Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 36
1.
Lancet Neurol ; 23(6): 603-614, 2024 Jun.
Article En | MEDLINE | ID: mdl-38614108

BACKGROUND: Parkinson's disease is a progressive neurodegenerative disorder with multifactorial causes, among which genetic risk factors play a part. The RAB GTPases are regulators and substrates of LRRK2, and variants in the LRRK2 gene are important risk factors for Parkinson's disease. We aimed to explore genetic variability in RAB GTPases within cases of familial Parkinson's disease. METHODS: We did whole-exome sequencing in probands from families in Canada and Tunisia with Parkinson's disease without a genetic cause, who were recruited from the Centre for Applied Neurogenetics (Vancouver, BC, Canada), an international consortium that includes people with Parkinson's disease from 36 sites in 24 countries. 61 RAB GTPases were genetically screened, and candidate variants were genotyped in relatives of the probands to assess disease segregation by linkage analysis. Genotyping was also done to assess variant frequencies in individuals with idiopathic Parkinson's disease and controls, matched for age and sex, who were also from the Centre for Applied Neurogenetics but unrelated to the probands or each other. All participants were aged 18 years or older. The sequencing and genotyping findings were validated by case-control association analyses using bioinformatic data obtained from publicly available clinicogenomic databases (AMP-PD, GP2, and 100 000 Genomes Project) and a private German clinical diagnostic database (University of Tübingen). Clinical and pathological findings were summarised and haplotypes were determined. In-vitro studies were done to investigate protein interactions and enzyme activities. FINDINGS: Between June 1, 2010, and May 31, 2017, 130 probands from Canada and Tunisia (47 [36%] female and 83 [64%] male; mean age 72·7 years [SD 11·7; range 38-96]; 109 White European ancestry, 18 north African, two east Asian, and one Hispanic] underwent whole-exome sequencing. 15 variants in RAB GTPase genes were identified, of which the RAB32 variant c.213C>G (Ser71Arg) cosegregated with autosomal dominant Parkinson's disease in three families (nine affected individuals; non-parametric linkage Z score=1·95; p=0·03). 2604 unrelated individuals with Parkinson's disease and 344 matched controls were additionally genotyped, and five more people originating from five countries (Canada, Italy, Poland, Turkey, and Tunisia) were identified with the RAB32 variant. From the database searches, in which 6043 individuals with Parkinson's disease and 62 549 controls were included, another eight individuals were identified with the RAB32 variant from four countries (Canada, Germany, UK, and USA). Overall, the association of RAB32 c.213C>G (Ser71Arg) with Parkinson's disease was significant (odds ratio [OR] 13·17, 95% CI 2·15-87·23; p=0·0055; I2=99·96%). In the people who had the variant, Parkinson's disease presented at age 54·6 years (SD 12·75, range 31-81, n=16), and two-thirds had a family history of parkinsonism. RAB32 Ser71Arg heterozygotes shared a common haplotype, although penetrance was incomplete. Findings in one individual at autopsy showed sparse neurofibrillary tangle pathology in the midbrain and thalamus, without Lewy body pathology. In functional studies, RAB32 Arg71 activated LRRK2 kinase to a level greater than RAB32 Ser71. INTERPRETATION: RAB32 Ser71Arg is a novel genetic risk factor for Parkinson's disease, with reduced penetrance. The variant was found in individuals with Parkinson's disease from multiple ethnic groups, with the same haplotype. In-vitro assays show that RAB32 Arg71 activates LRRK2 kinase, which indicates that genetically distinct causes of familial parkinsonism share the same mechanism. The discovery of RAB32 Ser71Arg also suggests several genetically inherited causes of Parkinson's disease originated to control intracellular immunity. This shared aetiology should be considered in future translational research, while the global epidemiology of RAB32 Ser71Arg needs to be assessed to inform genetic counselling. FUNDING: National Institutes of Health, the Canada Excellence Research Chairs program, Aligning Science Across Parkinson's, the Michael J Fox Foundation for Parkinson's Research, and the UK Medical Research Council.


