Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 164
Filter
1.
Ultrasonics ; 143: 107417, 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-39106661

ABSTRACT

Ultrasonic scalpels (USs), as the preferred energy instruments, are facing a growing need to exhibit enhanced performance with the diversification of modern surgical challenges. Hence, we proposed an acoustic black hole ultrasonic scalpel (ABHUS) in longitudinal-bending coupled vibration for efficient surgical cutting. By incorporating an acoustic black hole profile, the local bending wave velocity is reduced and the amplitude is amplified cumulatively, thus creating a high-energy region near the blade tip to enhance the cutting performance of the ABHUS. The precise physical analysis model is established for systematic design of the ABHUS and quick estimation of its frequency characteristics. The vibration simulation and experiments demonstrate that compared with the conventional ultrasonic scalpel (CUS), the output amplitude of the ABHUS significantly increases, particularly a 425% increase in bending vibration displacement. The in-vitro cutting experiment confirms that ABHUS exhibits superior cutting performance. Our design presents vast possibilities and potential for the development of high-performance ultrasonic surgical instruments, serving as an innovative supplement with extraordinary significance for application of acoustic black holes.

3.
Cell Chem Biol ; 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-39025070

ABSTRACT

Morphinan antagonists, which block opioid effects at mu-opioid receptors, have been studied for their analgesic potential. Previous studies have suggested that these antagonists elicit analgesia with fewer adverse effects in the presence of the mutant mu-opioid receptor (MOR; S196A). However, introducing a mutant receptor for medical applications represents significant challenges. We hypothesize that binding a chemical compound to the MOR may elicit a comparable effect to the S196A mutation. Through high-throughput screening and structure-activity relationship studies, we identified a modulator, 4-(2-(4-fluorophenyl)-4-oxothiazolidin-3-yl)-3-methylbenzoic acid (BPRMU191), which confers agonistic properties to small-molecule morphinan antagonists, which induce G protein-dependent MOR activation. Co-application of BPRMU191 and morphinan antagonists resulted in MOR-dependent analgesia with diminished side effects, including gastrointestinal dysfunction, antinociceptive tolerance, and physical and psychological dependence. Combining BPRMU191 and morphinan antagonists could serve as a potential therapeutic strategy for severe pain with reduced adverse effects and provide an avenue for studying G protein-coupled receptor modulation.

4.
Front Pharmacol ; 15: 1419044, 2024.
Article in English | MEDLINE | ID: mdl-38895635

ABSTRACT

Glioblastoma multiforme (GBM) is one of the most prevalent and lethal primary central nervous system malignancies. GBM is notorious for its high rates of recurrence and therapy resistance and the PI3K/Akt pathway plays a pivotal role in its malignant behavior. Crebanine (CB), an alkaloid capable of penetrating the blood-brain barrier (BBB), has been shown to have inhibitory effects on proinflammatory molecules and multiple cancer cell lines via pathways such as PI3K/Akt. This study aims to investigate the efficacy and mechanisms of CB treatment on GBM. It is the first study to elucidate the anti-tumor role of CB in GBM, providing new possibilities for GBM therapy. Through a series of experiments, we demonstrate the significant anti-survival, anti-clonogenicity, and proapoptotic effects of CB treatment on GBM cell lines. Next-generation sequencing (NGS) is also conducted and provides a complete list of significant changes in gene expression after treatment, including genes related to apoptosis, the cell cycle, FoxO, and autophagy. The subsequent protein expressions of the upregulation of apoptosis and downregulation of PI3K/Akt are further proved. The clinical applicability of CB to GBM treatment could be high for its BBB-penetrating feature, significant induction of apoptosis, and blockage of the PI3K/Akt pathway. Future research is needed using in vivo experiments and other therapeutic pathways shown in NGS for further clinical or in vivo studies.

