Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 277
1.
Talanta ; 276: 126205, 2024 May 06.
Article En | MEDLINE | ID: mdl-38718649

Considering the high probability of recurrence or metastasis after thyroidectomy, it is meaningful to develop a rapid, sensitive and specific method for monitoring thyrophyma-related biomarkers. In this study, a homogeneous electrochemiluminescence immunoassay (HO-ECLIA) coupled with magnetic beads (MBs)-based enrichment tactic was established for the determination of thyrophyma-related thyroglobulin (Tg). Importantly, owing to the abundant surface groups and good biocompatibility of carbon quantum dots (CQDs), the incorporation of CQDs onto the Tg antigen surface was achieved, resulting in the formation of Tg-encapsulated CQDs (CQDs-Tg), which served not only as an ECL probe but as a biorecognition element. Under optimal experimental conditions, the proposed platform demonstrated a wide linear range from 0.01 to 100 ng·mL-1 with a detection limit of 6.9 pg·mL-1 (S/N = 3), and performed well in real serum sample analysis against interference. Collectively, the proposed platform exhibited the rapid response, satisfactory sensitivity and specificity toward Tg in complex serum milieu, and held a considerable potential for clinical prognosis monitoring of thyrophyma.

3.
Sci Adv ; 10(20): eadl3511, 2024 May 17.
Article En | MEDLINE | ID: mdl-38748808

Cervical cancer, primarily squamous cell carcinoma, is the most prevalent gynecologic malignancy. Organoids can mimic tumor development in vitro, but current Matrigel inaccurately replicates the tissue-specific microenvironment. This limitation compromises the accurate representation of tumor heterogeneity. We collected para-cancerous cervical tissues from patients diagnosed with cervical squamous cell carcinoma (CSCC) and prepared uterine cervix extracellular matrix (UCEM) hydrogels. Proteomic analysis of UCEM identified several tissue-specific signaling pathways including human papillomavirus, phosphatidylinositol 3-kinase-AKT, and extracellular matrix receptor. Secreted proteins like FLNA, MYH9, HSPA8, and EEF1A1 were present, indicating UCEM successfully maintained cervical proteins. UCEM provided a tailored microenvironment for CSCC organoids, enabling formation and growth while preserving tumorigenic potential. RNA sequencing showed UCEM-organoids exhibited greater similarity to native CSCC and reflected tumor heterogeneity by exhibiting CSCC-associated signaling pathways including virus protein-cytokine, nuclear factor κB, tumor necrosis factor, and oncogenes EGR1, FPR1, and IFI6. Moreover, UCEM-organoids developed chemotherapy resistance. Our research provides insights into advanced organoid technology through native matrix hydrogels.


Carcinoma, Squamous Cell , Extracellular Matrix , Hydrogels , Organoids , Uterine Cervical Neoplasms , Humans , Female , Organoids/metabolism , Organoids/pathology , Organoids/drug effects , Extracellular Matrix/metabolism , Hydrogels/chemistry , Uterine Cervical Neoplasms/metabolism , Uterine Cervical Neoplasms/pathology , Uterine Cervical Neoplasms/genetics , Carcinoma, Squamous Cell/metabolism , Carcinoma, Squamous Cell/pathology , Carcinoma, Squamous Cell/genetics , Cervix Uteri/pathology , Cervix Uteri/metabolism , Tumor Microenvironment , Signal Transduction , Animals , Proteomics/methods , Mice
4.
BMC Infect Dis ; 24(1): 537, 2024 May 28.
Article En | MEDLINE | ID: mdl-38807052