Parkinson Disease , rab GTP-Binding Proteins , Humans , Female , Male , Parkinson Disease/genetics , rab GTP-Binding Proteins/genetics , Middle Aged , Aged , Genetic Linkage/genetics , Adult , Canada/epidemiology , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/genetics , Tunisia , Genetic Predisposition to Disease/genetics , Exome Sequencing , Case-Control Studies , Genotype
2.
Healthcare (Basel) ; 12(5)2024 Feb 22.
Article En | MEDLINE | ID: mdl-38470631

The prevalence of calcium deposits in coronary arteries grows with age. Risk factors include, e.g., diabetes and chronic kidney disease. There are several underlying pathophysiological mechanisms of calcium deposition. Severe calcification increases the complexity of percutaneous coronary interventions. Invasive techniques to modify the calcified atherosclerotic plaque before stenting have been developed over the last years. They include balloon- and non-balloon-based techniques. Rotational atherectomy has been the most common technique to treat calcified lesions but new techniques are emerging (orbital atherectomy, intravascular lithotripsy, laser atherectomy). The use of intravascular imaging (intravascular ultrasound and optical coherence tomography) is especially important during the procedures in order to choose the optimal strategy and to assess the final effect of the procedure. This review provides an overview of the role of coronary calcification for percutaneous coronary interventions.

3.
Eur J Clin Invest ; 54(5): e14157, 2024 May.
Article En | MEDLINE | ID: mdl-38226439

BACKGROUND: The difference between serum sodium and chloride ion concentrations (SCD) may be considered as a surrogate of a strong ion difference and may help to identify patients with a worse prognosis. We aimed to assess SCD as an early prognostic marker among patients with myocardial infarction. METHODS: Data of 594 consecutive patients with acute myocardial infarction treated with PCI (44.9% STEMI patients; 70.7% males) was analysed for SCD in relation to their 30-day mortality. A restricted cubic spline regression model was used to study the relationship between mortality and SCD. Cox regression models were used to assess the association between SCD and the mortality risk. RESULTS: Patients with Killip class ≥3 had lower SCD values in comparison to patients with Killip class ≤2: (32.0 [30.0-34.0] vs. 33.0 [31.0-36.0], p = .006). The overall 30-day mortality was 7.7% (n = 46). There was a significant difference in SCD values between survivors and non-survivors groups of patients (median (IQR): (33.0 [31.0-36.0] vs. 31.5 [28.0-34.0] (mmol/L), p = .002). The restricted cubic splines model confirmed a non-linear association between SCD and mortality. Patients with SCD <30 mmol/L (in comparison to SCD ≥30 mmol/L) had an increased mortality risk (unadjusted HR 2.92, 95% CI 1.59-5.36, p = .001; and an adjusted HR 2.30, 95% CI 1.02-5.19, p = .04). CONCLUSIONS: Low SCD on admission is associated with an increased risk of 30-day mortality in patients with acute myocardial infarction treated with PCI and may serve as a useful prognostic marker for these patients.


Myocardial Infarction , Percutaneous Coronary Intervention , ST Elevation Myocardial Infarction , Male , Humans , Female , Chlorides , Sodium Chloride , Prognosis , Sodium , ST Elevation Myocardial Infarction/complications , Risk Factors
4.
medRxiv ; 2024 Jan 18.
Article En | MEDLINE | ID: mdl-38293014

Background: Parkinson's disease (PD) is a progressive neurodegenerative disorder. Mendelian forms have revealed multiple genes, with a notable emphasis on membrane trafficking; RAB GTPases play an important role in PD as a subset are both regulators and substrates of LRRK2 protein kinase. To explore the role of RAB GTPases in PD, we undertook a comprehensive examination of their genetic variability in familial PD. Methods: Affected probands from 130 multi-incident PD families underwent whole-exome sequencing and genotyping, Potential pathogenic variants in 61 RAB GTPases were genotyped in relatives to assess disease segregation. These variants were also genotyped in a larger case-control series, totaling 3,078 individuals (2,734 with PD). The single most significant finding was subsequently validated within genetic data (6,043 with PD). Clinical and pathologic findings were summarized for gene-identified patients, and haplotypes were constructed. In parallel, wild-type and mutant RAB GTPase structural variation, protein interactions, and resultant enzyme activities were assessed. Findings: We found RAB32 c.213C>G (Ser71Arg) to co-segregate with autosomal dominant parkinsonism in three multi-incident families. RAB32 Ser71Arg was also significantly associated with PD in case-control samples: genotyping and database searches identified thirteen more patients with the same variant that was absent in unaffected controls. Notably, RAB32 Ser71Arg heterozygotes share a common haplotype. At autopsy, one patient had sparse neurofibrillary tangle pathology in the midbrain and thalamus, without Lewy body pathology. In transfected cells the RAB32 Arg71 was twice as potent as Ser71 wild type to activate LRRK2 kinase. Interpretation: Our study provides unequivocal evidence to implicate RAB32 Ser71Arg in PD. Functional analysis demonstrates LRRK2 kinase activation. We provide a mechanistic explanation to expand and unify the etiopathogenesis of monogenic PD. Funding: National Institutes of Health, the Canada Excellence Research Chairs program, Aligning Science Across Parkinson's, the Michael J. Fox Foundation for Parkinson's Research, and the UK Medical Research Council.