5.
Ultrason Sonochem ; 106: 106886, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38692020

ABSTRACT

Tetracycline has received a great deal of interest for the harmful effects of substance abuse on ecosystems and humanity. The effects of different processes on the degradation of tetracycline were compared, with dual-frequency ultrasound (DFUS) in combination with peroxymonosulfate (PMS) being the most effective for the tetracycline degradation. Free radical scavenging experiments showed that O2∙-,SO4∙- and •OH were the main reactive radicals in the degradation of tetracycline. According to the major intermediates of tetracycline degradation identified, three possible degradation pathways were proposed, which are of significance for translational studies of tetracycline degradation. Notably, these intermediates were found to be significantly less toxicity. The number of active bubbles in the degradation vessel was calculated using a semi-empirical formula, and a higher value of 1.44 × 108 L-1s-1 of bubbles was obtained when using dual-frequency ultrasound at 20 kHz (210 W/L) and 80 kHz (85.4 W/L). Therefore, compared to 20 kHz, although the yield of strong oxidizing substances from individual active bubbles decreased slightly, a significant increment of the number of active bubbles still resulted in a higher synergistic effect, and the combination of DFUS and PMS should be effective in promoting the generation of reactive free radicals and mass transfer processes within the degradation vessel, which provides a method for efficient removal of tetracycline from wastewater.


Subject(s)
Peroxides , Tetracycline , Ultrasonic Waves , Tetracycline/chemistry , Peroxides/chemistry , Sonication/methods , Water Pollutants, Chemical/chemistry
6.
Mol Cell Proteomics ; 23(5): 100762, 2024 May.
Article in English | MEDLINE | ID: mdl-38608839

ABSTRACT

Protein post-translational modifications (PTMs) are crucial in plant cellular processes, particularly in protein folding and signal transduction. N-glycosylation and phosphorylation are notably significant PTMs, playing essential roles in regulating plant responses to environmental stimuli. However, current sequential enrichment methods for simultaneous analysis of phosphoproteome and N-glycoproteome are labor-intensive and time-consuming, limiting their throughput. Addressing this challenge, this study introduces a novel tandem S-Trap-IMAC-HILIC (S-Trap: suspension trapping; IMAC: immobilized metal ion affinity chromatography; HILIC: hydrophilic interaction chromatography) strategy, termed TIMAHAC, for simultaneous analysis of plant phosphoproteomics and N-glycoproteomics. This approach integrates IMAC and HILIC into a tandem tip format, streamlining the enrichment process of phosphopeptides and N-glycopeptides. The key innovation lies in the use of a unified buffer system and an optimized enrichment sequence to enhance efficiency and reproducibility. The applicability of TIMAHAC was demonstrated by analyzing the Arabidopsis phosphoproteome and N-glycoproteome in response to abscisic acid (ABA) treatment. Up to 1954 N-glycopeptides and 11,255 phosphopeptides were identified from Arabidopsis, indicating its scalability for plant tissues. Notably, distinct perturbation patterns were observed in the phosphoproteome and N-glycoproteome, suggesting their unique contributions to ABA response. Our results reveal that TIMAHAC offers a comprehensive approach to studying complex regulatory mechanisms and PTM interplay in plant biology, paving the way for in-depth investigations into plant signaling networks.


Subject(s)
Arabidopsis , Chromatography, Affinity , Phosphoproteins , Proteomics , Workflow , Proteomics/methods , Arabidopsis/metabolism , Phosphoproteins/metabolism , Phosphoproteins/analysis , Chromatography, Affinity/methods , Arabidopsis Proteins/metabolism , Glycopeptides/metabolism , Glycopeptides/analysis , Hydrophobic and Hydrophilic Interactions , Protein Processing, Post-Translational , Proteome/metabolism , Phosphorylation , Phosphopeptides/metabolism , Phosphopeptides/analysis , Tandem Mass Spectrometry , Plant Proteins/metabolism
7.
Small ; 20(31): e2312006, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38431945