BACKGROUND: As SARS-CoV-2 continues to be relevant and cause illnesses, the effect of emerging virus variants on perinatal health remains to be elucidated. It was demonstrated that vertical transmission of SARS-CoV-2 is a relatively rare event in the original SARS-CoV-2 strain. However, very few reports describe vertical transmission related to the delta-variant. CASE PRESENTATION: We report a case of a preterm male neonate born to a mother with positive SARS-CoV-2 and mild respiratory complications. The neonate was born by cesarean section due to fetal distress. The rupture of the amniotic membrane was at delivery. The neonate had expected prematurity-related complications. His nasopharyngeal swabs for RT-PCR were positive from birth till three weeks of age. RT-ddPCR of the Placenta showed a high load of the SARS-CoV-2 virus with subgenomic viral RNA. RNAscope technique demonstrated both the positive strand of the S gene and the orf1ab negative strand. Detection of subgenomic RNA and the orf1ab negative strand indicats active viral replication in the placenta. CONCLUSIONS: Our report demonstrates active viral replication of the SARS-CoV-2 delta-variant in the placenta associated with vertical transmission in a preterm infant.


COVID-19 , Infant, Premature , Infectious Disease Transmission, Vertical , Pregnancy Complications, Infectious , SARS-CoV-2 , Humans , COVID-19/transmission , COVID-19/virology , Infant, Newborn , SARS-CoV-2/genetics , Female , Pregnancy , Male , Pregnancy Complications, Infectious/virology , Placenta/virology , Adult , RNA, Viral/genetics , Cesarean Section
5.
Article En | MEDLINE | ID: mdl-38518139

Background: Hypertriglyceridemia-induced acute pancreatitis (HTG-AP) is an increasingly recognized and potentially severe form of acute pancreatitis. The effective management of HTG-AP is critical due to its association with significant morbidity and mortality. HTG-AP poses a considerable burden on affected individuals and healthcare systems. It can result in persistent upper abdominal pain, nausea, vomiting, abdominal distension, fever, and in severe cases, hypotension or shock and multiple organ dysfunction. Standard treatment strategies often involve lipid-lowering agents, but the optimal therapeutic approach remains a subject of ongoing research. This study aims to evaluate the efficacy of atorvastatin calcium, fenofibrate, and acipimox, either individually or in combination, in the treatment of HTG-AP, providing insights into more effective management strategies. Methods: 150 HTG-AP patients admitted to the first hospital of Putian from June 2020 to December 2022 were selected. The age range of the patients included in the study was between 30 and 70 years, with an average age of approximately 48 years. The cohort consisted of 90 males and 60 females, resulting in a male-to-female ratio of 3:2. The patients were grouped: atorvastatin calcium, acipimox, fenofibrate, fenofibrate + Atorvastatin calcium, fenofibrate + acipimox, and no drug. The therapeutic effects and clinical indicators of the six groups were compared. Results: Patients in the fenofibrate + acipimox and fenofibrate groups experienced significantly reduced hospitalization duration compared to the other groups. They also had shorter abdominal pain relief time and gastrointestinal function relief time. Additionally, these groups had lower peak levels of amylase (an enzyme) and cholesterol compared to the other groups. In terms of neutrophil (NEUT) increase, the fenofibrate + acipimox, atorvastatin calcium, and fenofibrate groups had significantly lower peak levels compared to the other groups, indicating a less pronounced increase in NEUT. Furthermore, the fenofibrate and acipimox groups exhibited significantly lower peak levels of C-reactive protein (CRP) compared to the other groups. CRP is an indicator of inflammation. On the other hand, the atorvastatin calcium group had higher levels of procalcitonin (a marker of infection) and a higher peak score on the acute physiology and chronic health evaluation II (APACHE II) scale, which assesses the severity of acute pancreatitis, compared to the other groups (all P < .05). Conclusion: The findings of this study highlight the effectiveness of combining fenofibrate and acipimox in the treatment of HTG-AP, leading to rapid disease recovery and significant improvement in clinical symptoms. These results have important implications for clinical practice, as the combination therapy can be widely adopted as an effective treatment strategy for HTG-AP patients. Moreover, this study provides valuable insights into the management of HTG-AP and suggests that lipid-lowering agents, such as atorvastatin calcium and fenofibrate, play a crucial role in the treatment of this condition. However, further research is needed to explore the optimal dosages, treatment durations, and potential side effects of these medications in HTG-AP patients.