5.
Sci Adv ; 9(50): eadj1205, 2023 Dec 15.
Article En | MEDLINE | ID: mdl-38091401

We demonstrate that the Parkinson's VPS35[D620N] mutation alters the expression of ~220 lysosomal proteins and stimulates recruitment and phosphorylation of Rab proteins at the lysosome. This recruits the phospho-Rab effector protein RILPL1 to the lysosome where it binds to the lysosomal integral membrane protein TMEM55B. We identify highly conserved regions of RILPL1 and TMEM55B that interact and design mutations that block binding. In mouse fibroblasts, brain, and lung, we demonstrate that the VPS35[D620N] mutation reduces RILPL1 levels, in a manner reversed by LRRK2 inhibition and proteasome inhibitors. Knockout of RILPL1 enhances phosphorylation of Rab substrates, and knockout of TMEM55B increases RILPL1 levels. The lysosomotropic agent LLOMe also induced LRRK2 kinase-mediated association of RILPL1 to the lysosome, but to a lower extent than the D620N mutation. Our study uncovers a pathway through which dysfunctional lysosomes resulting from the VPS35[D620N] mutation recruit and activate LRRK2 on the lysosomal surface, driving assembly of the RILPL1-TMEM55B complex.


Parkinson Disease , Animals , Mice , Parkinson Disease/genetics , Parkinson Disease/metabolism , Mice, Knockout , Mutation , Lysosomes/metabolism , Lysosomal Membrane Proteins
6.
J Biol Chem ; 299(10): 105192, 2023 Oct.
Article En | MEDLINE | ID: mdl-37625589

Point mutations in leucine-rich repeat kinase 2 (LRRK2) cause Parkinson's disease and augment LRRK2's kinase activity. However, cellular pathways that endogenously enhance LRRK2 kinase function have not been identified. While overexpressed Rab29 draws LRRK2 to Golgi membranes to increase LRRK2 kinase activity, there is little evidence that endogenous Rab29 performs this function under physiological conditions. Here, we identify Rab38 as a novel physiologic regulator of LRRK2 in melanocytes. In mouse melanocytes, which express high levels of Rab38, Rab32, and Rab29, knockdown (or CRISPR knockout) of Rab38, but not Rab32 or Rab29, decreases phosphorylation of multiple LRRK2 substrates, including Rab10 and Rab12, by both endogenous LRRK2 and exogenous Parkinson's disease-mutant LRRK2. In B16-F10 mouse melanoma cells, Rab38 drives LRRK2 membrane association and overexpressed kinase-active LRRK2 shows striking pericentriolar recruitment, which is dependent on the presence of endogenous Rab38 but not Rab32 or Rab29. Consistently, knockdown or mutation of BLOC-3, the guanine nucleotide exchange factor for Rab38 and Rab32, inhibits Rab38's regulation of LRRK2. Deletion or mutation of LRRK2's Rab38-binding site in the N-terminal armadillo domain decreases LRRK2 membrane association, pericentriolar recruitment, and ability to phosphorylate Rab10. In sum, our data identify Rab38 as a physiologic regulator of LRRK2 function and lend support to a model in which LRRK2 plays a central role in Rab GTPase coordination of vesicular trafficking.


Intracellular Membranes , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2 , Melanocytes , rab GTP-Binding Proteins , Animals , Mice , Golgi Apparatus/enzymology , Golgi Apparatus/genetics , Guanine Nucleotide Exchange Factors/genetics , Guanine Nucleotide Exchange Factors/metabolism , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/genetics , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/metabolism , Melanocytes/metabolism , Mutation , Parkinson Disease/metabolism , Phosphorylation , rab GTP-Binding Proteins/genetics , rab GTP-Binding Proteins/metabolism , HEK293 Cells , Humans , Gene Expression , Protein Domains , Protein Binding , Intracellular Membranes/metabolism
7.
Cardiol J ; 2023 Jun 22.
Article En | MEDLINE | ID: mdl-37345365

