viscoelastic properties of atherosclerotic plaques at rupture-prone scales is crucial for assessing their vulnerability. Here, we develop a Hybrid Hierarchical theory-Microrheology (HHM) approach, enabling the analysis of multiscale mechanical variations and distribution changes in regional tissue viscoelasticity within plaques across different spatial scales. We disclose a universal two-stage power-law rheology in plaques, characterized by distinct power-law exponents (αshort and αlong), which serve as mechanical indexes for plaque components and assessing mechanical gradients. We further propose a self-similar hierarchical theory that effectively delineates plaque heterogeneity from the cytoplasm, cell, to tissue levels. Moreover, our proposed multi-layer perceptron model addresses the viscoelastic heterogeneity and gradients within plaques, offering a promising diagnostic strategy for identifying unstable plaques. These findings not only advance our understanding of plaque mechanics but also pave the way for innovative diagnostic approaches in cardiovascular disease management. STATEMENT OF SIGNIFICANCE: Our study pioneers a Hybrid Hierarchical theory-Microrheology (HHM) approach to dissect the intricate viscoelasticity of atherosclerotic plaques, focusing on distinct components including cap fibrosis, lipid pools, and intimal fibrosis. We unveil a universal two-stage power-law rheology capturing mechanical variations across plaque structures. The proposed hierarchical model adeptly captures viscoelasticity changes from cytoplasm, cell to tissue levels. Based on the newly proposed markers, we further develop a machine learning (ML) diagnostic model that sets precise criteria for evaluating plaque components and heterogeneity. This work not only reveals the comprehensive mechanical heterogeneity within plaques but also introduces a mechanical marker-based ML strategy for assessing plaque conditions, offering a significant leap towards understanding and diagnosing atherosclerotic risks.

3.
Clin Exp Metastasis ; 2024 Aug 31.
Article in English | MEDLINE | ID: mdl-39215870

ABSTRACT

Oral squamous cell carcinoma (OSCC) is a prevalent and aggressive malignancy, with metastasis being the leading cause of death in patients. Unfortunately, therapeutic options for metastatic OSCC remain limited. Peptidylarginine deiminases (PADI) are implicated in various tumorigenesis and metastasis processes across multiple cancers. However, the role of PADI2, a type of PADI, in OSCC is not well understood. This study aimed to explore the impact of PADI2 on epithelial-mesenchymal transition (EMT), angiogenesis, and OSCC metastasis. The effect of PADI2 on EMT was evaluated using cell lines by Western blot analysis with shRNA targeting PADI2. In addition, the selective PADI2 inhibitor AFM32a was used to assess the effect of PADI2 on cancer metastasis and angiogenesis in animal models. Our findings indicated that PADI2 expression correlated with EMT changes, and PADI2 knockdown reversed these changes, reducing cell proliferation, cell migration, and invasion. PADI2 inhibition also diminished tube formation in HUVECs and decreased secretion of angiogenesis-related chemokines CCL3, CCL5 and CCL20. In a mouse model, AFM32a markedly reduced lung metastasis and production of CCL3 and CCL5. Our in vitro and in vivo studies suggested inhibiting PADI2 could prevent OSCC metastasis by impeding EMT and angiogenesis via AKT/mTOR signaling pathway. These results highlight PADI2 as a potential therapeutic target for combating OSCC metastasis.

4.
J Adv Res ; 2024 Aug 06.
Article in English | MEDLINE | ID: mdl-39117107

ABSTRACT

INTRODUCTION: P. pastoris is a common host for effective biosynthesis of heterologous proteins as well as small molecules. Accurate regulation of gene transcription and protein synthesis is necessary to coordinate synthetic gene circuits and optimize cellular energy distribution. Traditional methanol or other inducible promoters, natural or engineered, have defects in either fermentation safety or expression capacity. The utilization of chemical inducers typically adds complexity to the product purification process, but there is no other well-controlled protein synthesis system than promoters yet. OBJECTIVE: The study aimed to address the aforementioned challenges by constructing light-regulated gene transcription and protein translation systems with excellent expression capacity and light sensitivity. METHODS: Trans-acting factors were designed by linking the N. crassa blue-light sensor WC-1 with the activation domain of endogenous transcription factors. Light inducible or repressive promoters were then constructed through chimeric design of cis-elements (light-responsive elements, LREs) and endogenous promoters. Various configurations of trans-acting factor/LRE pairs, along with different LRE positions and copy numbers were tested for optimal promoter performance. In addition to transcription, a light-repressive translation system was constructed through the "rare codon brake" design. Rare codons were deliberately utilized to serve as brakes during protein synthesis, which were switched on and off through the light-regulated changes in the expression of the corresponding pLRE-tRNA. RESULTS: As demonstrated with GFP, the light-inducible promoter 4pLRE-cPAOX1 was 70 % stronger than the constitutive promoter PGAP, with L/D ratio = 77. The light-repressive promoter PGAP-pLRE was strictly suppressed by light, with expression capacity comparable with PGAP in darkness. As for the light-repressive translation system, the "triple brake" design successfully eliminated leakage and achieved light repression on protein synthesis without any impact on mRNA expression. CONCLUSION: The newly designed light-regulated transcription and translation systems offer innovative tools that optimize the application of P. pastoris in biotechnology and synthetic biology.