6.
Emerg Microbes Infect ; 13(1): 2327368, 2024 Dec.
Article En | MEDLINE | ID: mdl-38531008

The COVID-19 pandemic presents a major threat to global public health. Several lines of evidence have shown that the Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2), along with two other highly pathogenic coronaviruses, SARS-CoV and Middle East Respiratory Syndrome (MERS-CoV) originated from bats. To prevent and control future coronavirus outbreaks, it is necessary to investigate the interspecies infection and pathogenicity risks of animal-related coronaviruses. Currently used infection models, including in vitro cell lines and in vivo animal models, fail to fully mimic the primary infection in human tissues. Here, we employed organoid technology as a promising new model for studying emerging pathogens and their pathogenic mechanisms. We investigated the key host-virus interaction patterns of five human coronaviruses (SARS-CoV-2 original strain, Omicron BA.1, MERS-CoV, HCoV-229E, and HCoV-OC43) in different human respiratory organoids. Five indicators, including cell tropism, invasion preference, replication activity, host response and virus-induced cell death, were developed to establish a comprehensive evaluation system to predict coronavirus interspecies infection and pathogenicity risks. Using this system, we further examined the pathogenicity and interspecies infection risks of three SARS-related coronaviruses (SARSr-CoV), including WIV1 and rRsSHC014S from bats, and MpCoV-GX from pangolins. Moreover, we found that cannabidiol, a non-psychoactive plant extract, exhibits significant inhibitory effects on various coronaviruses in human lung organoid. Cannabidiol significantly enhanced interferon-stimulated gene expression but reduced levels of inflammatory cytokines. In summary, our study established a reliable comprehensive evaluation system to analyse infection and pathogenicity patterns of zoonotic coronaviruses, which could aid in prevention and control of potentially emerging coronavirus diseases.


COVID-19 , Cannabidiol , Chiroptera , Middle East Respiratory Syndrome Coronavirus , Animals , Humans , Pandemics , Cannabidiol/pharmacology , SARS-CoV-2
7.
Bone ; 183: 117074, 2024 Jun.
Article En | MEDLINE | ID: mdl-38513307

BACKGROUND: Steroid-induced osteonecrosis of the femoral head (SONFH) is a prevalent and incapacitating condition that affects the hip joint. Unfortunately, early diagnostic and treatment measures are limited. METHODS: Our study employed Tandem Mass Tag (TMT) labeling mass spectrometry (MS)-based quantitative proteome to compare the proteins of femoral head tissues in patients with SONFH with those of patients who sustained femoral neck fracture (FNF). We investigated the level and effects of glucose transporter member 1 (GLUT1) in SONFH patients and MC3T3-E1 cells and examined the function and molecular mechanism of GLUT1 in the context of SONFH using in vivo and in vitro approaches. RESULTS: The SONFH group exhibited significant changes in protein expression levels compared to the fracture group. Specifically, we observed the up-regulation of 86 proteins and the down-regulation of 138 proteins in the SONFH group. Among the differentially expressed proteins, GLUT1 was down-regulated and associated with glucose metabolic processes in the SONFH group. Further analysis using Parallel Reaction Monitoring (PRM), WB, and PCR confirmed that the protein was significantly down-regulated in both femoral head tissue samples from SONFH patients and dexamethasone-treated MC3T3-E1 cells. Moreover, overexpression of GLUT1 effectively reduced glucocorticoid (GC)-induced apoptosis and the suppression of osteoblast proliferation and osteogenic differentiation in MC3T3-E1 cells, as well as GC-induced femoral head destruction in GC-induced ONFH rat models. Additionally, our research demonstrated that GC down-regulated GLUT1 transcription via glucocorticoid receptors in MC3T3-E1 cells. CONCLUSIONS: GLUT1 was down-regulated in patients with SONFH; furthermore, down-regulated GLUT1 promoted apoptosis and inhibited osteoblast ossification in dexamethasone-induced MC3T3-E1 cells and contributed to GC-induced femoral head destruction in a SONFH rat model. Glucocorticoids inhibited the transcriptional activity of GLUT1, leading to a reduction in the amount and activity of GLUT1 in the cells and ultimately promoting apoptosis and inhibiting osteoblast ossification via the GC/GR/GLUT1 axis in SONFH.