BACKGROUND: Stress hyperglycemia and lactates have been used separately as markers of a severe clinical condition and poor outcomes in patients with myocardial infarction (MI). However, the interplay between glucose and lactate metabolism in patients with MI have not been sufficiently studied. The aim in the present study was to examine the relationship of glycemia on admission (AG) and lactate levels and their impact on the outcome in non-diabetic MI patients treated with percutaneous coronary intervention (PCI). METHODS: A total of 405 consecutive, non-diabetic, MI patients were enrolled in this retrospective, observational, single-center study. Clinical characteristic including glucose and lactate levels on admission and at 30-day mortality were assessed. RESULTS: Patients with stress hyperglycemia (AG ≥ 7.8 mmol/L, n = 103) had higher GRACE score (median [interquartile range]: 143.4 (115.4-178.9) vs. 129.4 (105.7-154.5), p = 0.002) than normoglycemic patients (AG level < 7.8 mmol/L, n = 302). A positive correlation of AG with lactate level (R = 0.520, p < 0.001) was observed. The coexistence of both hyperglycemia and hyperlactatemia (lactate level ≥ 2.0 mmol/L) was associated with lower survival rate in the Kaplan-Meier estimates (p < 0.001). In multivariable analysis both hyperglycemia and hyperlactatemia were related to a higher risk of death at 30-day follow-up (hazard ratio [HR] 3.21, 95%, confidence interval [CI] 1.04-9.93; p = 0.043 and HR 7.08; 95% CI 1.44-34.93; p = 0.016, respectively) CONCLUSIONS: There is a relationship between hyperglycemia and hyperlactatemia in non-diabetic MI patients treated with PCI. The coexistence of both hyperglycemia and hyperlactatemia is associated with lower survival rate and are independent predictors of 30-day mortality in MI patients and these markers should be evaluated simultaneously.

8.
Life Sci Alliance ; 6(7)2023 07.
Article En | MEDLINE | ID: mdl-37188479

The NEK1 kinase controls ciliogenesis, mitosis, and DNA repair, and NEK1 mutations cause human diseases including axial spondylometaphyseal dysplasia and amyotrophic lateral sclerosis. C21ORF2 mutations cause a similar pattern of human diseases, suggesting close functional links with NEK1 Here, we report that endogenous NEK1 and C21ORF2 form a tight complex in human cells. A C21ORF2 interaction domain "CID" at the C-terminus of NEK1 is necessary for its association with C21ORF2 in cells, and pathogenic mutations in this region disrupt the complex. AlphaFold modelling predicts an extended binding interface between a leucine-rich repeat domain in C21ORF2 and the NEK1-CID, and our model may explain why pathogenic mutations perturb the complex. We show that NEK1 mutations that inhibit kinase activity or weaken its association with C21ORF2 severely compromise ciliogenesis, and that C21ORF2, like NEK1 is required for homologous recombination. These data enhance our understanding of how the NEK1 kinase is regulated, and they shed light on NEK1-C21ORF2-associated diseases.


DNA Repair , Osteochondrodysplasias , Humans , Mutation/genetics , NIMA-Related Kinase 1/genetics , Osteochondrodysplasias/genetics , Phosphorylation
9.
Front Cardiovasc Med ; 10: 1133373, 2023.
Article En | MEDLINE | ID: mdl-36993999

Background: Atrial fibrillation (AF) is a common arrhythmia with increasing prevalence with respect to age and comorbidities. AF may influence the prognosis in patients hospitalized with Coronavirus disease 2019 (COVID-19). We aimed to assess the prevalence of AF among patients hospitalized due to COVID-19 and the association of AF and in-hospital anticoagulation treatment with prognosis. Methods and results: We assessed the prevalence of AF among patients hospitalized due to COVID-19 and the association of AF and in-hospital anticoagulation treatment with prognosis. Data of all COVID-19 patients hospitalized in the University Hospital in Krakow, Poland, between March 2020 and April 2021, were analyzed. The following outcomes: short-term (30-days since hospital admission) and long-term (180-days after hospital discharge) mortality, major cardiovascular events (MACEs), pulmonary embolism, and need for red blood cells (RBCs) transfusion, as a surrogate for major bleeding events during hospital stay were assessed. Out of 4,998 hospitalized patients, 609 had AF (535 pre-existing and 74 de novo). Compared to those without AF, patients with AF were older and had more cardiovascular disorders. In adjusted analysis, AF was independently associated with an increased risk of short-term {p = 0.019, Hazard Ratio [(HR)] 1.236; 95% CI: 1.035-1.476} and long-term mortality (Log-rank p < 0.001) as compared to patients without AF. The use of novel oral anticoagulants (NOAC) in AF patients was associated with reduced short-term mortality (HR 0.14; 95% CI: 0.06-0.33, p < 0.001). Moreover, in AF patients, NOAC use was associated with a lower probability of MACEs (Odds Ratio 0.3; 95% CI: 0.10-0.89, p = 0.030) without increase of RBCs transfusion. Conclusions: AF increases short- and long-term risk of death in patients hospitalized due to COVID-19. However, the use of NOACs in this group may profoundly improve prognosis.

