Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 6 de 6
1.
Nanomedicine (Lond) ; 19(3): 231-254, 2024 02.
Article En | MEDLINE | ID: mdl-38284384

Aim: To synthesize HER2 aptamer-conjugated iron oxide nanoparticles with a coating of poly(2-(dimethylamino) ethyl methacrylate)-poly(2-methacryloyloxyethylphosphorylcholine) block copolymer (IONPPPs). Methods: Characterization covered molecular structure, chemical composition, thermal stability, magnetic characteristics, aptamer interaction, crystalline nature and microscopic features. Subsequent investigations focused on IONPPPs for in vitro cancer cell identification. Results: Results demonstrated high biocompatibility of the diblock copolymer with no significant toxicity up to 150 µg/ml. The facile coating process yielded the IONPP complex, featuring a 13.27 nm metal core and a 3.10 nm polymer coating. Functionalized with a HER2-targeting DNA aptamer, IONPPP enhanced recognition in HER2-amplified SKBR3 cells via magnetization separation. Conclusion: These findings underscore IONPPP's potential in cancer research and clinical applications, showcasing diagnostic efficacy and HER2 protein targeting in a proof-of-concept approach.


Breast Neoplasms , Nanoparticles , Nylons , Humans , Female , Breast Neoplasms/drug therapy , Polymers/chemistry , Methacrylates/chemistry , Magnetic Iron Oxide Nanoparticles , Nanoparticles/chemistry
2.
Food Res Int ; 169: 112881, 2023 07.
Article En | MEDLINE | ID: mdl-37254329

Germination and enzymatic hydrolysis are biological processes with well-recognized positive effects on phenolic composition and antioxidant potential. This study aimed to apply those processes to white (Sinapsis alba) and black (Brassica nigra) mustard grains and to analyze the influences on the total phenolic content (TPC); phenolic and peptide profile determined by ultra-performance liquid chromatography-high resolution mass spectrometry (UPLC-HRMS); antioxidant potential (DPPH, ABTS, and FRAP assays); and cytotoxicity against Caco-2, a human colorectal adenocarcinoma cell line. Enzyme combinations for hydrolysis were different for each mustard grain, but for both species, enzymatic hydrolysis and germination showed a positive effect on antioxidant properties. From UPLC-HRMS analysis and molecular network studies, 14 peptides and 17 phenolic compounds were identified as metabolites released from mustard after processes application, which were strongly correlated with increased antioxidant activity. In addition, enzymatic hydrolysis applied in germinated mustard grains for both mustards increased the cytotoxic activity against Caco-2 human colorectal adenocarcinoma cell line.


Antioxidants , Mustard Plant , Humans , Antioxidants/analysis , Mustard Plant/chemistry , Caco-2 Cells , Hydrolysis , Phenols/analysis , Seeds/chemistry , Biotransformation
3.
Colloids Surf B Biointerfaces ; 222: 113043, 2023 Feb.
Article En | MEDLINE | ID: mdl-36455361

Nanocarriers can deliver drugs to specific organs or cells, potentially bridging the gap between a drug's function and its interaction with biological systems such as human physiology. The untapped potential of nanotechnology stems from its ability to manipulate materials, allowing control over physical and chemical properties and overcoming drug-related problems, e.g., poor solubility or poor bioavailability. For example, most protein drugs are administered parenterally, each with challenges and peculiarities. Some problems faced by bioengineered macromolecule drugs leading to poor bioavailability are short biological half-life, large size and high molecular weight, low permeability through biological membranes, and structural instability. Nanotechnology emerges as a promising strategy to overcome these problems. Nevertheless, the delivery system should be carefully chosen considering loading efficiency, physicochemical properties, production conditions, toxicity, and regulations. Moving from the bench to the bedside is still one of the major bottlenecks in nanomedicine, and toxicological issues are the greatest challenges to overcome. This review provides an overview of biotech drug delivery approaches, associated nanotechnology novelty, toxicological issues, and regulations.


Nanoparticles , Nanotechnology , Humans , Drug Delivery Systems , Nanomedicine , Pharmaceutical Preparations/chemistry , Proteins , Macromolecular Substances , Nanoparticles/chemistry
4.
IET Nanobiotechnol ; 15(6): 532-544, 2021 Aug.
Article En | MEDLINE | ID: mdl-34694744