ABSTRACT

A high soluble and stable ɛ-Zn(OH)2 precursor is synthesized at below room temperature to efficiently prepare ZnO whiskers. The experimental results indicate that the formation of ZnO whiskers is carried out mainly via two steps: the formation of ZnO seeds from ɛ-Zn(OH)2 via the in situ solid conversion, and the following growth of whiskers via dissolution-precipitation route. The decrease of temperature from 25 to 5 °C promotes the formation of ɛ-Zn(OH)2 with higher solubility and stability, which balances the conversion and dissolution rates of precursor. The Rietveld refinement, DFT calculations and MD simulations reveal that the primary reason for these characteristics is the expansion of ɛ-Zn(OH)2 lattice due to temperature, causing difficulties in the dehydration of adjacent ─OH. Simultaneously, the larger specific surface area favors the dissolution of ɛ-Zn(OH)2. Based on this precursor, well-dispersed ZnO whiskers with 9.82 µm in length, 242.38 nm in diameter, and an average aspect ratio of 41 are successfully synthesized through a SDSN-assisted hydrothermal process at 80 °C. The process has an extremely high solid content of 2.5% (mass ratio of ZnO to solution) and an overall yield of 92%, which offers a new approach for the scaled synthesis of high aspect ratio ZnO whiskers by liquid-phase method.

8.
Molecules ; 29(2)2024 Jan 08.
Article in English | MEDLINE | ID: mdl-38257222

ABSTRACT

Reactions of N,N'-bis(3-methylpyridyl)oxalamide (L1), N,N'-bis(3-methylpyridyl)adipoamide (L2) and N,N'-bis(3-methylpyridyl)sebacoamide (L3) with tricarboxylic acids and Cu(II) salts afforded {[Cu(L1)(1,3,5-HBTC)]·H2O}n (1,3,5-H3BTC = 1,3,5-benzenetricarboxylic acid), 1, {[Cu1.5(L2)1.5(1,3,5-BTC)(H2O)2]·6.5H2O}n, 2, [Cu(L2)0.5(1,3,5-HBTB)]n (1,3,5-H3BTB = 1,3,5-tri(4-carboxyphenyl)benzene), 3, [Cu4(L3)(OH)2(1,3,5-BTC)2]n, 4, {[Cu3(L3)2(1,3,5-BTB)2]·2.5MeOH·2H2O}n, 5, and {[Cu3(L3)2(1,3,5-BTB)2 ]·DMF·2H2O}n, 6, which have been structurally characterized by using single crystal X-ray crystallography. Complexes 1-4 form a 2D layer with the {44.62}-sql topology, a 2D layer with the (4.62)2(42.62.82)-bex topology, a three-fold interpenetrated 3D net with the (412·63)-pcu topology and a 3D framework with the (410·632·83)(42·6)2(43·63) topology, respectively, whereas 5 and 6 are 3D frameworks with the (63)2(64·82)(68·85·102) topology. Complex 5 shows a better iodine adsorption factor of 290.0 mg g-1 at 60 °C for 360 min than the other ones, revealing that the flexibility of the spacer ligand governs the structural diversity and the adsorption capacity.

9.
Ultrasonics ; 138: 107248, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38277766

ABSTRACT

Nowadays, expanding the operating range and realizing multifrequency operation have emerged as focal and imperative objectives in the design of ultrasonic transducers. Due to the limitations of structure and radial sizes, conventional Langevin transducers encounter challenges in meeting the increasingly stringent requirements across diverse ultrasonic applications. Hence, this paper proposes a multidirectional piezoelectric ultrasonic transducer (MPUT) consisting of a large-dimension sandwich piezoelectric transducer (LSPT) and a metal tube in mutli-mode coupled vibration, capable of achieving wide-ranging and multifrequency acoustic radiation. Based on the analytical method, a two-dimensional electromechanical equivalent circuit model (2D-EECM) of the MPUT is established, and its frequency calculation results are validated through the finite element method (FEM) and impedance analysis experiment. The vibration testing results indicate that adjusting the radial size can control the coupled vibration intensity of the MPUT and achieve dual-frequency and multidirectional uniform radiation. The radiation sound field testing results confirm the MPUT's satisfactory three-dimensional radiation capability in water and significant improvement in acoustics operating range.