5.
Phytomedicine ; 132: 155585, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39068811

ABSTRACT

BACKGROUND: Hepatic fibrosis (HF) runs through multiple stages of liver diseases and promotes these diseases progression. Oxysophoridine (OSR), derived from Sophora alopecuroides l., is a bioactive alkaloid that has been reported to antagonize alcoholic hepatic injury. However, whether OSR suppresses HF and the mechanisms involved in Nrf2 remain unknown. PURPOSE: Since the dysregulation of inflammation and oxidative stress is responsible for the excessive accumulation of extracellular matrix (ECM) and fibrosis in the liver. We hypothesized that OSR may attenuate HF by inhibiting inflammation and oxidative stress through activating Nrf2 signaling. METHODS: In this study, we employed LPS-stimulated HSC-T6 cells, RAW264.7 cells, and a CCl4-induced C57BL/6 mouse fibrotic model to evaluate its suppressing inflammation and oxidative stress, as well as fibrosis. RESULTS: The result showed that OSR significantly reduced α-SMA and TGF-ß1 at a low dose of 10 µM in vitro and at a dose of 50 mg/kg in vivo, which is comparable to Silymarin, the only Chinese herbal active ingredient that has been marketed for anti-liver fibrosis. Moreover, OSR effectively suppressed the expression of iNOS at a dose of 10 µM and COX-2 at a dose of 40 µM, respectively. Furthermore, OSR demonstrated inhibitory effects on the IL-1ß, IL-6, and TNF-α in vitro and almost extinguished cytokine storm in vivo. OSR exhibited antioxidative effects by reducing MDA and increasing GSH, thereby protecting the cell membrane against oxidative damage and reducing LDH release. Moreover, OSR effectively upregulated the protein levels of Nrf2, HO-1, and p62, but decreased p-NF-κB p65, p-IκBα, and Keap1. Alternatively, mechanisms involved in Nrf2 were verified by siNrf2 interference, siNrf2 interference revealed that the anti-fibrotic effect of OSR was attributed to its activation of Nrf2. CONCLUSION: The present study provided an effective candidate for HF involved in both activation of Nrf2 and blockage of NF-κB, which has not been reported in the published work. The present study provides new insights for the identification of novel drug development for HF.


Subject(s)
Alkaloids , Liver Cirrhosis , Mice, Inbred C57BL , NF-E2-Related Factor 2 , NF-kappa B , Oxidative Stress , Signal Transduction , Sophora , Animals , Oxidative Stress/drug effects , Mice , NF-E2-Related Factor 2/metabolism , Liver Cirrhosis/drug therapy , Alkaloids/pharmacology , NF-kappa B/metabolism , RAW 264.7 Cells , Male , Signal Transduction/drug effects , Sophora/chemistry , Inflammation/drug therapy , Carbon Tetrachloride , Rats , Transforming Growth Factor beta1/metabolism
6.
BMC Pulm Med ; 24(1): 357, 2024 Jul 24.
Article in English | MEDLINE | ID: mdl-39048959