Femur Head Necrosis , Glucocorticoids , Osteonecrosis , Animals , Humans , Rats , Dexamethasone , Femur Head/metabolism , Femur Head/pathology , Femur Head Necrosis/chemically induced , Femur Head Necrosis/metabolism , Femur Head Necrosis/pathology , Glucocorticoids/adverse effects , Glucose Transporter Type 1/metabolism , Osteogenesis , Osteonecrosis/chemically induced , Proteomics , Steroids/adverse effects
8.
J Mater Chem B ; 12(11): 2795-2806, 2024 Mar 13.
Article En | MEDLINE | ID: mdl-38385522

Oxidative stress and reactive oxygen species drive ischemic stroke and its related complications. New antioxidant medications are therefore crucial for treating ischemic stroke. We developed Ti2C@BSA-ISO nanocomposites loaded with the hydrophobic drug isoquercetin (ISO) encapsulated in BSA on Ti2C nano-enzymes as a novel therapeutic nanomedicine for the treatment of ischemic stroke targeting reactive oxygen species (ROS). TEM visually proved the successful preparation of Ti2C@BSA-ISO, and the FTIR, XPS, zeta potential and DLS together demonstrated the acquisition of Ti2C@BSA-ISO. In addition, the enzyme-mimicking activity of Ti2C was evaluated and the antioxidant capacity of Ti2C@BSA-ISO was verified. Ti2C@BSA-ISO was able to reverse the decrease in cellular activity caused by ROS. Experiments in vivo showed that Ti2C@BSA-ISO could promote neuroprotection and scavenging of ROS in the hippocampal CA1 area and cerebral cortex of rats, thereby inhibiting cellular death and alleviating ischaemic stroke. Specifically, Ti2C@BSA-ISO alleviated ischemic stroke by inhibiting NLRP3/caspase-1/GSDMD pathway-mediated pyroptosis. Our study demonstrates the effectiveness of nanomedicines that can be directly used as drugs for the treatment of ischemic stroke in synergy with other drugs, which greatly expands the application of nanomaterials in the treatment of ischemic stroke.


Brain Ischemia , Ischemic Stroke , Neuroprotective Agents , Nitrites , Quercetin/analogs & derivatives , Stroke , Transition Elements , Rats , Animals , Antioxidants/therapeutic use , Reactive Oxygen Species , Ischemic Stroke/drug therapy , Neuroprotective Agents/pharmacology , Stroke/drug therapy
9.
Heliyon ; 10(2): e24778, 2024 Jan 30.
Article En | MEDLINE | ID: mdl-38304845