10.
J Acoust Soc Am ; 155(1): 511-522, 2024 Jan 01.
Article in English | MEDLINE | ID: mdl-38252796

ABSTRACT

The cylindrical piezoelectric transducer has the advantages of large radiation area, high electromechanical coupled coefficient, and omni-direction radiation along the radius. In this paper, a piezoelectric transducer consisting of a radially polarized piezoelectric cylinder and an outer metal cylinder of varying height is presented. The metal cylinder of varying height is approximated as the radial superposition of multiple uniform height metal cylinders, and the equivalent impedance of the transducer's coupled vibration is obtained by using the impedance matrix method, and then the resonance frequency, anti-resonance frequency, effective electromechanical coupled coefficient, and displacement amplification coefficient are obtained. In this paper, the relationship between the vibration characteristics of the cylindrical piezoelectric transducer and its geometric dimensions is studied. An experimental sample of the transducer is fabricated and assembled, and its electrical impedance curve is measured. The measured results are in good agreement with the simulation results and the theoretical calculation results. The displacement distribution of the radiation surface of the transducer at resonance frequency is measured, which verifies that the two coupled vibration modes of the transducer can be effectively excited.

12.
medRxiv ; 2023 Oct 28.
Article in English | MEDLINE | ID: mdl-37961716

ABSTRACT

Background: Both cognitive and non-cognitive (e.g., traits like curiosity) factors are critical for social and emotional functioning and independently predict educational attainment. These factors are heritable and genetically correlated with a range of health-relevant traits and behaviors in adulthood (e.g., risk-taking, psychopathology). However, whether these associations are present during adolescence, and to what extent these relationships diverge, could have implications for adolescent health and well-being. Methods: Using data from 5,517 youth of European ancestry from the ongoing Adolescent Brain Cognitive DevelopmentSM Study, we examined associations between polygenic scores (PGS) for cognitive and non-cognitive factors and outcomes related to cognition, socioeconomic status, risk tolerance and decision-making, substance initiation, psychopathology, and brain structure. Results: Cognitive and non-cognitive PGSs were both positively associated with cognitive performance and family income, and negatively associated with ADHD and severity of psychotic-like experiences. The cognitive PGS was also associated with greater risk-taking, delayed discounting, and anorexia, as well as lower likelihood of nicotine initiation. The cognitive PGS was further associated with cognition scores and anorexia in within-sibling analyses, suggesting these results do not solely reflect the effects of assortative mating or passive gene-environment correlations. The cognitive PGS showed significantly stronger associations with cortical volumes than the non-cognitive PGS and was associated with right hemisphere caudal anterior cingulate and pars-orbitalis in within-sibling analyses, while the non-cognitive PGS showed stronger associations with white matter fractional anisotropy and a significant within-sibling association for right superior corticostriate-frontal cortex. Conclusions: Our findings suggest that PGSs for cognitive and non-cognitive factors show similar associations with cognition and socioeconomic status as well as other psychosocial outcomes, but distinct associations with regional neural phenotypes in this adolescent sample.