10.
Front Cardiovasc Med ; 9: 917250, 2022.
Article En | MEDLINE | ID: mdl-36211554

Background: The impact of COVID-19 on the outcome of patients with MI has not been studied widely. We aimed to evaluate the relationship between concomitant COVID-19 and the clinical course of patients admitted due to acute myocardial infarction (MI). Methods: There was a comparison of retrospective data between patients with MI who were qualified for coronary angiography with concomitant COVID-19 and control group of patients treated for MI in the preceding year before the onset of the pandemic. In-hospital clinical data and the incidence of death from any cause on 30 days were obtained. Results: Data of 39 MI patients with concomitant COVID-19 (COVID-19 MI) and 196 MI patients without COVID-19 in pre-pandemic era (non-COVID-19 MI) were assessed. Compared with non-COVID-19 MI, COVID-19 MI was in a more severe clinical state on admission (lower systolic blood pressure: 128.51 ± 19.76 vs. 141.11 ± 32.47 mmHg, p = 0.024), higher: respiratory rate [median (interquartile range), 16 (14-18) vs. 12 (12-14)/min, p < 0.001], GRACE score (178.50 ± 46.46 vs. 161.23 ± 49.74, p = 0.041), percentage of prolonged (>24 h) time since MI symptoms onset to coronary intervention (35.9 vs. 15.3%; p = 0.004), and cardiovascular drugs were prescribed less frequently (beta-blockers: 64.1 vs. 92.8%, p = 0.009), angiotensin-converting enzyme inhibitors/angiotensin receptor blockers: 61.5 vs. 81.1%, p < 0.001, statins: 71.8 vs. 94.4%, p < 0.001). Concomitant COVID-19 was associated with seven-fold increased risk of 30-day mortality (HR 7.117; 95% CI: 2.79-18.14; p < 0.001). Conclusion: Patients admitted due to MI with COVID-19 have an increased 30-day mortality. Efforts should be focused on infection prevention and implementation of optimal management to improve the outcomes in those patients.

11.
Elife ; 112022 09 23.
Article En | MEDLINE | ID: mdl-36149401

Activating mutations in the leucine-rich repeat kinase 2 (LRRK2) cause Parkinson's disease, and previously we showed that activated LRRK2 phosphorylates a subset of Rab GTPases (Steger et al., 2017). Moreover, Golgi-associated Rab29 can recruit LRRK2 to the surface of the Golgi and activate it there for both auto- and Rab substrate phosphorylation. Here, we define the precise Rab29 binding region of the LRRK2 Armadillo domain between residues 360-450 and show that this domain, termed 'site #1,' can also bind additional LRRK2 substrates, Rab8A and Rab10. Moreover, we identify a distinct, N-terminal, higher-affinity interaction interface between LRRK2 phosphorylated Rab8 and Rab10 termed 'site #2' that can retain LRRK2 on membranes in cells to catalyze multiple, subsequent phosphorylation events. Kinase inhibitor washout experiments demonstrate that rapid recovery of kinase activity in cells depends on the ability of LRRK2 to associate with phosphorylated Rab proteins, and phosphorylated Rab8A stimulates LRRK2 phosphorylation of Rab10 in vitro. Reconstitution of purified LRRK2 recruitment onto planar lipid bilayers decorated with Rab10 protein demonstrates cooperative association of only active LRRK2 with phospho-Rab10-containing membrane surfaces. These experiments reveal a feed-forward pathway that provides spatial control and membrane activation of LRRK2 kinase activity.


Lipid Bilayers , rab GTP-Binding Proteins , Leucine/metabolism , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/genetics , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/metabolism , Phosphorylation , rab GTP-Binding Proteins/metabolism
12.
Materials (Basel) ; 15(8)2022 Apr 13.
Article En | MEDLINE | ID: mdl-35454541

Auxetic structures exhibit unusual changes in size, expanding laterally upon stretching instead of contracting. This paper presents this effect in a failsafe mode in structures made of rigid squares. We applied the concept of auxetic structures made of rigid rotating squares (from Grima and Evans) and offer a novel solution for connecting them. By introducing axes of rotation on the surface of the squares, a reliable working system is obtained, free from stress, in which the squares can come into contact with each other and completely cover the surface of the structure, or, in the open position, form regularly arranged pores. Herein, we present a new 2D auxetic metamaterial that is mathematically generated based on a theoretical relationship of the angle between the edges of a square and the position of the axis of rotation. Physical models were generated in the form of a planar structure and in the form of a circular closed structure. Such physical models confirmed our initial considerations and the geometrical relationships, offering new application possibilities. The novel structure that was designed and manufactured for the purpose of the paper can be considered as a new proposal in the market of auxetic materials.

