Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Cancer Ther ; 23(4): 464-477, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38151817

ABSTRACT

Histone deacetylase inhibitors (HDACi) are part of a growing class of epigenetic therapies used for the treatment of cancer. Although HDACis are effective in the treatment of T-cell lymphomas, treatment of solid tumors with this class of drugs has not been successful. Overexpression of the multidrug resistance protein P-glycoprotein (P-gp), encoded by ABCB1, is known to confer resistance to the HDACi romidepsin in vitro, yet increased ABCB1 expression has not been associated with resistance in patients, suggesting that other mechanisms of resistance arise in the clinic. To identify alternative mechanisms of resistance to romidepsin, we selected MCF-7 breast cancer cells with romidepsin in the presence of the P-gp inhibitor verapamil to reduce the likelihood of P-gp-mediated resistance. The resulting cell line, MCF-7 DpVp300, does not express P-gp and was found to be selectively resistant to romidepsin but not to other HDACis such as belinostat, panobinostat, or vorinostat. RNA-sequencing analysis revealed upregulation of the mRNA coding for the putative methyltransferase, METTL7A, whose paralog, METTL7B, was previously shown to methylate thiol groups on hydrogen sulfide and captopril. As romidepsin has a thiol as the zinc-binding moiety, we hypothesized that METTL7A could inactivate romidepsin and other thiol-based HDACis via methylation of the thiol group. We demonstrate that expression of METTL7A or METTL7B confers resistance to thiol-based HDACis and that both enzymes are capable of methylating thiol-containing HDACis. We thus propose that METTL7A and METTL7B confer resistance to thiol-based HDACis by methylating and inactivating the zinc-binding thiol.


Subject(s)
Histone Deacetylase Inhibitors , Neoplasms , Humans , Histone Deacetylase Inhibitors/pharmacology , Histone Deacetylase Inhibitors/therapeutic use , Methyltransferases/metabolism , Neoplasms/drug therapy , Panobinostat/pharmacology , Panobinostat/therapeutic use , Zinc
2.
Cancer Gene Ther ; 30(8): 1043-1050, 2023 08.
Article in English | MEDLINE | ID: mdl-37029320

ABSTRACT

Despite the development of new classes of targeted anti-cancer drugs, the curative treatment of metastatic solid tumors remains out of reach owing to the development of resistance to current chemotherapeutics. Although many mechanisms of drug resistance have been described, there is still a general lack of understanding of the many means by which cancer cells elude otherwise effective chemotherapy. The traditional strategy of isolating resistant clones in vitro, defining their mechanism of resistance, and testing to see whether these mechanisms play a role in clinical drug resistance is time-consuming and in many cases falls short of providing clinically relevant information. In this review, we summarize the use of CRISPR technology, including the promise and pitfalls, to generate libraries of cancer cells carrying sgRNAs that define novel mechanisms of resistance. The existing strategies using CRISPR knockout, activation, and inhibition screens, and combinations of these approaches are described. In addition, specialized approaches to identify more than one gene that may be contributing to resistance, as occurs in synthetic lethality, are described. Although these CRISPR-based approaches to cataloguing drug resistance genes in cancer cells are just beginning to be utilized, appropriately used they promise to accelerate understanding of drug resistance in cancer.


Subject(s)
Antineoplastic Agents , Neoplasms , Humans , RNA, Guide, CRISPR-Cas Systems , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Neoplasms/drug therapy , Neoplasms/genetics , CRISPR-Cas Systems/genetics
3.
Int J Mol Sci ; 21(11)2020 May 27.
Article in English | MEDLINE | ID: mdl-32471192

