Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Ann Hepatol ; 27(2): 100584, 2022.
Article in English | MEDLINE | ID: mdl-34808393

ABSTRACT

INTRODUCTION AND OBJECTIVES: Nonalcoholic fatty liver disease (NAFLD) starts with the abnormal accumulation of lipids in the liver. Long noncoding RNA (lncRNA) nuclear enriched abundant transcript 1 (NEAT1) was reported to modulate hepatic metabolic homeostasis in NAFLD. However, little is known about the molecular mechanisms of NAFLD. MATERIALS AND METHODS: To establish a NAFLD cellular model, HepG2 cells and LO2 cells were treated with 1 mM free fatty acids (FFAs) for 24 h. NEAT1, miRNA (miR)-139-5p, c-Jun and sterol-regulatory element binding protein-1c (SREBP-1c) were evaluated using qPCR. The protein levels of c-Jun, SREBP1c, acetyl-CoA carboxylase (ACC) and fatty acid synthetase (FAS) were determined using western blotting. Moreover, Oil Red O staining was employed to assess lipid accumulation. In addition, a kit assay was performed to evaluate TG levels. Finally, the interactions among NEAT1, miR-139-5p, c-Jun and SREBP1c were identified by dual luciferase reporter gene assay. RESULTS: NEAT1, c-Jun and SREBP1c expression was markedly elevated, while miR-139-5p expression was reduced in the NAFLD cellular model. NEAT1 knockdown restrained lipid accumulation in the NAFLD cellular model by directly targeting miR-139-5p. Moreover, miR-139-5p overexpression suppressed lipid accumulation by directly suppressing c-Jun expression. In addition, c-Jun silencing suppressed lipid accumulation by directly targeting SREBP1c. Finally, miR-139-5p inhibition mitigated the inhibitory effect of sh-NEAT1 on lipid accumulation. CONCLUSION: NEAT1 aggravated FFA-induced lipid accumulation in hepatocytes by regulating the c-Jun/SREBP1c axis by sponging miR-139-5p, indicating the potential of NEAT1 as a promising therapeutic target for NAFLD.


Subject(s)
MicroRNAs , Non-alcoholic Fatty Liver Disease , RNA, Long Noncoding/genetics , Humans , Lipids , MicroRNAs/genetics , MicroRNAs/metabolism , Non-alcoholic Fatty Liver Disease/genetics , Non-alcoholic Fatty Liver Disease/metabolism , RNA, Long Noncoding/metabolism , Sterol Regulatory Element Binding Protein 1/genetics , Sterol Regulatory Element Binding Protein 1/metabolism
2.
Sci Total Environ ; 703: 134977, 2020 Feb 10.
Article in English | MEDLINE | ID: mdl-31757553

ABSTRACT

The optimization of more sustainable fertilization practice to relieve phosphorus (P) resource scarcity and increase P fertilizer utilization, a better understanding of the regulatory roles of microbes in P mobilization is urgently required to reduce P input. The genes phoD and pqqC are responsible for regulating organic and inorganic P mobilization, respectively. Using high-throughput sequencing, the corresponding bacterial communities harbored by these genes were determined. We conducted a 4-year rice-rice-crop rotation to investigate the responses of phoD- and pqqC-harboring bacterial communities to the partial replacement of inorganic P fertilizer by organic manure with reduced P input. The results showed that a combination of organic and inorganic fertilization maintained high rice yield, and also produced a more complex and stable phosphate mobilizing bacterial community, which contributed to phosphatase activities more than their gene abundances in the model analysis. Compared with the conventional mineral fertilization, organic-inorganic fertilization with the reduced P input slightly increased pqqC gene abundance while significantly enhanced the abundance of phoD-harboring bacteria, especially the genera Bradyrhizobium and Methylobacterium known as potential organic P mineralizers which can maintain high rice production. Moreover, the increased pH was the most impactful factor for the phoD- and pqqC-harboring bacterial communities, by promoting microbial P turnover and greatly increasing bioavailable P pools (H2O-Pi and NaHCO3-Pi, NaOH-Pi) in this P-deficient paddy soil. Hence, our study demonstrated that the partial replacement of mineral P with organic manure could reshape the inorganic phosphate solubilizing and alkaline-phosphomonoesterase encoding bacterial communities towards more resilient and effective to the high P utilization and productivity over intense cultivation, providing insights into the potential of soil microbes in the efficient management of agricultural P fertilization.


Subject(s)
Agriculture/methods , Phosphorus/analysis , Soil Microbiology , Fertilizers/analysis , Manure , Soil
SELECTION OF CITATIONS
SEARCH DETAIL