13.
EMBO Rep ; 22(11): e52675, 2021 11 04.
Article En | MEDLINE | ID: mdl-34580980

LRRK2 serine/threonine kinase is associated with inherited Parkinson's disease. LRRK2 phosphorylates a subset of Rab GTPases within their switch 2 motif to control their interactions with effectors. Recent work has shown that the metal-dependent protein phosphatase PPM1H counteracts LRRK2 by dephosphorylating Rabs. PPM1H is highly selective for LRRK2 phosphorylated Rabs, and closely related PPM1J exhibits no activity towards substrates such as Rab8a phosphorylated at Thr72 (pThr72). Here, we have identified the molecular determinant of PPM1H specificity for Rabs. The crystal structure of PPM1H reveals a structurally conserved phosphatase fold that strikingly has evolved a 110-residue flap domain adjacent to the active site. The flap domain distantly resembles tudor domains that interact with histones in the context of epigenetics. Cellular assays, crosslinking and 3-D modelling suggest that the flap domain encodes the docking motif for phosphorylated Rabs. Consistent with this hypothesis, a PPM1J chimaera with the PPM1H flap domain dephosphorylates pThr72 of Rab8a both in vitro and in cellular assays. Therefore, PPM1H has acquired a Rab-specific interaction domain within a conserved phosphatase fold.


Protein Serine-Threonine Kinases , rab GTP-Binding Proteins , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/metabolism , Phosphoprotein Phosphatases/genetics , Phosphoprotein Phosphatases/metabolism , Phosphorylation , rab GTP-Binding Proteins/genetics , rab GTP-Binding Proteins/metabolism
14.
Biochem J ; 478(3): 553-578, 2021 02 12.
Article En | MEDLINE | ID: mdl-33459343

Autosomal dominant mutations in LRRK2 that enhance kinase activity cause Parkinson's disease. LRRK2 phosphorylates a subset of Rab GTPases including Rab8A and Rab10 within its effector binding motif. Here, we explore whether LRRK1, a less studied homolog of LRRK2 that regulates growth factor receptor trafficking and osteoclast biology might also phosphorylate Rab proteins. Using mass spectrometry, we found that in LRRK1 knock-out cells, phosphorylation of Rab7A at Ser72 was most impacted. This residue lies at the equivalent site targeted by LRRK2 on Rab8A and Rab10. Accordingly, recombinant LRRK1 efficiently phosphorylated Rab7A at Ser72, but not Rab8A or Rab10. Employing a novel phospho-specific antibody, we found that phorbol ester stimulation of mouse embryonic fibroblasts markedly enhanced phosphorylation of Rab7A at Ser72 via LRRK1. We identify two LRRK1 mutations (K746G and I1412T), equivalent to the LRRK2 R1441G and I2020T Parkinson's mutations, that enhance LRRK1 mediated phosphorylation of Rab7A. We demonstrate that two regulators of LRRK2 namely Rab29 and VPS35[D620N], do not influence LRRK1. Widely used LRRK2 inhibitors do not inhibit LRRK1, but we identify a promiscuous inhibitor termed GZD-824 that inhibits both LRRK1 and LRRK2. The PPM1H Rab phosphatase when overexpressed dephosphorylates Rab7A. Finally, the interaction of Rab7A with its effector RILP is not affected by LRRK1 phosphorylation and we observe that maximal stimulation of the TBK1 or PINK1 pathway does not elevate Rab7A phosphorylation. Altogether, these findings reinforce the idea that the LRRK enzymes have evolved as major regulators of Rab biology with distinct substrate specificity.


Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/metabolism , Protein Processing, Post-Translational , Protein Serine-Threonine Kinases/metabolism , rab GTP-Binding Proteins/metabolism , Adaptor Proteins, Signal Transducing/metabolism , Amino Acid Sequence , Animals , Cell Line , Fibroblasts , Humans , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/antagonists & inhibitors , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/genetics , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/immunology , Mice , Mice, Knockout , Phosphoprotein Phosphatases/metabolism , Phosphorylation , Phosphoserine/metabolism , Protein Kinases/deficiency , Protein Kinases/metabolism , Protein Serine-Threonine Kinases/deficiency , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/immunology , RNA, Small Interfering/genetics , RNA, Small Interfering/pharmacology , Recombinant Proteins/metabolism , Sequence Alignment , Sequence Homology, Amino Acid , Specific Pathogen-Free Organisms , Tetradecanoylphorbol Acetate/pharmacology
15.
Biochem J ; 478(2): 299-326, 2021 01 29.
Article En | MEDLINE | ID: mdl-33367571