ABSTRACT

BACKGROUND: Society is burdened with stroke-associated pneumonia (SAP) after intracerebral haemorrhage (ICH). Cerebral small vessel disease (CSVD) complicates clinical manifestations of stroke. In this study, we redefined the CSVD burden score and incorporated it into a novel radiological-clinical prediction model for SAP. MATERIALS AND METHODS: A total of 1278 patients admitted to a tertiary hospital between 1 January 2010 and 31 December 2019 were included. The participants were divided into training and testing groups using fivefold cross-validation method. Four models, two traditional statistical models (logistic regression and ISAN) and two machine learning models (random forest and support vector machine), were established and evaluated. The outcomes and baseline characteristics were compared between the SAP and non-SAP groups. RESULTS: Among the of 1278 patients, 281(22.0%) developed SAP after their first ICH. Multivariate analysis revealed that the logistic regression (LR) model was superior in predicting SAP in both the training and testing groups. Independent predictors of SAP after ICH included total CSVD burden score (OR, 1.29; 95% CI, 1.03-1.54), haematoma extension into ventricle (OR, 2.28; 95% CI, 1.87-3.31), haematoma with multilobar involvement (OR, 2.14; 95% CI, 1.44-3.18), transpharyngeal intubation operation (OR, 3.89; 95% CI, 2.7-5.62), admission NIHSS score ≥ 10 (OR, 2.06; 95% CI, 1.42-3.01), male sex (OR, 1.69; 95% CI, 1.16-2.52), and age ≥ 67 (OR, 2.24; 95% CI, 1.56-3.22). The patients in the SAP group had worse outcomes than those in the non-SAP group. CONCLUSION: This study established a clinically combined imaging model for predicting stroke-associated pneumonia and demonstrated superior performance compared with the existing ISAN model. Given the poor outcomes observed in patients with SAP, the use of individualised predictive nomograms is vital in clinical practice.


Subject(s)
Cerebral Hemorrhage , Machine Learning , Pneumonia , Stroke , Humans , Male , Female , Aged , Middle Aged , Cerebral Hemorrhage/diagnostic imaging , Cerebral Hemorrhage/complications , Stroke/complications , Stroke/diagnostic imaging , Pneumonia/diagnostic imaging , Pneumonia/complications , Retrospective Studies , Logistic Models , Cerebral Small Vessel Diseases/diagnostic imaging , Cerebral Small Vessel Diseases/complications , Tomography, X-Ray Computed , Risk Factors , Models, Statistical , Aged, 80 and over
7.
Small ; : e2402890, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38982951

ABSTRACT

Development of luminescent segmented heterostructures featuring multiple spatial-responsive blocks is important to achieve miniaturized photonic barcodes toward anti-counterfeit applications. Unfortunately, dynamic manipulation of the spatial color at micro/nanoscale still remains a formidable challenge. Here, a straightforward strategy is proposed to construct spatially varied heterostructures through amplifying the conformation-driven response in flexible lanthanide-metal-organic frameworks (Ln-MOFs), where the thermally induced minor conformational changes in organic donors dramatically modulate the photoluminescence of Ln acceptors. Notably, compositionally and structurally distinct heterostructures (1D and 2D) are further constructed through epitaxial growth of multiple responsive MOF blocks benefiting from the isomorphous Ln-MOF structures. The thermally controlled emissive colors with distinguishable spectra carry the fingerprint information of a specific heterostructure, thus allowing for the effective construction of smart photonic barcodes with spatially responsive characteristics. The results will deepen the understanding of the conformation-driven responsive mechanism and also provide guidance to fabricate complex stimuli-responsive hierarchical microstructures for advanced optical recording and high-security labels.

8.
Am J Emerg Med ; 83: 25-31, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38943709

ABSTRACT

OBJECTIVE: We aimed to investigate the prognostic factors of pediatric extracorporeal cardiopulmonary resuscitation (ECPR). METHODS: The retrospective study included a total of 77 pediatric cases (7 neonates and 70 children) who underwent ECPR after in-hospital and out-of-hospital cardiac arrest between July 2007 and December 2022. Primary endpoints were complications, while secondary endpoints included all-cause in-hospital mortality. RESULTS: Among the 45 cases experiencing complications, 4 neonates and 41 children had multiple simultaneous complications, primarily neurological issues in 25 cases. Additionally, organ failure occurred in 11 cases, and immunodeficiency was present in two cases. Furthermore, 9 cases experienced bleeding events, and 13 cases showed thrombosis. Patients with complications had lower weight, shorter ECMO durations, and longer CPR durations. Non-survivors had longer CPR durations and shorter durations of ECMO, ICU stay, and mechanical ventilation compared to survivors. Complications were more prevalent in non-survivors, particularly organ failure and bleeding events. CONCLUSION: Weight, CPR duration, and ECMO duration were associated with complications, suggesting areas for treatment optimization. The higher occurrence of complications in non-survivors underscores the importance of early detection and management to improve survival rates. Our findings suggest clinicians consider these factors in prognostic assessments to enhance the effectiveness of ECPR programs.