13.
Cell Death Dis ; 14(10): 671, 2023 10 11.
Article in English | MEDLINE | ID: mdl-37821451

ABSTRACT

Aberrant overexpression or activation of EGFR drives the development of non-small cell lung cancer (NSCLC) and acquired resistance to EGFR tyrosine kinase inhibitors (TKIs) by secondary EGFR mutations or c-MET amplification/activation remains as a major hurdle for NSCLC treatment. We previously identified WDR4 as a substrate adaptor of Cullin 4 ubiquitin ligase and an association of WDR4 high expression with poor prognosis of lung cancer. Here, using an unbiased ubiquitylome analysis, we uncover PTPN23, a component of the ESCRT complex, as a substrate of WDR4-based ubiquitin ligase. WDR4-mediated PTPN23 ubiquitination leads to its proteasomal degradation, thereby suppressing lysosome trafficking and degradation of wild type EGFR, EGFR mutant, and c-MET. Through this mechanism, WDR4 sustains EGFR and c-MET signaling to promote NSCLC proliferation, migration, invasion, stemness, and metastasis. Clinically, PTPN23 is downregulated in lung cancer and its low expression correlates with WDR4 high expression and poor prognosis. Targeting WDR4-mediated PTPN23 ubiquitination by a peptide that competes with PTPN23 for binding WDR4 promotes EGFR and c-MET degradation to block the growth and progression of EGFR TKI-resistant NSCLC. These findings identify a central role of WDR4/PTPN23 axis in EGFR and c-MET trafficking and a potential therapeutic target for treating EGFR TKI-resistant NSCLC.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/pathology , ErbB Receptors/metabolism , Protein Kinase Inhibitors/pharmacology , Drug Resistance, Neoplasm/genetics , Mutation , Ubiquitination , Ubiquitin/metabolism , Cell Line, Tumor , Ligases/metabolism , Proto-Oncogene Proteins c-met/metabolism , GTP-Binding Proteins/metabolism , Protein Tyrosine Phosphatases, Non-Receptor/metabolism
14.
J Acoust Soc Am ; 154(3): 1838-1849, 2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37728287

ABSTRACT

As a critical component of ultrasonic vibration systems, piezoelectric transducers play an essential role in various practical application scenarios. Recent advances in spherical transducers have been widely used in underwater sound and structural health monitoring, while the cascaded spherical piezoelectric transducer with arbitrary piezoceramic shell thickness has not been investigated. Here, we propose a radially cascaded spherical piezoelectric transducer (RCSPT) and derive its electromechanical equivalent circuit with mechanical losses, dielectric losses, and load mechanical impedances. The resulting device is composed of three concentric spherical metal shells and two radially polarized spherical piezoceramic shells. The underlying physical mechanism is the inverse piezoelectric effect, which converts electrical signals into mechanical vibrations. The effects of the spherical piezoceramic shell's thickness and location on the RCSPT are studied. We also analyze the effects of mechanical losses, dielectric losses, and load mechanical impedances on the modulus of input electric impedance of the cascaded spherical transducer. The experiments are conducted to verify the electromechanical characteristics of the resulting device, which are in good agreement with the simulated results and theoretical predictions. Our methodology will offer new possibilities for designing RCSPTs and may promote applications in various fields, such as underwater acoustic detection and structural health monitoring.

15.
Anal Chem ; 95(33): 12232-12239, 2023 08 22.
Article in English | MEDLINE | ID: mdl-37552764

ABSTRACT

Plant phosphoproteomics provides a global view of phosphorylation-mediated signaling in plants; however, it demands high-throughput methods with sensitive detection and accurate quantification. Despite the widespread use of protein precipitation for removing contaminants and improving sample purity, it limits the sensitivity and throughput of plant phosphoproteomic analysis. The multiple handling steps involved in protein precipitation lead to sample loss and process variability. Herein, we developed an approach based on suspension trapping (S-Trap), termed tandem S-Trap-IMAC (immobilized metal ion affinity chromatography), by integrating an S-Trap micro-column with a Fe-IMAC tip. Compared with a precipitation-based workflow, the tandem S-Trap-IMAC method deepened the coverage of the Arabidopsis (Arabidopsis thaliana) phosphoproteome by more than 30%, with improved number of multiply phosphorylated peptides, quantification accuracy, and short sample processing time. We applied the tandem S-Trap-IMAC method for studying abscisic acid (ABA) signaling in Arabidopsis seedlings. We thus discovered that a significant proportion of the phosphopeptides induced by ABA are multiply phosphorylated peptides, indicating their importance in early ABA signaling and quantified several key phosphorylation sites on core ABA signaling components across four time points. Our results show that the optimized workflow aids high-throughput phosphoproteome profiling of low-input plant samples.