Mutations that increase the protein kinase activity of LRRK2 are one of the most common causes of familial Parkinson's disease. LRRK2 phosphorylates a subset of Rab GTPases within their Switch-II motif, impacting interaction with effectors. We describe and validate a new, multiplexed targeted mass spectrometry assay to quantify endogenous levels of LRRK2-phosphorylated Rab substrates (Rab1, Rab3, Rab8, Rab10, Rab35 and Rab43) as well as total levels of Rabs, LRRK2 and LRRK2-phosphorylated at the Ser910 and Ser935 biomarker sites. Exploiting this assay, we quantify for the first time the relative levels of each of the pRab proteins in different cells (mouse embryonic fibroblasts, human neutrophils) and mouse tissues (brain, kidney, lung and spleen). We define how these components are impacted by Parkinson's pathogenic mutations (LRRK2[R1441C] and VPS35[D620N]) and LRRK2 inhibitors. We find that the VPS35[D620N], but not LRRK2[R1441C] mutation, enhances Rab1 phosphorylation in a manner blocked by administration of an LRRK2 inhibitor, providing the first evidence that endogenous Rab1 is a physiological substrate for LRRK2. We exploit this assay to demonstrate that in Parkinson's patients with VPS35[D620N] mutations, phosphorylation of multiple Rab proteins (Rab1, Rab3, Rab8, Rab10 and Rab43) is elevated. We highlight the benefits of this assay over immunoblotting approaches currently deployed to assess LRRK2 Rab signalling pathway.


Biomarkers/analysis , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/metabolism , Tandem Mass Spectrometry/methods , rab GTP-Binding Proteins/metabolism , Animals , Biomarkers/metabolism , Fibroblasts/metabolism , Humans , Immunoprecipitation/methods , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/antagonists & inhibitors , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/genetics , Limit of Detection , Mice, Mutant Strains , Mutation , Parkinson Disease/genetics , Phosphorylation , Serine/metabolism , Vesicular Transport Proteins/genetics , Vesicular Transport Proteins/metabolism
16.
Biochem J ; 477(22): 4397-4423, 2020 11 27.
Article En | MEDLINE | ID: mdl-33135724

Mutations that enhance LRRK2 protein kinase activity cause inherited Parkinson's disease. LRRK2 phosphorylates a group of Rab GTPase proteins, including Rab10 and Rab12, within the effector-binding switch-II motif. Previous work has indicated that the PARK16 locus, which harbors the gene encoding for Rab29, is involved in Parkinson's, and that Rab29 operates in a common pathway with LRRK2. Co-expression of Rab29 and LRRK2 stimulates LRRK2 activity by recruiting LRRK2 to the surface of the trans Golgi network. Here, we report that knock-out of Rab29 does not influence endogenous LRRK2 activity, based on the assessment of Rab10 and Rab12 phosphorylation, in wild-type LRRK2, LRRK2[R1441C] or VPS35[D620N] knock-in mouse tissues and primary cell lines, including brain extracts and embryonic fibroblasts. We find that in brain extracts, Rab12 phosphorylation is more robustly impacted by LRRK2 inhibitors and pathogenic mutations than Rab10 phosphorylation. Transgenic overexpression of Rab29 in a mouse model was also insufficient to stimulate basal LRRK2 activity. We observed that stimulation of Rab10 and Rab12 phosphorylation induced by agents that stress the endolysosomal system (nigericin, monensin, chloroquine and LLOMe) is suppressed by LRRK2 inhibitors but not blocked in Rab29 deficient cells. From the agents tested, nigericin induced the greatest increase in Rab10 and Rab12 phosphorylation (5 to 9-fold). Our findings indicate that basal, pathogenic, as well as nigericin and monensin stimulated LRRK2 pathway activity is not controlled by Rab29. Further work is required to establish how LRRK2 activity is regulated, and whether other Rab proteins can control LRRK2 by targeting it to diverse membranes.