Subject(s)
Cardiopulmonary Resuscitation , Extracorporeal Membrane Oxygenation , Hospital Mortality , Humans , Retrospective Studies , Male , Female , Extracorporeal Membrane Oxygenation/methods , Infant , China/epidemiology , Child, Preschool , Cardiopulmonary Resuscitation/methods , Infant, Newborn , Child , Heart Arrest/therapy , Heart Arrest/mortality , Out-of-Hospital Cardiac Arrest/therapy , Out-of-Hospital Cardiac Arrest/mortality , Adolescent
10.
World Neurosurg ; 188: e312-e319, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38796145

ABSTRACT

BACKGROUND: Malignant cerebral edema (MCE) is associated with both net water uptake (NWU) and infarct volume. We hypothesized that NWU weighted by the affected Alberta Stroke Program Early Computed Tomography Score (ASPECTS) regions could serve as a quantitative imaging biomarker of aggravated edema development in acute ischemic stroke with large vessel occlusion (LVO). The aim of this study was to evaluate the performance of weighted NWU (wNWU) to predict MCE in patients with mechanical thrombectomy (MT). METHODS: We retrospectively analyzed consecutive patients who underwent MT due to LVO. NWU was computed from nonenhanced computed tomography scans upon admission using automated ASPECTS software. wNWU was derived by multiplying NWU with the number of affected ASPECTS regions in the ischemic hemisphere. Predictors of MCE were assessed through multivariate logistic regression analysis and receiver operating characteristic curves. RESULTS: NWU and wNWU were significantly higher in MCE patients than in non-MCE patients. Vessel recanalization status influenced the performance of wNWU in predicting MCE. In patients with successful recanalization, wNWU was an independent predictor of MCE (adjusted odds ratio 1.61; 95% confidence interval [CI] 1.24-2.09; P < 0.001). The model integrating wNWU, National Institutes of Health Stroke Scale, and collateral score exhibited an excellent performance in predicting MCE (area under the curve 0.80; 95% CI 0.75-0.84). Among patients with unsuccessful recanalization, wNWU did not influence the development of MCE (adjusted odds ratio 0.99; 95% CI 0.60-1.62; P = 0.953). CONCLUSIONS: This study revealed that wNWU at admission can serve as a quantitative predictor of MCE in LVO with successful recanalization after MT and may contribute to the decision for early intervention.


Subject(s)
Brain Edema , Humans , Brain Edema/diagnostic imaging , Brain Edema/etiology , Male , Female , Aged , Retrospective Studies , Middle Aged , Ischemic Stroke/diagnostic imaging , Ischemic Stroke/surgery , Aged, 80 and over , Thrombectomy/methods , Tomography, X-Ray Computed , Treatment Outcome
11.
J Neuroradiol ; 51(4): 101192, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38580049

ABSTRACT

BACKGROUND AND PURPOSE: A significant decrease of cerebral blood flow (CBF) is a risk factor for hemorrhagic transformation (HT) in acute ischemic stroke (AIS). This study aimed to ascertain whether the ratio of different CBF thresholds derived from computed tomography perfusion (CTP) is an independent risk factor for HT after mechanical thrombectomy (MT). METHODS: A retrospective single center cohort study was conducted on patients with AIS undergoing MT at the First Affiliated Hospital of Wenzhou Medical University from August 2018 to December 2023. The perfusion parameters before thrombectomy were obtained according to CTP automatic processing software. The low blood flow ratio (LFR) was defined as the ratio of brain volume with relative CBF <20 % over volume with relative CBF <30 %. HT was evaluated on the follow-up CT images. Binary logistic regression was used to analyze the correlation between parameters that differ between the two groups with regards to HT occurrence. The predictive efficacy was assessed utilizing the receiver operating characteristic curve. RESULTS: In total, 243 patients met the inclusion criteria. During the follow-up, 46.5 % of the patients (113/243) developed HT. Compared with the Non-HT group, the HT group had a higher LFR (0.47 (0.34-0.65) vs. 0.32 (0.07-0.56); P < 0.001). According to the binary logistic regression analysis, the LFR (aOR: 6.737; 95 % CI: 1.994-22.758; P = 0.002), Hypertension history (aOR: 2.231; 95 % CI: 1.201-4.142; P = 0.011), plasma FIB levels before MT (aOR: 0.641; 95 % CI: 0.456-0.902; P = 0.011), and the mismatch ratio (aOR: 0.990; 95 % CI: 0.980-0.999; P = 0.030) were independently associated with HT secondary to MT. The area under the curve of the regression model for predicting HT was 0.741. CONCLUSION: LFR, a ratio quantified via CTP, demonstrates potential as an independent risk factor of HT secondary to MT.