Subject(s)
Arabidopsis , Arabidopsis/metabolism , Workflow , Chromatography, Affinity/methods , Phosphopeptides/chemistry , Phosphorylation
16.
Spectrochim Acta A Mol Biomol Spectrosc ; 302: 123060, 2023 Dec 05.
Article in English | MEDLINE | ID: mdl-37399612

ABSTRACT

We employ electron bombardment during the deposition of an Ar matrix containing a small proportion of SiH4 to generate various silicon hydrides. Subsequently, the irradiation of a matrix sample at 365 nm decomposes SiH2 and dibridged Si2H2 in solid Ar, which we identify through infrared spectroscopy. We further recorded the corresponding ultraviolet absorption spectra at each experimental stage. An intense band observed in the range of 170-203 nm is largely destroyed upon 365-nm photolysis, which is assigned to the C1B2 â† X1A1 transition of SiH2. Moreover, a moderate band observed in the region of 217-236 nm is reduced slightly, which is assigned to the 31B2 â† X1A1 transition of dibridged Si2H2. These assignments are made based on the observed photolytic behavior, and the prediction of the vertical excitation energies with the corresponding oscillator strengths by using time-dependent density functional theory and equation-of-motion coupled cluster theory.

17.
Ultrason Sonochem ; 98: 106500, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37413916

ABSTRACT

We studied the layer structure of bubbles just below water/air and water/EPE (Expand aple poly ephylene) interfaces using high-speed photography. The layer structure was generated by floating spherical clusters, the source bubbles of which were identified to come from the attachment of bubble nuclei at the interface, the floating of bubbles in the bulk liquid, or bubbles generated on the surface of the ultrasonic transducer. The boundary shape affected the layer structure, which assumed a similar profile below the water/EPE interface. We developed a simplified model composed of a bubble column and bubble chain to describe interface impacts and the interaction of bubbles in a typical branching structure. We found that the resonant frequency of the bubbles is smaller than that of an isolated single bubble. Moreover, the primary acoustic field plays an important role in the generation of the structure. A higher acoustic frequency and pressure were found to shorten the distance between the structure and the interface. A hat-like layer structure of bubbles was more likely to exist in the low-frequency (28 and 40 kHz) intense inertial cavitation field, in which bubbles oscillate violently. By contrast, structures composed of discrete spherical clusters were more likely to form in the relatively weak cavitation field at 80 kHz, in which stable and inertial cavitation coexisted. The theoretical predictions were in good agreement with the experimental observations.

18.
Int J Mol Sci ; 24(12)2023 Jun 06.
Article in English | MEDLINE | ID: mdl-37372979

ABSTRACT

TRIM28/KAP1/TIF1ß is a crucial epigenetic modifier. Genetic ablation of trim28 is embryonic lethal, although RNAi-mediated knockdown in somatic cells yields viable cells. Reduction in TRIM28 abundance at the cellular or organismal level results in polyphenism. Posttranslational modifications such as phosphorylation and sumoylation have been shown to regulate TRIM28 activity. Moreover, several lysine residues of TRIM28 are subject to acetylation, but how acetylation of TRIM28 affects its functions remains poorly understood. Here, we report that, compared with wild-type TRIM28, the acetylation-mimic mutant TRIM28-K304Q has an altered interaction with Krüppel-associated box zinc-finger proteins (KRAB-ZNFs). The TRIM28-K304Q knock-in cells were created in K562 erythroleukemia cells by CRISPR-Cas9 (Clustered regularly interspaced short palindromic repeats/CRISPR-associated protein nuclease 9) gene editing method. Transcriptome analysis revealed that TRIM28-K304Q and TRIM28 knockout K562 cells had similar global gene expression profiles, yet the profiles differed considerably from wild-type K562 cells. The expression levels of embryonic-related globin gene and a platelet cell marker integrin-beta 3 were increased in TRIM28-K304Q mutant cells, indicating the induction of differentiation. In addition to the differentiation-related genes, many zinc-finger-proteins genes and imprinting genes were activated in TRIM28-K304Q cells; they were inhibited by wild-type TRIM28 via binding with KRAB-ZNFs. These results suggest that acetylation/deacetylation of K304 in TRIM28 constitutes a switch for regulating its interaction with KRAB-ZNFs and alters the gene regulation as demonstrated by the acetylation mimic TRIM28-K304Q.


