Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Adv Mater ; : e2310923, 2024 Jul 29.
Article in English | MEDLINE | ID: mdl-39075820

ABSTRACT

Passive radiative cooling is a promising technology for heat dissipation that does not consume energy. However, current radiative cooling materials can only exhibit subambient cooling under atmospheric conditions and struggle to process specific heat accumulation. Thus, a passive thermal regulation mechanism adapted to wide-temperature-range applications is required to match device heating systems. Herein, a heteroporous nanocomposite film (HENF) with thermo-adaptive radiation cooling performance is reported. Compared to conventional porous cooling films with limited scattering efficiencies, the HENFs with multistage scattering have a strong emissivity of 96.5% (8-13 µm) and a high reflectivity of 97.3% (0.3-2.5 µm), resulting in an ultrahigh cooling power of 114 W m-2. In such HENFs, theoretical analyses have confirmed the spectrum management superiority of the heteroporous unit in terms of the scattering efficiency strength, with their cascading effect enhancing the overall film-cooling efficiency. The high mechanical performance, phase-transition features, and environmental adaptive properties of HENFs are also exhibited. Importantly, HENFs synergistically couple thermal dissipation and absorption to effectively process heat accumulation and counteract thermal shock in heating devices. It is anticipated that thermo-adaptive HENFs will act as a promising platform for device surface thermal regulation over a wide temperature range.

2.
Sci Total Environ ; 914: 169629, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38157906

ABSTRACT

High level dissolved B, which poses risks to human health, has been widely observed in geothermal water. In the Guide Basin, NW China, a series of geothermal water samples along a fault show a wide range of B contents ranging from 3.14 to 8.33 mg/L, which are higher than the WHO Guideline value equaling 2.4 mg/L in drinking water. To identify the sources and fate of B, we conduct a comprehensive analysis of hydrochemistry and stable isotopes (D, 18O and 11B) of three thermal fields representing three stages of hydrogeochemical evolution (stages I, II and III). From stage I to III, there are trends of increasing mineral dissolution, which is supported by increasing mean reservoir temperature and concentrations of conservative elements (Cl, Na, K, Li and Si). Geothermal water in stage I with meteoric origin and the lowest reservoir temperature has the highest B/Na resulting from silicate dissolution and falls on the mixing line between granitoids and cold water on the plot of δ11B versus 1/B, showing the control of silicate dissolution. However, geothermal water in stage III has lower Ca, B Sr and B/Na than that in stage II. Because of the occurrence of other processes, geothermal water in stages II and III deviates from the LMWL. Compared with geothermal water in stage I, the increased Sr/Ca and decreased B/Ca show that B are removed by both coprecipitation and vapor separation. With the aid of B isotopes, we find vapor separation dominates in stage II, whereas carbonate precipitation dominates in stage III. Overall, a combined use of three isotopes (H, O and B) and three element ratios (B/Na, B/Ca and Sr/Ca) leads to a complete understanding of B cycle and hydrogeochemical evolution in hydrothermal systems.

3.
BMC Oral Health ; 23(1): 621, 2023 09 01.
Article in English | MEDLINE | ID: mdl-37658390

ABSTRACT

BACKGROUND: Reconstruction of the temporomandibular joint (TMJ) is a significant challenge in maxillofacial surgery. A vascularized medial femoral condyle (MFC) osteocartilaginous flap is a good choice for TMJ reconstruction. In this study, we evaluated the radiographic and histological changes of MFC after TMJ reconstruction. METHODS: A ramus-condyle unit (RCU) defect was created unilaterally in five adult male Bama miniature pigs. The ipsilateral vascularized MFC osteocartilaginous flap was used to reconstruct the TMJ, and the non-operative sides served as controls. Multislice spiral computed tomography (CT) was performed preoperatively, immediately postoperatively, and at two weeks, three months, and six months postoperatively. Three animals were euthanized at 6 months postoperatively. Their reconstructed condyles, natural condyles and the MFCs on the opposite side were collected and subjected to µCT and histological evaluation. RESULTS: In the miniature pigs, the vascularized MFC osteocartilaginous flap was fused to the mandible, thus restoring the structure and function of the RCU. The postoperative radiographic changes and histological results showed that the reconstructed condyle was remodeled toward the natural condyle, forming a similar structure, which was significantly different from the MFC. CONCLUSIONS: In miniature pigs, the RCU can be successfully reconstructed by vascularized osteocartilaginous MFC flap. The reconstructed condyle had almost the same appearance and histological characteristics as the natural condyle.