Subject(s)
Cerebrovascular Circulation , Ischemic Stroke , Thrombectomy , Humans , Male , Female , Ischemic Stroke/diagnostic imaging , Ischemic Stroke/surgery , Retrospective Studies , Aged , Middle Aged , Thrombectomy/methods , Risk Factors , Cerebral Hemorrhage/diagnostic imaging , Cerebral Hemorrhage/etiology , Tomography, X-Ray Computed
12.
Dalton Trans ; 53(17): 7303-7314, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38587832

ABSTRACT

The construction of sulfur-incorporated cluster-based coordination polymers was limited and underexplored due to the lack of efficient synthetic routes. Herein, we report facile mechanochemical ways toward a new series of SFe3(CO)9-based dipyridyl-Cu polymers by three-component reactions of [Et4N]2[SFe3(CO)9] ([Et4N]2[1]) and [Cu(MeCN)4][BF4] with conjugated or conjugation-interrupted dipyridyl ligands, 1,2-bis(4-pyridyl)ethylene (bpee), 1,2-bis(4-pyridyl)ethane (bpea), 4,4'-dipyridyl (dpy), or 1,3-bis(4-pyridyl)propane (bpp), respectively. X-ray analysis showed that bpee-containing 2D polymers demonstrated unique SFe3(CO)9 cluster-armed and cluster-one-armed coordination modes via the hypervalent µ5-S atom. These S-Fe-Cu polymers could undergo flexible structural transformations with the change of cluster bonding modes by grinding with stoichiometric amounts of dipyridyls or 1/[Cu(MeCN)4]+. They exhibited semiconducting behaviors with low energy gaps of 1.55-1.79 eV and good electrical conductivities of 3.26 × 10-8-1.48 × 10-6 S cm-1, tuned by the SFe3(CO)9 cluster bonding modes accompanied by secondary interactions in the solid state. The electron transport efficiency of these polymers was further elucidated by solid-state packing, X-ray photoelectron spectroscopy (XPS), X-ray absorption near-edge spectroscopy (XANES), density of states (DOS), and crystal orbital Hamilton population (COHP) analysis. Finally, the solid-state electrochemistry of these polymers demonstrated redox-active behaviors with cathodically-shifted patterns compared to that of [Et4N]2[1], showing that their efficient electron communication was effectively enhanced by introducing 1 and dipyridyls as hybrid ligands into Cu+-containing networks.

13.
Soft Matter ; 20(16): 3448-3457, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38567443

ABSTRACT

The self-organization of stem cells (SCs) constitutes the fundamental basis of the development of biological organs and structures. SC-driven patterns are essential for tissue engineering, yet unguided SCs tend to form chaotic patterns, impeding progress in biomedical engineering. Here, we show that simple geometric constraints can be used as an effective mechanical modulation approach that promotes the development of controlled self-organization and pattern formation of SCs. Using the applied SC guidance with geometric constraints, we experimentally uncover a remarkable deviation in cell aggregate orientation from a random direction to a specific orientation. Subsequently, we propose a dynamic mechanical framework, including cells, the extracellular matrix (ECM), and the culture environment, to characterize the specific orientation deflection of guided cell aggregates relative to initial geometric constraints, which agrees well with experimental observation. Based on this framework, we further devise various theoretical strategies to realize complex biological patterns, such as radial and concentric structures. Our study highlights the key role of mechanical factors and geometric constraints in governing SCs' self-organization. These findings yield critical insights into the regulation of SC-driven pattern formation and hold great promise for advancements in tissue engineering and bioactive material design for regenerative application.