ABSTRACT

Estrogen-receptor-negative breast cancer (BCER-) is mainly treated with chemotherapeutics. Leptin signaling can influence BCER- progression, but its effects on patient survival and chemoresistance are not well understood. We hypothesize that leptin signaling decreases the survival of BCER- patients by, in part, inducing the expression of chemoresistance-related genes. The correlation of expression of leptin receptor (OBR), leptin-targeted genes (CDK8, NANOG, and RBP-Jk), and breast cancer (BC) patient survival was determined from The Cancer Genome Atlas (TCGA) mRNA data. Leptin-induced expression of proliferation and chemoresistance-related molecules was investigated in triple-negative BC (TNBC) cells that respond differently to chemotherapeutics. Leptin-induced gene expression in TNBC was analyzed by RNA-Seq. The specificity of leptin effects was assessed using OBR inhibitors (shRNA and peptides). The results show that OBR and leptin-targeted gene expression are associated with lower survival of BCER- patients. Importantly, the co-expression of these genes was also associated with chemotherapy failure. Leptin signaling increased the expression of tumorigenesis and chemoresistance-related genes (ABCB1, WNT4, ADHFE1, TBC1D3, LL22NC03, RDH5, and ITGB3) and impaired chemotherapeutic effects in TNBC cells. OBR inhibition re-sensitized TNBC to chemotherapeutics. In conclusion, the co-expression of OBR and leptin-targeted genes may be used as a predictor of survival and drug resistance of BCER- patients. Targeting OBR signaling could improve chemotherapeutic efficacy.


Subject(s)
Breast Neoplasms/metabolism , Drug Resistance, Neoplasm , Leptin/metabolism , Signal Transduction , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Cell Line , Cell Line, Tumor , Cyclin-Dependent Kinase 8/genetics , Cyclin-Dependent Kinase 8/metabolism , Female , Humans , Immunoglobulin J Recombination Signal Sequence-Binding Protein/genetics , Immunoglobulin J Recombination Signal Sequence-Binding Protein/metabolism , Nanog Homeobox Protein/genetics , Nanog Homeobox Protein/metabolism , Receptors, Estrogen/genetics , Receptors, Leptin/genetics , Receptors, Leptin/metabolism , Survival Analysis
4.
World J Clin Oncol ; 8(1): 54-66, 2017 Feb 10.
Article in English | MEDLINE | ID: mdl-28246585

ABSTRACT

AIM: To develop a leptin peptide receptor antagonist linked to nanoparticles and determine its effect on viability of breast cancer cells. METHODS: The leptin antagonist, LPrA2, was coupled via EDAC [1-Ethyl-3-(3-dimethylaminopropyl)carbodiimide] to iron oxide nanoparticles (IONP-LPrA2) to increase its efficacy. IONP-LPrA2 conjugation was confirmed by Western blot and nanoparticle tracking analysis. Human triple negative breast cancer (TNBC) MDA-MB-231, HCC1806 and estrogen receptor positive (ER+) MCF-7 cells were analyzed for the expression of the leptin receptor, Ob-R. The effects of leptin and antagonist on levels of leptin-induced STAT3 phosphorylation and cyclin D1, cell cycle progression, cell proliferation, and tumorsphere formation in breast cancer cells were determined. Doses of the chemotherapeutics [cisplatin (Cis), cyclophosphamide (CTX), doxorubicin (Dox) and paclitaxel (PTX)] to effectively reduce cell viability were calculated. The effects of combination treatments of IONP-LPrA2 and chemotherapeutics on cell viability were determined. RESULTS: Western blot analysis of coupling reaction products identified IONP-LPrA2 at approximately 100 kD. IONP-LPrA2 significantly decreased leptin-induced pSTAT3 levels in HCC1806 cells and drastically decreased cyclin D1 levels in all cell lines. IONP-LPrA2 significantly reduced leptin-induced S phase progression and cell proliferation in all breast cancer cell lines and the formation of tumorspheres in MDA-MB-231 cells. Also, IONP-LPrA2 showed an additive effect on the reduction of breast cancer cell survival with chemotherapeutics. Cis plus IONP-LPrA2 produced a significant reduction in the survival of MDA-MB-231 and HCC1806 cells. CTX plus IONP-LPrA2 caused a significant decrease in the survival of MDA-MB-231 cells. Dox plus IONP-LPrA2 caused a marked reduction in the survival of HCC1806 cells. Although, PTX plus IONP-LPrA2 did not have a major effect on the viability of the breast cancer cells when compared to PTX alone. CONCLUSION: Present data indicate that IONP-LPrA2 may be a useful adjuvant for chemotherapeutic treatment of breast cancer, particularly for TNBC which lacks targeted therapeutic options.