In this study, the therapeutic effect and possible mechanism of the total biflavonoid extract of Selaginella doederleinii Hieron (SDTBE) against cervical cancer were originally investigated in vitro and in vivo. First, the inhibition of SDTBE on proliferation of cervical cancer HeLa cells was evaluated, followed by morphological observation with AO/EB staining, Annexin V/PI assay, and autophagic flux monitoring to evaluate the possible effect of SDTBE on cell apoptosis and autophagy. Cell cycle, as well as mitochondrial membrane potential (ΔÑ°m), was detected with flow cytometry. Further, the apoptosis related protein expression and the autophagy related gene LC3 mRNA transcription level were analyzed by Western blot (WB) and real-time quantitative polymerase chain reaction (RT-qPCR), respectively. Finally, the anti-cervical cancer effect of the SDTBE was also validated in vivo in HeLa cells grafts mice. As results, SDTBE inhibited HeLa cells proliferation with the IC50 values of 49.05 ± 6.76 and 44.14 ± 4.75 µg/mL for 48 and 72 h treatment, respectively. The extract caused mitochondrial ΔÑ° loss, induced cell apoptosis by upregulating Bax, downregulating Bcl-2, activating Caspase-9 and Caspase-3, promoting cell autophagy and blocking the cell cycle in G0/G1 phase. Furthermore, 100, 200, and 300 mg/kg SDTBE suppressed the growth of HeLa cells xenografts in mice with the mean inhibition rates, 25.3 %, 57.5 % and 62.9 %, respectively, and the change of apoptosis related proteins and microvascular density was confirmed in xenografts by immunohistochemistry analysis. The results show that SDTBE possesses anti-cervical cancer effect, and the mechanism involves in activating Caspase-dependent mitochondrial apoptosis pathway.

11.
Biomater Sci ; 12(4): 1016-1030, 2024 Feb 13.
Article En | MEDLINE | ID: mdl-38206081

Nano-biointerfaces play a pivotal role in determining the functionality of engineered therapeutic nanoparticles, particularly in the context of designing nanovaccines to effectively activate immune cells for cancer immunotherapy. Unlike involving chemical reactions by conventional surface decorating strategies, cell membrane-coating technology offers a straightforward approach to endow nanoparticles with natural biosurfaces, enabling them to mimic and integrate into the intricate biosystems of the body to interact with specific cells under physiological conditions. In this study, cell membranes, in a hybrid formulation, derived from cancer and activated macrophage cells were found to enhance the interaction of nanoparticles (HMP) with dendritic cells (DCs) and T cells among the mixed immune cells from lymph nodes (LNs), which could be leveraged in the development of nanovaccines for anti-tumor therapy. After loading with an adjuvant (R837), the nanoparticles coated with a hybrid membrane (HMPR) demonstrated effectiveness in priming DCs both in vitro and in vivo, resulting in amplified anti-tumor immune responses compared to those of nanoparticles coated with a single type of membrane or those lacking a membrane coating. The elevated immunoactivity of nanoparticles achieved by incorporating a hybrid membrane biosurface provides us a more profound comprehension of the nano-immune interaction, which may significantly benefit the development of bioactive nanomaterials for advanced therapy.


Nanoparticles , Neoplasms , Humans , Neoplasms/therapy , Cell Membrane , Immunotherapy , Dendritic Cells , Immunity
12.
Spectrochim Acta A Mol Biomol Spectrosc ; 308: 123738, 2024 Mar 05.
Article En | MEDLINE | ID: mdl-38086230

Chemiluminescence (CL) intensity of luminol-H2O2 system was dramatically enhanced by cetyltrimethylammonium bromide (CTAB) micelle-mediated 6-aza-2-thiothymine-protected gold nanoclusters (ATT-AuNCs). It is proved that spherical micelles of CTAB in aqueous solution improved the dispersity of ATT-AuNCs, thus enhancing their catalytic activity, which brought in the increased CL intensity of luminol-H2O2 system. Carbazochrome sodium sulfonate (CSS) with a hemostatic containing tetrahydroindole structure broke the spherical micelles and notably quenched the CL intensity of luminol-H2O2-CTAB-ATT AuNCs system. Based on these results, a simple, fast, and sensitive CL method has been developed for the detection of CSS with a linear range of 0.25-25 µM and a detection limit of 0.11 µM. The method has also been successfully applied to the determination of CSS in serum with satisfied recoveries in the range of 89.6 % to 103.7 %. This study not only provides an effective approach for CSS detection but also paves the way for AuNCs-based CL applications.