Subject(s)
Extracellular Matrix , Tissue Engineering , Stem Cells/cytology , Animals , Humans , Biomechanical Phenomena , Mechanical Phenomena
14.
Saf Health Work ; 15(1): 110-113, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38496289

ABSTRACT

Numerous studies have indicated that organic fertilizers (OFer) might contain heavy metals (HMs) that present health risks to organic farmers (OFar). This study compared the concentrations of six HMs (Zn, Ni, Cd, Cu, Pb, Cr) in the blood of two distinct groups of farmers: 30 OFar from a designated organic area in eastern Taiwan, and 74 conventional farmers (CFar) from neighboring non-organic designated regions. The findings revealed that the OFar exhibited higher levels of Zn (1202.70 ± 188.74 µg/L), Cr (0.20 ± 0.09 µg/L), and Ni (2.14 ± 1.48 µg/L) in their blood compared to the CFar (988.40 ± 163.16 µg/L, 0.18 ± 0.15 µg/L, and 0.77 ± 1.23 µg/L), respectively. The disparities in Zn, Cr, and Ni levels were measured at 214.3 µg/L, 0.02 µg/L, and 1.37 µg/L, respectively. Furthermore, among the OFar, those who utilized green manures (GM) displayed significantly elevated blood levels of Zn (1279.93 ± 156.30 µg/L), Cr (0.24 ± 0.11 µg/L), and Ni (1.94 ± 1.38 µg/L) compared to individuals who exclusively employed chemical fertilizers (CFer) (975.42 ± 165.35 µg/L, 0.19 ± 0.16 µg/L, and 0.74 ± 1.20 µg/L), respectively. The differences in Zn, Cr, and Ni levels were measured at 304.51 µg/L, 0.05 µg/L, and 1.20 µg/L, respectively. As a result, OFar should be careful in choosing OFer and avoid those that may have heavy metal contamination.

15.
J Chem Inf Model ; 64(8): 3400-3410, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38537611

ABSTRACT

Lactobacillus kefir alcohol dehydrogenase (LkADH) and ketoreductase from Chryseobacterium sp. CA49 (ChKRED12) exhibit different chemoselectivity and stereoselectivity toward a substrate with both keto and aldehyde carbonyl groups. LkADH selectively reduces the keto carbonyl group while retaining the aldehyde carbonyl group, producing optically pure R-alcohols. In contrast, ChKRED12 selectively reduces the aldehyde group and exhibits low reactivity toward ketone carbonyls. This study investigated the structural basis for these differences and the role of specific residues in the active site. Molecular dynamics (MD) simulations and quantum chemical calculations were used to investigate the interactions between the substrate and the enzymes and the essential cause of this phenomenon. The present study has revealed that LkADH and ChKRED12 exhibit significant differences in the structure of their respective active pockets, which is a crucial determinant of their distinct chemoselectivity toward the same substrate. Moreover, residues N89, N113, and E144 within LkADH as well as Q151 and D190 within ChKRED12 have been identified as key contributors to substrate stabilization within the active pocket through electrostatic interactions and van der Waals forces, followed by hydride transfer utilizing the coenzyme NADPH. Furthermore, the enantioselectivity mechanism of LkADH has been elucidated using quantum chemical methods. Overall, these findings not only provide fundamental insights into the underlying reasons for the observed differences in selectivity but also offer a detailed mechanistic understanding of the catalytic reaction.


Subject(s)
Aldehydes , Ketones , Molecular Dynamics Simulation , Ketones/chemistry , Ketones/metabolism , Aldehydes/chemistry , Aldehydes/metabolism , Substrate Specificity , Quantum Theory , Lactobacillus/enzymology , Lactobacillus/metabolism , Catalytic Domain , Alcohol Dehydrogenase/metabolism , Alcohol Dehydrogenase/chemistry
16.
JMIR Med Inform ; 12: e49138, 2024 Jan 19.
Article in English | MEDLINE | ID: mdl-38297829