Subject(s)
Surgery, Oral , Temporomandibular Joint , Male , Animals , Swine , Swine, Miniature , Temporomandibular Joint/diagnostic imaging , Temporomandibular Joint/surgery , Mandible , Polymers
4.
Soft Matter ; 18(28): 5239-5248, 2022 Jul 20.
Article in English | MEDLINE | ID: mdl-35771131

ABSTRACT

Drying of bacterial suspensions is frequently encountered in a plethora of natural and engineering processes. However, the evaporation-driven mechanical instabilities of dense consolidating bacterial suspensions have not been explored heretofore. Here, we report the formation of two different crack patterns of drying suspensions of Escherichia coli (E. coli) with distinct motile behaviors. Circular cracks are observed for wild-type E. coli with active swimming, whereas spiral-like cracks form for immotile bacteria. Using the elastic fracture mechanics and the poroelastic theory, we show that the formation of the circular cracks is determined by the tensile nature of the radial drying stress once the cracks are initiated by the local order structure of bacteria due to their collective swimming. Our study demonstrates the link between the microscopic swimming behaviors of individual bacteria and the mechanical instabilities and macroscopic pattern formation of drying bacterial films. The results shed light on the dynamics of active matter in a drying process and provide useful information for understanding various biological processes associated with drying bacterial suspensions.


Subject(s)
Desiccation , Escherichia coli , Suspensions , Swimming
5.
Theranostics ; 11(1): 397-409, 2021.
Article in English | MEDLINE | ID: mdl-33391482

ABSTRACT

Large segmental bone regeneration remains a great challenge due to the lack of vascularization in newly formed bone. Conventional strategies primarily combine bone scaffolds with seed cells and growth factors to modulate osteogenesis and angiogenesis. Nevertheless, cell-based therapies have some intrinsic issues regarding immunogenicity, tumorigenesis, bioactivity and off-the-shelf transplantation. Exosomes are nano-sized (50-200 nm) extracellular vesicles with a complex composition of proteins, nucleic acids and lipids, which are attractive as therapeutic nanoparticles for disease treatment. Exosomes also have huge potential as desirable drug/gene delivery vectors in the field of regenerative medicine due to their excellent biocompatibility and efficient cellular internalization. Methods: We developed a cell-free tissue engineering system using functional exosomes in place of seed cells. Gene-activated engineered exosomes were constructed by using ATDC5-derived exosomes to encapsulate the VEGF gene. The specific exosomal anchor peptide CP05 acted as a flexible linker and effectively combined the engineered exosome nanoparticles with 3D-printed porous bone scaffolds. Results: Our findings demonstrated that engineered exosomes play dual roles as an osteogenic matrix to induce the osteogenic differentiation of mesenchymal stem cells and as a gene vector to controllably release the VEGF gene to remodel the vascular system. In vivo evaluation further verified that the engineered exosome-mediated bone scaffolds could effectively induce the bulk of vascularized bone regeneration. Conclusion: In our current work, we designed specifically engineered exosomes based on the requirements of vascularized bone repair in segmental bone defects. This work simultaneously illuminates the potential of functional exosomes in acellular tissue engineering.


Subject(s)
Bone Regeneration/genetics , Exosomes/genetics , Osteogenesis/genetics , Vascular Endothelial Growth Factor A/genetics , Vascular Remodeling/genetics , Animals , Bone and Bones/blood supply , Bone and Bones/physiology , Cell Adhesion , Cell Line , Cell Proliferation , Male , Materials Testing , Mice , Plasmids/genetics , Polyesters , Printing, Three-Dimensional , Radius/surgery , Rats , Stem Cells , Tissue Engineering , Tissue Scaffolds , X-Ray Microtomography
6.
Sci Rep ; 10(1): 18913, 2020 11 03.
Article in English | MEDLINE | ID: mdl-33144613

ABSTRACT

Zoysia matrella [L.] Merr. is a widely cultivated warm-season turf grass in subtropical and tropical areas. Dwarf varieties of Z. matrella are attractive to growers because they often reduce lawn mowing frequencies. In this study, we describe a dwarf mutant of Z. matrella induced from the 60Co-γ-irradiated calluses. We conducted morphological test and physiological, biochemical and transcriptional analyses to reveal the dwarfing mechanism in the mutant. Phenotypically, the dwarf mutant showed shorter stems, wider leaves, lower canopy height, and a darker green color than the wild type (WT) control under the greenhouse conditions. Physiologically, we found that the phenotypic changes of the dwarf mutant were associated with the physiological responses in catalase, guaiacol peroxidase, superoxide dismutase, soluble protein, lignin, chlorophyll, and electric conductivity. Of the four endogenous hormones measured in leaves, both indole-3-acetic acid and abscisic acid contents were decreased in the mutant, whereas the contents of gibberellin and brassinosteroid showed no difference between the mutant and the WT control. A transcriptomic comparison between the dwarf mutant and the WT leaves revealed 360 differentially-expressed genes (DEGs), including 62 up-regulated and 298 down-regulated unigenes. The major DEGs related to auxin transportation (e.g., PIN-FORMED1) and cell wall development (i.e., CELLULOSE SYNTHASE1) and expansin homologous genes were all down-regulated, indicating their potential contribution to the phenotypic changes observed in the dwarf mutant. Overall, the results provide information to facilitate a better understanding of the dwarfing mechanism in grasses at physiological and transcript levels. In addition, the results suggest that manipulation of auxin biosynthetic pathway genes can be an effective approach for dwarfing breeding of turf grasses.