13.
J Biol Chem ; 300(1): 105538, 2024 Jan.
Article En | MEDLINE | ID: mdl-38072046

Histone chaperone FACT (facilitates chromatin transcription) is well known to promote chromatin recovery during transcription. However, the mechanism how FACT regulates genome-wide chromatin accessibility and transcription factor binding has not been fully elucidated. Through loss-of-function studies, we show here that FACT component Ssrp1 is required for DNA replication and DNA damage repair and is also essential for progression of cell phase transition and cell proliferation in mouse embryonic fibroblast cells. On the molecular level, absence of the Ssrp1 leads to increased chromatin accessibility, enhanced CTCF binding, and a remarkable change in dynamic range of gene expression. Our study thus unequivocally uncovers a unique mechanism by which FACT complex regulates transcription by coordinating genome-wide chromatin accessibility and CTCF binding.


CCCTC-Binding Factor , Chromatin , DNA-Binding Proteins , Gene Expression Regulation , High Mobility Group Proteins , Histone Chaperones , Animals , Mice , CCCTC-Binding Factor/genetics , CCCTC-Binding Factor/metabolism , Chromatin/genetics , DNA Replication , Histone Chaperones/genetics , DNA-Binding Proteins/genetics , High Mobility Group Proteins/genetics , NIH 3T3 Cells , DNA Repair
15.
bioRxiv ; 2023 Nov 21.
Article En | MEDLINE | ID: mdl-38045385

The conserved Runt-related (RUNX) transcription factor family are well-known master regulators of developmental and regenerative processes. Runx1 and Runx2 are both expressed in satellite cells (SC) and skeletal myotubes. Conditional deletion of Runx1 in adult SC negatively impacted self-renewal and impaired skeletal muscle maintenance. Runx1- deficient SC retain Runx2 expression but cannot support muscle regeneration in response to injury. To determine the unique molecular functions of Runx1 that cannot be compensated by Runx2 we deleted Runx1 in C2C12 that retain Runx2 expression and established that myoblasts differentiation was blocked in vitro due in part to ectopic expression of Mef2c, a target repressed by Runx1 . Structure-function analysis demonstrated that the Ets-interacting MID/EID region of Runx1, absent from Runx2, is critical to regulating myoblasts proliferation, differentiation, and fusion. Analysis of in-house and published ChIP-seq datasets from Runx1 (T-cells, muscle) versus Runx2 (preosteoblasts) dependent tissue identified enrichment for a Ets:Runx composite site in Runx1 -dependent tissues. Comparing ATACseq datasets from WT and Runx1KO C2C12 cells showed that the Ets:Runx composite motif was enriched in peaks open exclusively in WT cells compared to peaks unique to Runx1KO cells. Thus, engagement of a set of targets by the RUNX1/ETS complex define the non-redundant functions of Runx1 .

16.
J Nanobiotechnology ; 21(1): 378, 2023 Oct 17.
Article En | MEDLINE | ID: mdl-37848956

BACKGROUND: The combination of drug delivery with immune checkpoint targeting has been extensively studied in cancer therapy. However, the clinical benefit for patients from this strategy is still limited. B7 homolog 3 protein (B7-H3), also known as CD276 (B7-H3/CD276), is a promising therapeutic target for anti-cancer treatment. It is widely overexpressed on the surface of malignant cells and tumor vasculature, and its overexpression is associated with poor prognosis. Herein, we report B7H3 targeting doxorubicin (Dox)-conjugated gold nanocages (B7H3/Dox@GNCs) with pH-responsive drug release as a selective, precise, and synergistic chemotherapy-photothermal therapy agent against non-small-cell lung cancer (NSCLC). RESULTS: In vitro, B7H3/Dox@GNCs exhibited a responsive release of Dox in the tumor acidic microenvironment. We also demonstrated enhanced intracellular uptake, induced cell cycle arrest, and increased apoptosis in B7H3 overexpressing NSCLC cells. In xenograft tumor models, B7H3/Dox@GNCs exhibited tumor tissue targeting and sustained drug release in response to the acidic environment. Wherein they synchronously destroyed B7H3 positive tumor cells, tumor-associated vasculature, and stromal fibroblasts. CONCLUSION: This study presents a dual-compartment targeted B7H3 multifunctional gold conjugate system that can precisely control Dox exposure in a spatio-temporal manner without evident toxicity and suggests a general strategy for synergistic therapy against NSCLC.