ABSTRACT

Background: Although evidence-based medicine proposes personalized care that considers the best evidence, it still fails to address personal treatment in many real clinical scenarios where the complexity of the situation makes none of the available evidence applicable. "Medicine-based evidence" (MBE), in which big data and machine learning techniques are embraced to derive treatment responses from appropriately matched patients in real-world clinical practice, was proposed. However, many challenges remain in translating this conceptual framework into practice. Objective: This study aimed to technically translate the MBE conceptual framework into practice and evaluate its performance in providing general decision support services for outcomes after congenital heart disease (CHD) surgery. Methods: Data from 4774 CHD surgeries were collected. A total of 66 indicators and all diagnoses were extracted from each echocardiographic report using natural language processing technology. Combined with some basic clinical and surgical information, the distances between each patient were measured by a series of calculation formulas. Inspired by structure-mapping theory, the fusion of distances between different dimensions can be modulated by clinical experts. In addition to supporting direct analogical reasoning, a machine learning model can be constructed based on similar patients to provide personalized prediction. A user-operable patient similarity network (PSN) of CHD called CHDmap was proposed and developed to provide general decision support services based on the MBE approach. Results: Using 256 CHD cases, CHDmap was evaluated on 2 different types of postoperative prognostic prediction tasks: a binary classification task to predict postoperative complications and a multiple classification task to predict mechanical ventilation duration. A simple poll of the k-most similar patients provided by the PSN can achieve better prediction results than the average performance of 3 clinicians. Constructing logistic regression models for prediction using similar patients obtained from the PSN can further improve the performance of the 2 tasks (best area under the receiver operating characteristic curve=0.810 and 0.926, respectively). With the support of CHDmap, clinicians substantially improved their predictive capabilities. Conclusions: Without individual optimization, CHDmap demonstrates competitive performance compared to clinical experts. In addition, CHDmap has the advantage of enabling clinicians to use their superior cognitive abilities in conjunction with it to make decisions that are sometimes even superior to those made using artificial intelligence models. The MBE approach can be embraced in clinical practice, and its full potential can be realized.

17.
Microbiol Res ; 282: 127629, 2024 May.
Article in English | MEDLINE | ID: mdl-38330819

ABSTRACT

Apart from its role in translation, codon bias is also an important mechanism to regulate mRNA levels. The traditional frequency-based codon optimization strategy is rather efficient in organisms such as N. crassa, but much less in yeast P. pastoris which is a popular host for heterologous protein expression. This is because that unlike N. crassa, the preferred codons of P. pastoris are actually AU-rich and hence codon optimization for extremely low GC content comes with issues of pre-mature transcriptional termination or low RNA stability in spite of translational advantages. To overcome this bottleneck, we focused on three reporter genes in P. pastoris first and confirmed the great advantage of GC-prone codon optimization on mRNA levels. Then we altered the codon bias profile of P. pastoris by introducing additional rare tRNA gene copies. Prior to that we constructed IPTG-regulated tRNA species to enable chassis cells to switch between different codon bias status. As demonstrated again with reporter genes, protein yield of luc and 0788 was successfully increased by 4-5 folds in chassis cells. In summary, here we provide an alternative codon optimization strategy for genes with unsatisfactory performance under traditional codon frequency-based optimization.


Subject(s)
Codon Usage , Pichia , Pichia/genetics , Codon/genetics , RNA, Messenger/metabolism , RNA, Transfer/genetics , RNA, Transfer/metabolism , Recombinant Proteins/genetics
18.
World J Pediatr ; 20(4): 307-324, 2024 04.
Article in English | MEDLINE | ID: mdl-38321331

ABSTRACT

BACKGROUND: Coronavirus disease 2019 (COVID-19) tends to have mild presentations in children. However, severe and critical cases do arise in the pediatric population with debilitating systemic impacts and can be fatal at times, meriting further attention from clinicians. Meanwhile, the intricate interactions between the pathogen virulence factors and host defense mechanisms are believed to play indispensable roles in severe COVID-19 pathophysiology but remain incompletely understood. DATA SOURCES: A comprehensive literature review was conducted for pertinent publications by reviewers independently using the PubMed, Embase, and Wanfang databases. Searched keywords included "COVID-19 in children", "severe pediatric COVID-19", and "critical illness in children with COVID-19". RESULTS: Risks of developing severe COVID-19 in children escalate with increasing numbers of co-morbidities and an unvaccinated status. Acute respiratory distress stress and necrotizing pneumonia are prominent pulmonary manifestations, while various forms of cardiovascular and neurological involvement may also be seen. Multiple immunological processes are implicated in the host response to COVID-19 including the type I interferon and inflammasome pathways, whose dysregulation in severe and critical diseases translates into adverse clinical manifestations. Multisystem inflammatory syndrome in children (MIS-C), a potentially life-threatening immune-mediated condition chronologically associated with COVID-19 exposure, denotes another scientific and clinical conundrum that exemplifies the complexity of pediatric immunity. Despite the considerable dissimilarities between the pediatric and adult immune systems, clinical trials dedicated to children are lacking and current management recommendations are largely adapted from adult guidelines. CONCLUSIONS: Severe pediatric COVID-19 can affect multiple organ systems. The dysregulated immune pathways in severe COVID-19 shape the disease course, epitomize the vast functional diversity of the pediatric immune system and highlight the immunophenotypical differences between children and adults. Consequently, further research may be warranted to adequately address them in pediatric-specific clinical practice guidelines.