Subject(s)
Protein Processing, Post-Translational , Repressor Proteins , Humans , Repressor Proteins/genetics , K562 Cells , Acetylation , Tripartite Motif-Containing Protein 28/genetics , Tripartite Motif-Containing Protein 28/metabolism , Mutation , Gene Expression , Zinc/metabolism
19.
Ultrasonics ; 134: 107061, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37307699

ABSTRACT

In the ring radial transducer, the wall thickness of the radially polarized piezoelectric ceramic is limited by the polarization technology and operating voltage, resulting in the limited power capacity and vibration ability of the transducer. Hence, an improved novel radial composite transducer (nRCT) is proposed in this paper, which consists of a radially polarized piezoelectric stack and a metal ring. Piezoelectric stack is used to enhance vibration and effectively solve the problem of difficult excitation caused by large wall thickness. A new electromechanical equivalent circuit model (EECM) of the nRCT in radial vibration is established, and the relationship between frequency characteristics of the nRCT and geometric size is analyzed. The finite element method (FEM) is used to carry out numerical modeling of the nRCT and the traditional radial composite transducer (tRCT), and preliminarily verify the calculation results of EECM. Compared with the tRCT, under the same electrical excitation, the equivalent electrical impedance of the nRCT designed in this paper decreases to 26%, and the radial vibration displacement increases to 142%. Finally, the nRCT and the tRCT are fabricated, and the experimental results have well verified the results of the theoretical analysis. The proposed radial piezoelectric stack model provides a new idea for the optimal design of radial vibration piezoelectric devices, which is expected to be further applied to the design of hydrophones, piezoelectric transformers, and medical ultrasound devices.

20.
Ultrasonics ; 132: 106992, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37018933

ABSTRACT

The generation and evolution of bubble clusters in ultrasound fields were studied using high-speed photography. The transition of a spherical bubble cluster to a layer-like bubble cluster was demonstrated in detail. At a distance of half a wavelength to the water surface, the rising spherical cluster oscillated strongly and its equilibrium size grew. The speed was about 0.4 m/s and had a tendency to decrease. A jet caused by the last collapse of the spherical cluster rushed to the water surface, creating a bulge on the surface. Subsequently, due to the primary acoustic field, bubbles accumulated again below the bulge, and a layer-like bubble cluster gradually formed. The effects of acoustic frequency and intensity on the layer-like cluster were considered. It was found that the clusters located at a distance-to-wavelength ratio of about 0.08 to 0.13, very close to the water surface. The flickering bubble clusters were easy to be observed at 28 kHz and 40 kHz, while the accumulation of bubbles and their flicker were relatively weak at 80 kHz. The higher the frequency, the shorter the wavelength, the closer the structure to the water surface. However, at 80 kHz, the cavitation threshold is supposed to be higher and the resonance size of the bubbles is smaller, so the bubble oscillations and their interactions were weaker, and the phenomenon was different from the cases of 28 kHz and 40 kHz. Multiple structures mainly exist at 40 kHz. The formation and evolution of the layer-like cluster are closely dependent on the adequate supply of bubble nuclei from the water surface and the surrounding liquid. A Y-shaped bifurcation was used to model the branch streamers, which provided a path of bubbles accumulate into the clusters. The secondary Bjerknes forces between bubbles were adapted to analyze the interactions, and the results proved that it plays an important role in the appearance and evolution of the substructures.

SELECTION OF CITATIONS
SEARCH DETAIL