Antineoplastic Agents , Carcinoma, Non-Small-Cell Lung , Doxorubicin , Lung Neoplasms , Nanoparticles , Photothermal Therapy , Humans , B7 Antigens , Carcinoma, Non-Small-Cell Lung/drug therapy , Cell Line, Tumor , Doxorubicin/pharmacology , Doxorubicin/therapeutic use , Drug Liberation , Gold , Hydrogen-Ion Concentration , Hyperthermia, Induced , Lung Neoplasms/drug therapy , Phototherapy , Photothermal Therapy/methods , Tumor Microenvironment , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Animals , Mice , Xenograft Model Antitumor Assays
17.
Anal Chem ; 95(39): 14592-14599, 2023 10 03.
Article En | MEDLINE | ID: mdl-37683102

Due to the comparable stability between the perfect-base pair and the wobble-base pair, a precise differentiation of the wobble-type allele has remained a challenge, often leading to false results. Herein, we proposed a ligase chain reaction (LCR)-based ratiometric electrochemical DNA sensor, namely, R-eLCR, for a precise typing of the wobble-type allele, in which the traditionally recognized "negative" signal of wobble-base pair-mediated amplification was fully utilized as a "positive" one and a ratiometric readout mode was employed to ameliorated the underlying potential external influence and improved its detection accuracy in the typing of the wobble-type allele. The results showed that the ratio between current of methylene blue (IMB) and current of ferrocene (IFc) was partitioned in three regions and three types of wobble-type allele were thus precisely differentiated (AA homozygote: IMB/IFc > 2; GG homozygote: IMB/IFc < 1; GA heterozygote: 1 < IMB/IFc < 2); the proposed R-eLCR successfully discriminated the three types of CYP2C19*2 allele in nine cases of human whole blood samples, which was consistent with those of the sequencing method. These results evidence that the proposed R-eLCR can serve as an accurate and robust alternative for the identification of wobble-type allele, which lays a solid foundation and holds great potential for precision medicine.


Biosensing Techniques , Ligase Chain Reaction , Humans , Alleles , Genotype , Cytochrome P-450 CYP2C19 , Electrochemical Techniques , Gold , Limit of Detection
18.
EBioMedicine ; 96: 104800, 2023 Oct.
Article En | MEDLINE | ID: mdl-37734205

BACKGROUND: COVID-19 mRNA vaccines play a vital role in the fight against SARS-CoV-2 infection. However, lactating women have been largely excluded from most vaccine clinical trials. As a result, limited research has been conducted on the systemic distribution of vaccine mRNA during lactation and whether it is excreted in human breast milk (BM). Here, we evaluated if COVID-19 vaccine mRNA is detectable in BM after maternal vaccination and determined its potential translational activity. METHODS: We collected BM samples from 13 lactating, healthy, post-partum women before and after COVID-19 mRNA vaccination. Vaccine mRNA in whole BM and BM extracellular vesicles (EVs) was assayed using quantitative Droplet Digital PCR, and its integrity and translational activity were evaluated. FINDINGS: Of 13 lactating women receiving the vaccine (20 exposures), trace mRNA amounts were detected in 10 exposures up to 45 h post-vaccination. The mRNA was concentrated in the BM EVs; however, these EVs neither expressed SARS-COV-2 spike protein nor induced its expression in the HT-29 cell line. Linkage analysis suggests vaccine mRNA integrity was reduced to 12-25% in BM. INTERPRETATION: Our findings demonstrate that the COVID-19 vaccine mRNA is not confined to the injection site but spreads systemically and is packaged into BM EVs. However, as only trace quantities are present and a clear translational activity is absent, we believe breastfeeding post-vaccination is safe, especially 48 h after vaccination. Nevertheless, since the minimum mRNA vaccine dose to elicit an immune reaction in infants <6 months is unknown, a dialogue between a breastfeeding mother and her healthcare provider should address the benefit/risk considerations of breastfeeding in the first two days after maternal vaccination. FUNDING: This study was supported by the Department of Pediatrics, NYU-Grossman Long Island School of Medicine.