5.
Oncotarget ; 8(5): 7740-7752, 2017 Jan 31.
Article in English | MEDLINE | ID: mdl-27999190

ABSTRACT

Pancreatic cancer (PC) shows a high death rate. PC incidence and prognosis are affected by obesity, a pandemic characterized by high levels of leptin. Notch is upregulated by leptin in breast cancer. Thus, leptin and Notch crosstalk could influence PC progression. Here we investigated in PC cell lines (BxPC-3, MiaPaCa-2, Panc-1, AsPC-1), derived tumorspheres and xenografts whether a functional leptin-Notch axis affects PC progression and expansion of pancreatic cancer stem cells (PCSC). PC cells and tumorspheres were treated with leptin and inhibitors of Notch (gamma-secretase inhibitor, DAPT) and leptin (iron oxide nanoparticle-leptin peptide receptor antagonist 2, IONP-LPrA2). Leptin treatment increased cell cycle progression and proliferation, and the expression of Notch receptors, ligands and targeted molecules (Notch1-4, DLL4, JAG1, Survivin and Hey2), PCSC markers (CD24/CD44/ESA, ALDH, CD133, Oct-4), ABCB1 protein, as well as tumorsphere formation. Leptin-induced effects on PC and tumorspheres were decreased by IONP-LPrA2 and DAPT. PC cells secreted leptin and expressed the leptin receptor, OB-R, which indicates a leptin autocrine/paracrine signaling loop could also affect tumor progression. IONP-LPrA2 treatment delayed the onset of MiaPaCa-2 xenografts, and decreased tumor growth and the expression of proliferation and PCSC markers. Present data suggest that leptin-Notch axis is involved in PC. PC has no targeted therapy and is mainly treated with chemotherapy, whose efficiency could be decreased by leptin and Notch activities. Thus, the leptin-Notch axis could be a novel therapeutic target, particularly for obese PC patients.


Subject(s)
Leptin/pharmacology , Neoplastic Stem Cells/drug effects , Pancreatic Neoplasms/metabolism , Receptors, Notch/metabolism , Signal Transduction/drug effects , Animals , Autocrine Communication/drug effects , Biomarkers, Tumor/metabolism , Cell Cycle/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Disease Progression , Humans , Ligands , Male , Mice, Nude , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology , Pancreatic Neoplasms/pathology , Paracrine Communication/drug effects , Time Factors
6.
World J Methodol ; 6(1): 43-55, 2016 Mar 26.
Article in English | MEDLINE | ID: mdl-27019796

ABSTRACT

Obesity is a global pandemic characterized by high levels of body fat (adiposity) and derived-cytokines (i.e., leptin). Research shows that adiposity and leptin provide insight on the link between obesity and cancer progression. Leptin's main function is to regulate energy balance. However, obese individuals routinely develop leptin resistance, which is the consequence of the breakdown in the signaling mechanism controlling satiety resulting in the accumulation of leptin. Therefore, leptin levels are often chronically elevated in human obesity. Elevated leptin levels are related to higher incidence, increased progression and poor prognosis of several human cancers. In addition to adipose tissue, cancer cells can also secrete leptin and overexpress leptin receptors. Leptin is known to act as a mitogen, inflammatory and pro-angiogenic factor that induces cancer cell proliferation and tumor angiogenesis. Moreover, leptin signaling induces cancer stem cells, which are involved in cancer recurrence and drug resistance. A novel and complex signaling crosstalk between leptin, Notch and interleukin-1 (IL-1) [Notch, IL-1 and leptin crosstalk outcome (NILCO)] seems to be an important driver of leptin-induced oncogenic actions. Leptin and NILCO signaling mediate the activation of cancer stem cells that can affect drug resistance. Thus, leptin and NILCO signaling are key links between obesity and cancer progression. This review presents updated data suggesting that adiposity affects cancer incidence, progression, and response to treatment. Here we show data supporting the oncogenic role of leptin in breast, endometrial, and pancreatic cancers.

SELECTION OF CITATIONS
SEARCH DETAIL