Brain/enzymology , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/metabolism , Signal Transduction , rab GTP-Binding Proteins/metabolism , trans-Golgi Network/enzymology , Animals , Humans , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/genetics , Mice , Mice, Knockout , Rabbits , rab GTP-Binding Proteins/genetics , trans-Golgi Network/genetics
17.
Postepy Kardiol Interwencyjnej ; 16(4): 466-473, 2020 Dec.
Article En | MEDLINE | ID: mdl-33598021

INTRODUCTION: Single-shot techniques such as cryoballoon and multipolar phased pulmonary vein ablation catheter (PVAC) are an alternative to the point-by-point radiofrequency method for atrial fibrillation (AF) ablation. However, there is a lack of data concerning sequential use of single-shot techniques, that is, for both the index and redo ablation. AIM: To assess long-term outcomes of the 'single-shot techniques only' AF ablation strategy. MATERIAL AND METHODS: We analyzed all consecutive AF ablations performed over a 10-year period (2009-2019) in a center where a 'single-shot technique only' principle was followed from the start of the AF ablation program. Kaplan-Meier AF-free survival curves were calculated and complications were assessed on the basis of our prospectively maintained database. RESULTS: A total of 597 patients (62.4 ±12.5 years) with paroxysmal (78.1%) or persistent (21.9%) AF entered the study and 655 AF ablation procedures were performed. In 96.5% of redos (n = 58) a different technique (mostly PVAC) was used than for the index ablation (mostly cryoballoon). The Kaplan-Meier estimates of 1, 2 and 5 years freedom from AF were 78.2%, 69.2%, and 56.0%, for the index ablation, and 80.3%, 76.1% and 68.3%, for the redo, respectively. The minor and major complication rates were 8.1%, and 4.0%, respectively. CONCLUSIONS: An AF ablation program based solely on sequential use of two different single-shot techniques for both index and redo procedures is safe and effective. These observations might have important practical implications for new operators/centers starting AF ablation programs and for use of single-shot techniques for redo procedures.

18.
Elife ; 82019 10 30.
Article En | MEDLINE | ID: mdl-31663853

Mutations that activate LRRK2 protein kinase cause Parkinson's disease. LRRK2 phosphorylates a subset of Rab GTPases within their Switch-II motif controlling interaction with effectors. An siRNA screen of all human protein phosphatases revealed that a poorly studied protein phosphatase, PPM1H, counteracts LRRK2 signaling by specifically dephosphorylating Rab proteins. PPM1H knockout increased endogenous Rab phosphorylation and inhibited Rab dephosphorylation in human A549 cells. Overexpression of PPM1H suppressed LRRK2-mediated Rab phosphorylation. PPM1H also efficiently and directly dephosphorylated Rab8A in biochemical studies. A "substrate-trapping" PPM1H mutant (Asp288Ala) binds with high affinity to endogenous, LRRK2-phosphorylated Rab proteins, thereby blocking dephosphorylation seen upon addition of LRRK2 inhibitors. PPM1H is localized to the Golgi and its knockdown suppresses primary cilia formation, similar to pathogenic LRRK2. Thus, PPM1H acts as a key modulator of LRRK2 signaling by controlling dephosphorylation of Rab proteins. PPM1H activity enhancers could offer a new therapeutic approach to prevent or treat Parkinson's disease.


Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/metabolism , Phosphoprotein Phosphatases/metabolism , Signal Transduction , rab GTP-Binding Proteins/metabolism , Humans , Phosphorylation , RNA, Small Interfering/genetics , rab GTP-Binding Proteins/genetics
19.
J Cell Biol ; 218(12): 4157-4170, 2019 12 02.
Article En | MEDLINE | ID: mdl-31624137

LRRK2 kinase mutations cause familial Parkinson's disease and increased phosphorylation of a subset of Rab GTPases. Rab29 recruits LRRK2 to the trans-Golgi and activates it there, yet some of LRRK2's major Rab substrates are not on the Golgi. We sought to characterize the cell biology of LRRK2 activation. Unlike other Rab family members, we show that Rab29 binds nucleotide weakly, is poorly prenylated, and is not bound to GDI in the cytosol; nevertheless, Rab29 only activates LRRK2 when it is membrane bound and GTP bound. Mitochondrially anchored, GTP-bound Rab29 is both a LRRK2 substrate and activator, and it drives accumulation of active LRRK2 and phosphorylated Rab10 on mitochondria. Importantly, mitochondrially anchored LRRK2 is much less capable of phosphorylating plasma membrane-anchored Rab10 than soluble LRRK2. These data support a model in which LRRK2 associates with and dissociates from distinct membrane compartments to phosphorylate Rab substrates; if anchored, LRRK2 can modify misdelivered Rab substrates that then become trapped there because GDI cannot retrieve them.


Cell Membrane/metabolism , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/metabolism , rab GTP-Binding Proteins/metabolism , A549 Cells , Cytosol/metabolism , HEK293 Cells , HeLa Cells , Humans , Mitochondria/metabolism , Phosphorylation , trans-Golgi Network/metabolism
...