Herpes simplex virus (HSV) 1 and 2 are viruses that infect individuals worldwide and for which there is no cure or vaccine available. The protective response against herpes is mostly mediated by CD8 T lymphocytes that respond to the immunodominant SSIEFARL epitope. However, there are some obstacles concerning the use of free SSIEFARL for vaccine or immunotherapy. The aim of this study was to evaluate the feasibility of nanoencapsulation of SSIEFARL and its immunostimulatory properties. Nano/SSIEFARL was produced by interfacial polymerization in methylmetacrylate, and the physico-chemical properties, morphology and immunobiological parameters were evaluated. To evaluate the ex vivo capacity of Nano/SSIEFARL, we used splenocytes from HSV-1-infected mice to enhance the frequency of SSIEFARL-specific CD8 T lymphocytes. The results indicate that Nano/SSIEFARL has a spherical shape, an average diameter of 352 ± 22 nm, the PDI was 0.361 ± 0.009 and is negatively charged (-26.30 ± 35). The stability at 4°C was 28 days. Also, Nano/SSIEFARL is not toxic for cells at low concentrations in vitro and it is taken up by JAWS II dendritic cells. No histopathological changes were observed in kidneys, liver and lymph nodes of animals treated with Nano/SSIEFARL. Nan/SSIEFARL increased the production of IL-1ß, TNF-α and IL-12 by the dendritic cells. Finally, Nano/SSIEFARL expanded the frequency of SSIEFARL-specific CD8+T lymphocytes at the same rate as free SSIEFARL. In conclusion all data together indicate that SSIEFARL is suitable for nanoencapsulation, and the system produced presents some immunoadjuvant properties that can be used to improve the immune response against herpes.


Herpesvirus 1, Human , Nanoparticles , Animals , CD8-Positive T-Lymphocytes , Immunodominant Epitopes , Mice , Mice, Inbred C57BL
5.
Materials (Basel) ; 13(2)2020 Jan 14.
Article En | MEDLINE | ID: mdl-31947551

: The aim of the current study is to present a strategy to improve the efficiency of 5-fluorouracil (5-FU), which is widely used as antineoplastic agent against solid tumors-based on the use of gold nanocarriers to overcome the resistance of colorectal cancer cells. 5-FU was loaded on gold nanoparticles (AuNP) coated with anti-EGFR antibodies in order to target them towards colorectal cancer cells that overexpress epidermal growth factor receptors (EGFR). Physicochemical characterization has shown that AuNP size was approximately 20 nm and that AuNP functionalization led to spherical nanoparticles. Flow cytometry allowed observing that some compounds synthesized by our research group have induced apoptosis/necrosis and impaired the proliferation of colon cancer cell lines 'HCT-116' and 'HT-29'. The antibody/drug combination in AuNP (AuNP 5FU EGFR) has improved the apoptosis rate and impaired cell proliferation in both cell lines, regardless of the exposure time. Overall, these results have shown that AuNP functionalization with monoclonal antibodies focused on delivering 5-FU to tumor cells is an exciting strategy against colorectal cancer.

6.
Arch Virol ; 163(9): 2313-2325, 2018 Sep.
Article En | MEDLINE | ID: mdl-29728911

Despite numerous efforts, we still do not have prophylactic vaccines for many clinically relevant viruses, such as HIV, hepatitis C virus, Zika virus, and respiratory syncytial virus. Several factors have contributed to the current lack of effective vaccines, including the high rate of viral mutation, low immunogenicity of recombinant viral antigens, instability of viral antigenic proteins administered in vivo, sophisticated mechanisms of viral immune evasion, and inefficient induction of mucosal immunity by vaccine models studied to date. Some of these obstacles could be partially overcome by the use of vaccine adjuvants. Nanoparticles have been intensively investigated as vaccine adjuvants because they possess chemical and structural properties that improve immunogenicity. The use of nanotechnology in the construction of immunization systems has developed into the field of viral nanovaccinology. The purpose of this paper is to review and correlate recent discoveries concerning nanoparticles and specific properties that contribute to the immunogenicity of viral nanoparticle vaccines, bio-nano interaction, design of nanoparticle vaccines for clinically relevant viruses, and future prospects for viral nanoparticle vaccination.


Adjuvants, Immunologic/chemical synthesis , Dengue/prevention & control , HIV Infections/prevention & control , Hepatitis B/prevention & control , Influenza, Human/prevention & control , Nanoparticles/chemistry , Adjuvants, Immunologic/administration & dosage , Animals , Antibodies, Viral/biosynthesis , Antigens, Viral/genetics , Antigens, Viral/immunology , Dengue/immunology , Dengue/virology , HIV Infections/immunology , HIV Infections/virology , Hepatitis B/immunology , Hepatitis B/virology , Humans , Immunogenicity, Vaccine , Influenza, Human/immunology , Influenza, Human/virology , Liposomes/administration & dosage , Liposomes/chemical synthesis , Liposomes/immunology , Micelles , Nanoparticles/administration & dosage , Vaccination/methods , Viral Vaccines/biosynthesis , Viral Vaccines/chemistry
...