Subject(s)
COVID-19 , COVID-19/complications , Severity of Illness Index , Systemic Inflammatory Response Syndrome , Humans , COVID-19/immunology , Child , Systemic Inflammatory Response Syndrome/immunology , Systemic Inflammatory Response Syndrome/physiopathology
19.
NPJ Parkinsons Dis ; 10(1): 28, 2024 Jan 24.
Article in English | MEDLINE | ID: mdl-38267447

ABSTRACT

Approximately half of patients with Parkinson's disease (PD) suffer from unintentional weight loss and are underweight, complicating the clinical course of PD patients. Gut microbiota alteration has been proven to be associated with PD, and recent studies have shown that gut microbiota could lead to muscle wasting, implying a possible role of gut microbiota in underweight PD. In this study, we aimed to (1) investigate the mechanism underlying underweight in PD patients with respect to gut microbiota and (2) estimate the extent to which gut microbiota may mediate PD-related underweight through mediation analysis. The data were adapted from Hill-Burns et al., in which 330 participants (199 PD, 131 controls) were enrolled in the study. Fecal samples were collected from participants for microbiome analysis. 16S rRNA gene sequence data were processed using DADA2. Mediation analysis was performed to quantify the effect of intestinal microbial alteration on the causal effect of PD on underweight and to identify the key bacteria that significantly mediated PD-related underweight. The results showed that the PD group had significantly more underweight patients (body mass index (BMI) < 18.5) after controlling for age and sex. Ten genera and four species were significantly different in relative abundance between the underweight and non-underweight individuals in the PD group. Mediation analysis showed that 42.29% and 37.91% of the effect of PD on underweight was mediated through intestinal microbial alterations at the genus and species levels, respectively. Five genera (Agathobacter, Eisenbergiella, Fusicatenibacter, Roseburia, Ruminococcaceae_UCG_013) showed significant mediation effects. In conclusion, we found that up to 42.29% of underweight PD cases are mediated by gut microbiota, with increased pro-inflammatory bacteria and decreased SCFA-producing bacteria, which indicates that the pro-inflammatory state, disturbance of metabolism, and interference of appetite regulation may be involved in the mechanism of underweight PD.

20.
Chin J Integr Med ; 30(1): 52-61, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37340203

ABSTRACT

OBJECTIVE: To study the in vitro and in vivo antitumor effects of the polysaccharide of Alocasia cucullata (PAC) and the underlying mechanism. METHODS: B16F10 and 4T1 cells were cultured with PAC of 40 µg/mL, and PAC was withdrawn after 40 days of administration. The cell viability was detected by cell counting kit-8. The expression of Bcl-2 and Caspase-3 proteins were detected by Western blot and the expressions of ERK1/2 mRNA were detected by quantitative real-time polymerase chain reaction (qRT-PCR). A mouse melanoma model was established to study the effect of PAC during long-time administration. Mice were divided into 3 treatment groups: control group treated with saline water, positive control group (LNT group) treated with lentinan at 100 mg/(kg·d), and PAC group treated with PAC at 120 mg/(kg·d). The pathological changes of tumor tissues were observed by hematoxylin-eosin staining. The apoptosis of tumor tissues was detected by TUNEL staining. Bcl-2 and Caspase-3 protein expressions were detected by immunohistochemistry, and the expressions of ERK1/2, JNK1 and p38 mRNA were detected by qRT-PCR. RESULTS: In vitro, no strong inhibitory effects of PAC were found in various tumor cells after 48 or 72 h of administration. Interestingly however, after 40 days of cultivation under PAC, an inhibitory effect on B16F10 cells was found. Correspondingly, the long-time administration of PAC led to downregulation of Bcl-2 protein (P<0.05), up-regulation of Caspase-3 protein (P<0.05) and ERK1 mRNA (P<0.05) in B16F10 cells. The above results were verified by in vivo experiments. In addition, viability of B16F10 cells under long-time administration culture in vitro decreased after drug withdrawal, and similar results were also observed in 4T1 cells. CONCLUSIONS: Long-time administration of PAC can significantly inhibit viability and promote apoptosis of tumor cells, and had obvious antitumor effect in tumor-bearing mice.


Subject(s)
Alocasia , Mice , Animals , Alocasia/metabolism , MAP Kinase Signaling System , Caspase 3/metabolism , Apoptosis , RNA, Messenger/genetics , RNA, Messenger/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL