Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 495
Filter
1.
EBioMedicine ; 107: 105294, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39178744

ABSTRACT

Acute kidney injury (AKI) is a clinical syndrome characterized by a rapid and significant decrease in renal function that can arise from various etiologies, and is associated with high morbidity and mortality. The renal tubular epithelial cells (TECs) represent the central cell type affected by AKI, and their notable regenerative capacity is critical for the recovery of renal function in afflicted patients. The adaptive repair process initiated by surviving TECs following mild AKI facilitates full renal recovery. Conversely, when injury is severe or persistent, it allows the TECs to undergo pathological responses, abnormal adaptive repair and phenotypic transformation, which will lead to the development of renal fibrosis. Given the implications of TECs fate after injury in renal outcomes, a deeper understanding of these mechanisms is necessary to identify promising therapeutic targets and biomarkers of the repair process in the human kidney.


Subject(s)
Acute Kidney Injury , Epithelial Cells , Kidney Tubules , Acute Kidney Injury/etiology , Acute Kidney Injury/pathology , Acute Kidney Injury/metabolism , Humans , Epithelial Cells/metabolism , Kidney Tubules/pathology , Kidney Tubules/metabolism , Animals , Biomarkers , Fibrosis , Regeneration
2.
Adv Sci (Weinh) ; : e2309752, 2024 Aug 09.
Article in English | MEDLINE | ID: mdl-39119903

ABSTRACT

The transition from acute kidney injury (AKI) to chronic kidney disease (CKD) is a critical clinical issue. Although previous studies have suggested macrophages as a key player in promoting inflammation and fibrosis during this transition, the heterogeneity and dynamic characterization of macrophages are still poorly understood. Here, we used integrated single-cell RNA sequencing and spatial transcriptomic to characterize the spatiotemporal heterogeneity of macrophages in murine AKI-to-CKD model of unilateral ischemia-reperfusion injury. A marked increase in macrophage infiltration at day 1 was followed by a second peak at day 14 post AKI. Spatiotemporal profiling revealed that injured tubules and macrophages co-localized early after AKI, whereas in late chronic stages had spatial proximity to fibroblasts. Further pseudotime analysis revealed two distinct lineages of macrophages in this transition: renal resident macrophages differentiated into the pro-repair subsets, whereas infiltrating monocyte-derived macrophages contributed to chronic inflammation and fibrosis. A novel macrophage subset, extracellular matrix remodeling-associated macrophages (EAMs) originating from monocytes, linked to renal fibrogenesis and communicated with fibroblasts via insulin-like growth factors (IGF) signalling. In sum, our study identified the spatiotemporal dynamics of macrophage heterogeneity with a unique subset of EAMs in AKI-to-CKD transition, which could be a potential therapeutic target for preventing CKD development.

3.
J Agric Food Chem ; 72(28): 15541-15551, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-38959381

ABSTRACT

Benzimidazoles, the representative pharmacophore of fungicides, have excellent antifungal potency, but their simple structure and single site of action have hindered their wider application in agriculture. In order to extend the structural diversity of tubulin-targeted benzimidazoles, novel benzimidazole derivatives were prepared by introducing the attractive pyrimidine pharmacophore. 2-((6-(4-(trifluoromethyl)phenoxy)pyrimidin-4-yl)thio)-1H-benzo[d]imidazole (A25) exhibited optimal antifungal activity against Sclerotinia sclerotiorum (S. s.), affording an excellent half-maximal effective concentration (EC50) of 0.158 µg/mL, which was higher than that of the reference agent carbendazim (EC50 = 0.594 µg/mL). Pot experiments revealed that compound A25 (200 µg/mL) had acceptable protective activity (84.7%) and curative activity (78.1%), which were comparable with that of carbendazim (protective activity: 90.8%; curative activity: 69.9%). Molecular docking displayed that multiple hydrogen bonds and π-π interactions could be formed between A25 and ß-tubulin, resulting in a stronger bonding effect than carbendazim. Fluorescence imaging revealed that the structure of intracellular microtubules can be changed significantly after A25 treatment. Overall, these remarkable antifungal profiles of constructed novel benzimidazole derivatives could facilitate the application of novel microtubule-targeting agents.


Subject(s)
Ascomycota , Benzimidazoles , Fungicides, Industrial , Molecular Docking Simulation , Tubulin , Benzimidazoles/chemistry , Benzimidazoles/pharmacology , Tubulin/chemistry , Tubulin/metabolism , Fungicides, Industrial/pharmacology , Fungicides, Industrial/chemistry , Fungicides, Industrial/chemical synthesis , Structure-Activity Relationship , Ascomycota/drug effects , Ascomycota/growth & development , Ascomycota/chemistry , Plant Diseases/microbiology , Molecular Structure , Tubulin Modulators/chemistry , Tubulin Modulators/pharmacology , Fungal Proteins/chemistry , Fungal Proteins/metabolism
4.
Int J Mol Sci ; 25(14)2024 Jul 18.
Article in English | MEDLINE | ID: mdl-39063088

ABSTRACT

This study investigated the effects of cilostazol on motor dysfunction, spinal motor neuron abnormalities, and schwannopathy in rats with diabetes. Diabetes mellitus (DM) was induced in rats via femoral intravenous streptozotocin (STZ) injection (60 mg/kg). After successful DM induction, cilostazol was administered on day 15 via oral gavage (100 mg/kg/day) for 6 weeks until sacrifice. Behavioral assays, including motor function, were performed weekly. The sciatic nerve, L5 spinal cord, and spinal ventral root were collected to evaluate the expression of the glial fibrillary acidic protein (GFAP), myelin protein zero (P0), and choline acetyltransferase (ChAT) by immunofluorescence and Western blotting. DM rats displayed decreased running speeds, running distances, and toe spread but increased foot pressure. In addition, loss of non-myelinating Schwann cells and myelin sheaths was observed in the sciatic nerve and L5 spinal ventral root. Reduced numbers of motor neurons were also found in the L5 spinal ventral horn. Cilostazol administration significantly potentiated running speed and distance; increased hind paw toe spread; and decreased foot pressure. In the sciatic nerve and L5 spinal ventral root, cilostazol treatment significantly improved non-myelinated Schwann cells and increased myelin mass. ChAT expression in motor neurons in the spinal ventral horn was improved, but not significantly. Cilostazol administration may protect sensorimotor function in diabetic rats.


Subject(s)
Cilostazol , Diabetes Mellitus, Experimental , Schwann Cells , Sciatic Nerve , Animals , Cilostazol/pharmacology , Cilostazol/therapeutic use , Schwann Cells/drug effects , Schwann Cells/metabolism , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/metabolism , Rats , Male , Sciatic Nerve/drug effects , Sciatic Nerve/metabolism , Choline O-Acetyltransferase/metabolism , Rats, Sprague-Dawley , Spinal Cord/drug effects , Spinal Cord/metabolism , Motor Neurons/drug effects , Motor Neurons/metabolism , Glial Fibrillary Acidic Protein/metabolism , Myelin P0 Protein/metabolism , Streptozocin
5.
Cell Commun Signal ; 22(1): 357, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38987851

ABSTRACT

BACKGROUND: Chronic kidney disease (CKD) is highly prevalent worldwide, and its global burden is substantial and growing. CKD displays a number of features of accelerated senescence. Tubular cell senescence is a common biological process that contributes to CKD progression. Tubulointerstitial inflammation is a driver of tubular cell senescence and a common characteristic of CKD. However, the mechanism by which the interstitial inflammation drives tubular cell senescence remains unclear. This paper aims to explore the role of exosomal miRNAs derived from macrophages in the development of tubular cell senescence. METHODS: Among the identified inflammation-related miRNAs, miR-155 is considered to be one of the most important miRNAs involved in the inflammatory response. Macrophages, the primary immune cells that mediate inflammatory processes, contain a high abundance of miR-155 in their released exosomes. We assessed the potential role of miR-155 in tubular cell senescence and renal fibrosis. We subjected miR-155-/- mice and wild-type controls, as well as tubular epithelial cells (TECs), to angiotensin II (AngII)-induced kidney injury. We assessed kidney function and injury using standard techniques. TECs were evaluated for cell senescence and telomere dysfunction in vivo and in vitro. Telomeres were measured by the fluorescence in situ hybridization. RESULTS: Compared with normal controls, miR-155 was up-regulated in proximal renal tubule cells in CKD patients and mouse models of CKD. Moreover, the expression of miR-155 was positively correlated with the extent of renal fibrosis, eGFR decline and p16INK4A expression. The overexpression of miR-155 exacerbated tubular senescence, evidenced by increased detection of p16INK4A/p21expression and senescence-associated ß-galactosidase activity. Notably, miR-155 knockout attenuates renal fibrosis and tubule cell senescence in vivo. Interestingly, once released, macrophages-derived exosomal miR-155 was internalized by TECs, leading to telomere shortening and dysfunction through targeting TRF1. A dual-luciferase reporter assay confirmed that TRF1 was the direct target of miR-155. Thus, our study clearly demonstrates that exosomal miR-155 may mediate communication between macrophages and TECs, subsequently inducing telomere dysfunction and senescence in TECs. CONCLUSIONS: Our work suggests a new mechanism by which macrophage exosomes are involved in the development of tubule senescence and renal fibrosis, in part by delivering miR-155 to target TRF1 to promote telomere dysfunction. Our study may provide novel strategies for the treatment of AngII-induced kidney injury.


Subject(s)
Cellular Senescence , Epithelial Cells , Exosomes , Kidney Tubules , Macrophages , MicroRNAs , Telomere , MicroRNAs/genetics , MicroRNAs/metabolism , Cellular Senescence/genetics , Exosomes/metabolism , Exosomes/genetics , Animals , Epithelial Cells/metabolism , Epithelial Cells/pathology , Macrophages/metabolism , Kidney Tubules/pathology , Kidney Tubules/metabolism , Mice , Telomere/genetics , Telomere/metabolism , Humans , Mice, Inbred C57BL , Male , Renal Insufficiency, Chronic/genetics , Renal Insufficiency, Chronic/pathology , Fibrosis/genetics , Angiotensin II
6.
Chem Asian J ; : e202400767, 2024 Jul 29.
Article in English | MEDLINE | ID: mdl-39075032

ABSTRACT

A new naphthalene diimides extended-pillar[6]arene 1 with a large cavity and rich host-guest complexation properties was synthesized in high yield. It can not only form 1:2 complexes with large size polycyclic aromatic hydrocarbons but also form 1:1:1 ternary complex with perylene and 2,7-diazapyrenium. Moreover, the supramolecular exchange reaction from a 1:2 host-guest complex 1•(G3)2 formed by 1 and perylene to a 1:1:1 ternary complex 1•G3•G5 formed by 1 with perylene and 2,7-diazapyrenium salt was also investigated by 1H NMR experiments as well as theoretically calculations.

7.
Cell Biochem Biophys ; 2024 Jun 22.
Article in English | MEDLINE | ID: mdl-38909173

ABSTRACT

Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) are serious respiratory disorders caused by a variety of intrapulmonary and extrapulmonary factors. Their incidence is increasing year by year, with high morbidity and mortality rates and lack of effective treatment. Inflammation plays a crucial role in ALI development, with sphingosine kinase 1 (SphK1) being a pivotal enzyme influencing sphingolipid metabolism and participating in inflammatory responses. However, the specific impact and the signaling pathway underlying SphK1 in lipopolysaccharide (LPS)-induced ALI/ARDS are poorly understood. This investigation aimed to explore the influence of SphK1 on inflammation and delve into the mechanistic aspects of inflammation in RAW 264.7 cells during LPS-induced ALI, which is of great importance in providing new targets and strategies for ALI/ARDS treatment.

8.
Int J Biol Sci ; 20(8): 2980-2993, 2024.
Article in English | MEDLINE | ID: mdl-38904017

ABSTRACT

Acute kidney injury (AKI) transformed to chronic kidney disease (CKD) is a critical clinical issue characterized by tubulointerstitial inflammation (TII) and fibrosis. However, the exact mechanism remains largely unclear. In this study, we used single-cell RNA sequencing (scRNA-seq) to obtain a high-resolution profile of T cells in AKI to CKD transition with a mice model of unilateral ischemia-reperfusion injury (uIRI). We found that T cells accumulated increasingly with the progression of AKI to CKD, which was categorized into 9 clusters. A notably increased proportion of CD8 T cells via self-proliferation occurred in the early stage of AKI was identified. Further study revealed that the CD8 T cells were recruited through CXCL16-CXCR6 pathway mediated by macrophages. Notably, CD8 T cells induced endothelial cell apoptosis via Fas ligand-Fas signaling. Consistently, increased CD8 T cell infiltration accompanied with peritubular capillaries (PTCs) rarefaction was observed in uIRI mice. More impressively, the loss of PTCs and renal fibrosis was remarkably ameliorated after the elimination of CD8 T cells. In summary, our study provides a novel insight into the role of CD8 T cells in the transition from AKI to CKD via induction of PTCs rarefaction, which could suggest a promising therapeutic target for AKI.


Subject(s)
Acute Kidney Injury , CD8-Positive T-Lymphocytes , Renal Insufficiency, Chronic , Animals , Acute Kidney Injury/metabolism , Acute Kidney Injury/pathology , Mice , Renal Insufficiency, Chronic/metabolism , Renal Insufficiency, Chronic/pathology , Renal Insufficiency, Chronic/immunology , Male , Mice, Inbred C57BL , Disease Models, Animal , Receptors, CXCR6/metabolism , Chemokine CXCL16/metabolism , Reperfusion Injury/immunology , Reperfusion Injury/metabolism , Apoptosis
9.
J Extracell Biol ; 3(1): e136, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38938675

ABSTRACT

Urinary extracellular vesicles (uEVs) are rich in valuable biomolecule information which are increasingly recognized as potential biomarkers for various diseases. uEV long RNAs are among the critical cargos capable of providing unique transcriptome information of the source cells. However, consensus regarding ideal reference genes for relative long RNAs quantification in uEVs is not available as of date. Here we explored stable reference genes through profiling the long RNA expression by RNA-seq following unsupervised analysis and validation studies. Candidate reference genes were identified using four algorithms: NormFinder, GeNorm, BestKeeper and the Delta Ct method, followed by validation. RNA profile showed uEVs contained abundant long RNAs information and the core transcriptome was related to cellular structures, especially ribosome which functions mainly as translation, protein and RNA binding molecules. Analysis of RNA-seq data identified RPL18A, RPL11, RPL27, RACK1, RPSA, RPL41, H1-2, RPL4, GAPDH, RPS27A as candidate reference genes. RT-qPCR validation revealed that RPL41, RPSA and RPL18A were reliable reference genes for long RNA quantification in uEVs from patients with diabetes mellitus (DM), diabetic nephropathy (DN), IgA nephropathy (IgAN) and prostate cancer (PCA). Interestingly, RPL41 also outperformed traditional reference genes in renal tissues of DN and IgAN, as well as in plasma EVs of several types of cancers. The stable reference genes identified in this study may facilitate development of uEVs as novel biomarkers and increase the accuracy and comparability of biomarker studies.

10.
Kidney Dis (Basel) ; 10(3): 193-199, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38835405

ABSTRACT

Introduction: Roxadustat, the first-in-class drug for the treatment of renal anemia, has demonstrated efficacy in renal anemia with microinflammation. Additional data are needed regarding the efficacy of roxadustat on renal anemia with systemic macroinflammation. Methods: Three cohorts of renal anemia based on the basic level of high-sensitivity CRP were included. Patients with hsCRP ≤2 mg/L were selected as non-inflammation (NI) group; 2< hsCRP ≤10 mg/L as microinflammation (MI) group; hsCRP≥10 mg/L as macroinflammation (MA) group. Patients received oral roxadustat three times per week for 52 weeks. The primary end point was the hemoglobin level over weeks 12-52. The second end point was the cumulative proportion of patients achieving hemoglobin response by the end of week 12. Results: A total of 107 patients with chronic kidney diseases (CKDs) were enrolled. Overall, the baseline hemoglobin level of patients was 79.99 ± 11.20 g/L. Roxadustat could significantly increase the hemoglobin level in all of the three groups and did not show any significant difference (p > 0.05, respectively). Meanwhile, compared with that of the NI group, there was no significant difference in hemoglobin response rate in the MA group both at week 12 (p = 0.06; 95% confidence interval [CI], 0.9531-13.75) and week 52 (p = 0.37; 95% CI, 0.5080-7.937). Moreover, the hemoglobin response was independent of baseline hsCRP level (p = 0.72, 95% CI, -0.1139 to 0.0794). More importantly, roxadustat significantly reduced ferritin and serum iron levels and increased total iron-binding capacity in the three groups, which showed no significant differences among the three groups (p > 0.05, respectively). Conclusion: Roxadustat significantly improves anemia in CKD patients with systemic macroinflammation.

12.
Br J Pharmacol ; 181(17): 3098-3117, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38698737

ABSTRACT

BACKGROUND AND PURPOSE: Activation of the renin-angiotensin system, as a hallmark of hypertension and chronic kidney diseases (CKD) is the key pathophysiological factor contributing to the progression of tubulointerstitial fibrosis. LIM and senescent cell antigen-like domains protein 1 (LIMS1) plays an essential role in controlling of cell behaviour through the formation of complexes with other proteins. Here, the function and regulation of LIMS1 in angiotensin II (Ang II)-induced hypertension and tubulointerstitial fibrosis was investigated. EXPERIMENTAL APPROACH: C57BL/6 mice were treated with Ang II to induce tubulointerstitial fibrosis. Hypoxia-inducible factor-1α (HIF-1α) renal tubular-specific knockout mice or LIMS1 knockdown AAV was used to investigate their effects on Ang II-induced renal interstitial fibrosis. In vitro, HIF-1α or LIMS1 was knocked down or overexpressed in HK2 cells after exposure to Ang II. KEY RESULTS: Increased expression of tubular LIMS1 was observed in human kidney with hypertensive nephropathy and in murine kidney from Ang II-induced hypertension model. Tubular-specific knockdown of LIMS1 ameliorated Ang II-induced tubulointerstitial fibrosis in mice. Furthermore, we demonstrated that LIMS1 was transcriptionally regulated by HIF-1α in tubular cells and that tubular HIF-1α knockout ameliorates LIMS1-mediated tubulointerstitial fibrosis. In addition, LIMS1 promotes Ang II-induced tubulointerstitial fibrosis by interacting with vimentin. CONCLUSION AND IMPLICATIONS: We conclude that HIF-1α transcriptionally regulated LIMS1 plays a central role in Ang II-induced tubulointerstitial fibrosis through interacting with vimentin. Our finding represents a new insight into the mechanism of Ang II-induced tubulointerstitial fibrosis and provides a novel therapeutic target for progression of CKD.


Subject(s)
Angiotensin II , Fibrosis , Hypertension , Hypoxia-Inducible Factor 1, alpha Subunit , Mice, Inbred C57BL , Vimentin , Animals , Angiotensin II/toxicity , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Fibrosis/chemically induced , Mice , Humans , Vimentin/metabolism , Male , Hypertension/chemically induced , Hypertension/metabolism , Hypertension/pathology , Mice, Knockout , LIM Domain Proteins/metabolism , LIM Domain Proteins/genetics
13.
Molecules ; 29(8)2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38675637

ABSTRACT

The detection of volatile amines is necessary due to the serious toxicity hazards they pose to human skin, respiratory systems, and nervous systems. However, traditional amines detection methods require bulky equipment, high costs, and complex measurements. Herein, we report a new simple, rapid, convenient, and visual method for the detection of volatile amines based on the gas-solid reactions of tetrachloro-p-benzoquinone (TCBQ) and volatile amines. The gas-solid reactions of TCBQ with a variety of volatile amines showed a visually distinct color in a time-dependent manner. Moreover, TCBQ can be easily fabricated into simple and flexible rapid test strips for detecting and distinguishing n-propylamine from other volatile amines, including ethylamine, n-butyamine, n-pentamine, n-butyamine and dimethylamine, in less than 3 s without any equipment assistance.

14.
Int J Biol Sci ; 20(5): 1669-1687, 2024.
Article in English | MEDLINE | ID: mdl-38481813

ABSTRACT

Direct tubular injury caused by several medications, especially chemotherapeutic drugs, is a common cause of AKI. Inhibition or loss of cyclin-dependent kinase 12 (CDK12) triggers a transcriptional elongation defect that results in deficiencies in DNA damage repair, producing genomic instability in a variety of cancers. Notably, 10-25% of individuals developed AKI after treatment with a CDK12 inhibitor, and the potential mechanism is not well understood. Here, we found that CDK12 was downregulated in the renal tubular epithelial cells in both patients with AKI and murine AKI models. Moreover, tubular cell-specific knockdown of CDK12 in mice enhanced cisplatin-induced AKI through promotion of genome instability, apoptosis, and proliferative inhibition, whereas CDK12 overexpression protected against AKI. Using the single molecule real-time (SMRT) platform on the kidneys of CDK12RTEC+/- mice, we found that CDK12 knockdown targeted Fgf1 and Cast through transcriptional elongation defects, thereby enhancing genome instability and apoptosis. Overall, these data demonstrated that CDK12 knockdown could potentiate the development of AKI by altering the transcriptional elongation defect of the Fgf1 and Cast genes, and more attention should be given to patients treated with CDK12 inhibitors to prevent AKI.


Subject(s)
Acute Kidney Injury , Cyclin-Dependent Kinases , Fibroblast Growth Factor 1 , Transcription Elongation, Genetic , Animals , Humans , Mice , Acute Kidney Injury/chemically induced , Acute Kidney Injury/genetics , Cyclin-Dependent Kinases/genetics , Fibroblast Growth Factor 1/genetics , Genomic Instability , Kidney
15.
Clin Microbiol Infect ; 30(7): 945-950, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38527614

ABSTRACT

OBJECTIVES: The trailing effect of Candida species is a phenomenon characterized by reduced but persistent growth at antifungal concentrations above the MIC. We assessed the impact of trailing growth on the persistence of Candida albicans candidemia in patients receiving fluconazole (FLC) therapy. METHODS: We retrospectively investigated candidemia isolates at three hospitals in southern Taiwan between 2013 and 2020. Patients treated with FLC for FLC-susceptible C. albicans candidemia were enrolled. The degree of trailing was determined as the average growth above the MIC divided by the measured growth at the lowest drug concentration using the EUCAST method and classified into four categories: residual (0.1-5%), slight (6-10%), moderate (11-15%), and heavy trailers (>15%). RESULTS: Among isolates from 190 patients, the proportions of heavy trailers at 24 hours, 48 hours, and 72 hours were 63.7% (121/190), 63.2% (120/190), and 74.7% (142/190), respectively. Persistent candidemia was observed in 17 (8.9 %) patients. The proportion of persistent C. albicans candidemia in heavy trailing isolates at 48 hours was higher than in isolates without heavy trailing (13.3% [16/120] vs. 1.4% [1/70], p = 0.007). A multivariate analysis showed that immunosuppression (OR = 7.92; 95% CI: 2.38-26.39, p = 0.001), hospitalization days after the index date of C. albicans identification (OR = 1.03; 95% CI: 1.01-1.05, p = 0.011), and heavy trailing isolates at 48 hours (OR = 10.04; 95% CI: 1.27-79.88, p = 0.029) were independent factors for persistent candidemia. DISCUSSION: The current study revealed that heavy trailing in C. albicans isolates is associated with persistent candidemia in patients receiving FLC treatment.


Subject(s)
Antifungal Agents , Candida albicans , Candidemia , Fluconazole , Microbial Sensitivity Tests , Humans , Fluconazole/pharmacology , Fluconazole/therapeutic use , Candidemia/microbiology , Candidemia/drug therapy , Antifungal Agents/therapeutic use , Antifungal Agents/pharmacology , Candida albicans/drug effects , Candida albicans/isolation & purification , Retrospective Studies , Male , Female , Middle Aged , Taiwan , Aged , Adult , Drug Resistance, Fungal
16.
Anal Sci ; 40(4): 701-707, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38316711

ABSTRACT

In this work, a novel zirconium phosphonate (ZrPR1R2) was prepared by decorating both the aminoethoxy- group (R1) and the carboxypropyl- group (R2) on the zirconium phosphate layers in order to manipulate further the immobilization of the peroxidase (POD), and an antioxidant biosensor with higher sensitivity was constructed by dropping the POD/ZrPR1R2 composite onto the glassy carbon electrode surface. The activity of the POD/ZrPR1R2 composite was detected by Uv-vis spectra. The direct electrochemical behavior, the electrocatalytic response to dissolved oxygen and hydrogen peroxide, as well as the ability to detect total antioxidant capacity in tea sample were investigated by the methods of cyclic voltammetry. The results indicated that the immobilization of POD in ZrPR1R2 nanosheets matrix enhanced the enzymatic activity, and achieved the fast and direct electron transfer between POD and glassy carbon electrode. Moreover, the POD/ZrPR1R2 composite modified electrode show the electrocatalytic response to hydrogen peroxide in the linear range of 8.8×10-8 to 8.8×10-7 mol L-1, with the detection limit of 3.3×10-8 mol L-1. Attributing to the sensitive response to dissolved oxygen, the total antioxidant capacity can be detected directly in the real tea water by this POD/ZrPR1R2 composite modified electrode.


Subject(s)
Antioxidants , Biosensing Techniques , Peroxidase , Hydrogen Peroxide/analysis , Zirconium , Carbon , Electrodes , Peroxidases , Oxygen , Tea , Biosensing Techniques/methods , Electrochemical Techniques/methods
17.
Clin Kidney J ; 17(1): sfad191, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38186888

ABSTRACT

Background: The discovery of phospholipase A2 receptor (PLA2R) and its antibody (aPLA2Rab) has paved the way for diagnosing PLA2R-associated membranous nephropathy (PLA2R-MN) with a high specificity of 98%. However, the sensitivity was only 40% to 83.9%, and there is ongoing discussion around determining the optimal threshold for diagnosis. Recent advancements in the use of exosomes, a novel form of "liquid biopsy," have shown great promise in identifying markers for various medical conditions. Methods: Protein mass spectrometry and western blot were applied to verify the existence of PLA2R antigen in the urine exosome. We then evaluated the efficacy of urinary exosomal PLA2R antigen alone or combined with serum aPLA2Rab level to diagnose PLA2R-MN. Results: The urinary exosomes contained a high abundance of PLA2R antigen as evidenced by protein mass spectrometry and western blot in 85 PLA2R-MN patients vs the disease controls (14 secondary MN patients, 22 non-MN patients and 4 PLA2R-negative MN patients) and 20 healthy controls. Of note, urinary exosomal PLA2R antigen abundance also had a good consistency with the PLA2R antigen level in the renal specimens of PLA2R-MN patients. The sensitivity of urinary exosomal PLA2R for diagnosing PLA2R-MN reached 95.4%, whereas the specificity was 63.3%. Combining detection of the urinary exosomal PLA2R and serum aPLA2Rab could develop a more sensitive diagnostic method for PLA2R-MN, especially for patients with serum aPLA2Rab ranging from 2 to 20 RU/mL. Conclusions: Measurement of urinary exosomal PLA2R could be a sensitive method for the diagnosis of PLA2R-MN.

18.
Asian J Surg ; 47(4): 1905-1906, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38199882
19.
Mol Cell ; 84(4): 760-775.e7, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38215751

ABSTRACT

Apart from the canonical serotonin (5-hydroxytryptamine [5-HT])-receptor signaling transduction pattern, 5-HT-involved post-translational serotonylation has recently been noted. Here, we report a glyceraldehyde-3-phosphate dehydrogenase (GAPDH) serotonylation system that promotes the glycolytic metabolism and antitumor immune activity of CD8+ T cells. Tissue transglutaminase 2 (TGM2) transfers 5-HT to GAPDH glutamine 262 and catalyzes the serotonylation reaction. Serotonylation supports the cytoplasmic localization of GAPDH, which induces a glycolytic metabolic shift in CD8+ T cells and contributes to antitumor immunity. CD8+ T cells accumulate intracellular 5-HT for serotonylation through both synthesis by tryptophan hydroxylase 1 (TPH1) and uptake from the extracellular compartment via serotonin transporter (SERT). Monoamine oxidase A (MAOA) degrades 5-HT and acts as an intrinsic negative regulator of CD8+ T cells. The adoptive transfer of 5-HT-producing TPH1-overexpressing chimeric antigen receptor T (CAR-T) cells induced a robust antitumor response. Our findings expand the known range of neuroimmune interaction patterns by providing evidence of receptor-independent serotonylation post-translational modification.


Subject(s)
CD8-Positive T-Lymphocytes , Serotonin , CD8-Positive T-Lymphocytes/metabolism , Serotonin/metabolism , Serotonin/pharmacology , Protein Processing, Post-Translational , Signal Transduction
20.
J Phys Chem Lett ; 15(3): 811-816, 2024 Jan 25.
Article in English | MEDLINE | ID: mdl-38232179

ABSTRACT

Establishing a robust quantitative correlation between thermodynamics and dynamics in amorphous matter remains a significant challenge in condensed matter physics. Although the classical Adam-Gibbs relationship represents a pivotal step in this direction and the correlation between relaxation time and configurational entropy has been partially verified in simple liquids, this quantitative link has yet to be tested in realistic glass-forming systems where complex many-body interactions are present. Here we conduct free energy samplings and lattice dynamics analysis to distinguish vibrational entropy from configurational entropy in a realistic Cu-Zr model of a metallic glass. Our calculations unveil a power-law relationship (with a substantial exponent of ∼3) between the logarithmic relaxation time and configurational entropy, surpassing the linear prediction of the original Adam-Gibbs relationship. This nonlinear entropy driven relaxation time variation likely originates from anisotropic nature of atomic many-body interactions, suggesting that factors beyond thermodynamics contribute to the glass transition phenomenon.

SELECTION OF CITATIONS
SEARCH DETAIL