19.
Cancer Immunol Res ; 11(12): 1671-1687, 2023 12 01.
Article En | MEDLINE | ID: mdl-37756564

Tumor-specific neoepitopes are promising targets in cancer immunotherapy. However, the identification of functional tumor-specific neoepitopes remains challenging. In addition to the most common source, single-nucleotide variants (SNV), alternative splicing (AS) represents another rich source of neoepitopes and can be utilized in cancers with low SNVs such as uveal melanoma (UM). UM, the most prevalent adult ocular malignancy, has poor clinical outcomes due to a lack of effective therapies. Recent studies have revealed the promise of harnessing tumor neoepitopes to treat UM. Previous studies have focused on neoepitope targets associated with mutations in splicing factor 3b subunit 1 (SF3B1), a key splicing factor; however, little is known about the neoepitopes that are commonly shared by patients independent of SF3B1 status. To identify the AS-derived neoepitopes regardless of SF3B1 status, we herein used a comprehensive nanopore long-read-sequencing approach to elucidate the landscape of AS and novel isoforms in UM. We also performed high-resolution mass spectrometry to further validate the presence of neoepitope candidates and analyzed their structures using the AlphaFold2 algorithm. We experimentally evaluated the antitumor effects of these neoepitopes and found they induced robust immune responses by stimulating interferon (IFN)γ production and activating T cell-based UM tumor killing. These results provide novel insights into UM-specific neoepitopes independent of SF3B1 and lay the foundation for developing therapies by targeting these actionable neoepitopes.


Melanoma , Uveal Neoplasms , Adult , Humans , Alternative Splicing , Melanoma/genetics , Melanoma/pathology , Uveal Neoplasms/genetics , Uveal Neoplasms/pathology , RNA Splicing Factors/genetics , Phosphoproteins/genetics
20.
Biosensors (Basel) ; 13(8)2023 Jul 27.
Article En | MEDLINE | ID: mdl-37622850

Drug resistance in cancer is associated with overexpression of the multidrug resistance (MDR1) gene, leading to the failure of cancer chemotherapy treatment. Therefore, the establishment of an effective method for the detection of the MDR1 gene is extremely crucial in cancer clinical therapy. Here, we report a novel DNA biosensor based on an aligned multi-walled carbon nanotube (MWCNT) array modified electrode with 3D nanostructure for the determination of the MDR1 gene. The microstructure of the modified electrode was observed by an atomic force microscope (AFM), which demonstrated that the electrode interface was arranged in orderly needle-shaped protrusion arrays. The electrochemical properties of the biosensor were characterized by cyclic voltammetry (CV), differential pulse voltammetry (DPV), and electrochemical impedance spectroscopy (EIS). Chronocoulometry (CC) was used for the quantitative detection of the MDR1 gene. Taking advantage of the good conductivity and large electrode area of the MWCNT arrays, this electrochemical DNA sensor achieved a dynamic range from 1.0 × 10-12 M to 1.0 × 10-8 M with a minimal detection limit of 6.4 × 10-13 M. In addition, this proposed DNA biosensor exhibited high sensitivity, selectivity, and stability, which may be useful for the trace analysis of the MDR1 gene in complex samples.


Nanotubes, Carbon , DNA , Dielectric Spectroscopy , Electric Conductivity , Electrodes
...