Subject(s)
Gene Regulatory Networks/radiation effects , Mutation , Poaceae/physiology , Gene Expression Profiling , Gene Expression Regulation, Plant/radiation effects , Phenotype , Plant Breeding , Plant Growth Regulators/metabolism , Plant Proteins/genetics , Plant Proteins/radiation effects , Poaceae/radiation effects , Seasons
7.
Biomaterials ; 247: 119985, 2020 07.
Article in English | MEDLINE | ID: mdl-32272301

ABSTRACT

Exosome has been considered as an instructive supplement between complicated cell therapy and single gene/protein drug treatment in the field of regenerative medicine due to its excellent biocompatibility, efficient cellular internalization and large loading capacity. Nevertheless, one major issue that extremely restricts the potential application as gene/drug vehicles is the low yield of nanoscale exosome. Moreover, the intravenous injection of targeted exosomes may cause the obstruction of blood-rich organs. Thus, herein we fabricated a specific exosome-mimetics (EMs) that could come true mass and fast production exhibited the similar size, morphology and membrane protein markers in comparison with conventional exosomes. To bypass the risk of intravenous injection and improve the efficiency of topical therapy, we simultaneously applied the engineered EMs to design a gene-activated matrix (GAM) that could be locally released by encapsulating the plasmid of vascular endothelial growth factor (VEGF) and flexibly binding onto a core-shell nanofiber film. Our findings showed that the well-designed engineered EMs-mediated GAM was able to sustainably deliver VEGF gene and significantly enhance the vascularized osteogenesis in vivo. The current work can not only consolidate the applied foundation of EMs through the breakthrough of high yield, but also provide a local and effective delivery of engineered EMs for the in-situ therapy.


Subject(s)
Exosomes , Osteogenesis , Regenerative Medicine , Vascular Endothelial Growth Factor A/genetics
8.
Hortic Res ; 6: 96, 2019.
Article in English | MEDLINE | ID: mdl-31645954

ABSTRACT

The molecular mechanism underlying dormancy release and the induction of flowering remains poorly understood in woody plants. Mu-legacy is a valuable blueberry mutant, in which a transgene insertion caused increased expression of a RESPONSE REGULATOR 2-like gene (VcRR2). Mu-legacy plants, compared with nontransgenic 'Legacy' plants, show dwarfing, promotion of flower bud formation, and can flower under nonchilling conditions. We conducted transcriptomic comparisons in leaves, chilled and nonchilled flowering buds, and late-pink buds, and analyzed a total of 41 metabolites of six groups of hormones in leaf tissues of both Mu-legacy and 'Legacy' plants. These analyses uncovered that increased VcRR2 expression promotes the expression of a homolog of Arabidopsis thaliana ENT-COPALYL DIPHOSPHATE SYNTHETASE 1 (VcGA1), which induces new homeostasis of hormones, including increased gibberellin 4 (GA4) levels in Mu-legacy leaves. Consequently, increased expression of VcRR2 and VcGA1, which function in cytokinin responses and gibberellin synthesis, respectively, initiated the reduction in plant height and the enhancement of flower bud formation of the Mu-legacy plants through interactions of multiple approaches. In nonchilled flower buds, 29 differentially expressed transcripts of 17 genes of five groups of hormones were identified in transcriptome comparisons between Mu-legacy and 'Legacy' plants, of which 22 were chilling responsive. Thus, these analyses suggest that increased expression of VcRR2 was collectively responsible for promoting flower bud formation in highbush blueberry under nonchilling conditions. We report here for the first time the importance of VcRR2 to induce a suite of downstream hormones that promote flowering in woody plants.

9.
Hortic Res ; 6: 105, 2019.
Article in English | MEDLINE | ID: mdl-31645960

ABSTRACT

FLOWERING LOCUS T (FT) can promote early flowering in annual species, but such role has not been well demonstrated in woody species. We produced self and reciprocal grafts involving non-transgenic blueberry (NT) and transgenic blueberry (T) carrying a 35S-driven blueberry FT (VcFT-OX). We demonstrated that the transgenic VcFT-OX rootstock promoted flowering of non-transgenic blueberry scions in the NT (scion):T (rootstock) grafts. We further analyzed RNA-Seq profiles and six groups of phytohormones in both NT:T and NT:NT plants. We observed content changes of several hormone metabolites, in a descending order, in the transgenic NT:T, non-transgenic NT:T, and non-transgenic NT:NT leaves. By comparing differential expression transcripts (DETs) of these tissues in relative to their control, we found that the non-transgenic NT:T leaves had many DETs shared with the transgenic NT:T leaves, but very few with the transgenic NT:T roots. Interestingly, a number of these shared DETs belong to hormone pathway genes, concurring with the content changes of hormone metabolites in both transgenic and non-transgenic leaves of the NT:T plants. These results suggest that phytohormones induced by VcFT-OX in the transgenic leaves might serve as part of the signals that resulted in early flowering in both transgenic plants and the non-transgenic NT:T scions.

SELECTION OF CITATIONS
SEARCH DETAIL