Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 5 de 5
1.
Pain ; 2024 May 07.
Article En | MEDLINE | ID: mdl-38723183

ABSTRACT: Approximately 10% to 20% of individuals with previous SARS-CoV-2 infection may develop long-COVID syndrome, characterized by various physical and mental health issues, including pain. Previous studies suggested an association between small fibre neuropathy and pain in long-COVID cases. In this case-control study, our aim was to identify small fibre neuropathy in patients experiencing painful long-COVID syndrome. Clinical data, quantitative sensory testing, and skin biopsies were collected from 26 selected patients with painful long-COVID syndrome. We also examined 100 individuals with past COVID-19 infection, selecting 33 patients with painless long-COVID syndrome, characterized mainly by symptoms such as brain fog and fatigue, and 30 asymptomatic post-COVID-19 controls. Demographic and clinical variables were compared among these groups. Among the 26 patients with painful long-COVID syndrome, 12 had skin biopsy and/or quantitative sensory testing abnormalities compatible with small fibre neuropathy. Demographic and clinical data did not differ across patients with small fibre neuropathy, patients with painless long-COVID syndrome, and asymptomatic post-COVID-19 controls. This case-control study showed that approximately 50% of patients experiencing painful long-COVID syndrome had small fibre neuropathy. However, in our patient cohort, this specific post-COVID-19 complication was unrelated to demographic and COVID-19 clinical variables. Approximately half of our sample of patients with painful long-COVID symptoms met diagnostic criteria for small fibre neuropathy.

2.
J Pain ; 25(1): 64-72, 2024 Jan.
Article En | MEDLINE | ID: mdl-37524221

In this clinical and skin biopsy study, we aimed to investigate whether fibromyalgia-associated small-fiber pathology (SFP), consisting of an intraepidermal nerve fiber loss, implies damage of dermal autonomic nerve fibers and how this damage is associated with autonomic symptoms that patients with fibromyalgia syndrome experience. Using skin biopsy, we investigated intraepidermal nerve fiber density, piloerector muscle, and sweat gland nerve fiber density (SGNFD) in 138 participants, that is, 58 patients with fibromyalgia syndrome, 48 healthy subjects, and 32 patients with small-fiber neuropathy. In patients with fibromyalgia-associated SFP, we also investigated how the different skin biopsy variables correlated with autonomic symptoms, as assessed with the Composite Autonomic Symptom Score 31 questionnaire. We found that in patients with fibromyalgia-associated SFP, the piloerector muscle and SGNFD were lower than that in healthy subjects. However, the autonomic small-fiber damage had no correlation with autonomic symptoms severity. In patients with SFP, the intraepidermal, piloerector muscle, and SGNFD were higher than that in patients with small-fiber neuropathy. Our clinical and skin biopsy study shows that patients with fibromyalgia have a reduction of dermal autonomic small fibers paralleling the intraepidermal nerve fiber loss, thus indicating that SFP also implies autonomic small nerve fiber damage. However, the autonomic small-fiber damage we found had no correlation with the severity of autonomic symptoms, and thus its clinical impact is still undetermined. PERSPECTIVE: In patients with fibromyalgia, SFP also affects autonomic fibers. These novel data provide additional insights into the pathophysiology of fibromyalgia syndrome, highlighting the complex role of small-fiber damage in the clinical picture of fibromyalgia.


Fibromyalgia , Small Fiber Neuropathy , Humans , Skin/innervation , Nerve Fibers/pathology , Small Fiber Neuropathy/complications , Autonomic Nervous System , Biopsy
3.
Neurol Sci ; 44(12): 4465-4472, 2023 Dec.
Article En | MEDLINE | ID: mdl-37436558

BACKGROUND: It is well established that trigeminal neuralgia is more prevalent in females than in males. Neurovascular compression with morphological changes of the trigeminal root represents the most recognized etiological factor. However, other factors may play a role in the framework of a multi-hit model. The primary aim of this study was to investigate sex differences in radiological and clinical characteristics of trigeminal neuralgia to better understand the multifactorial origin of this peculiar neuropathic pain condition. METHODS: In this cross-sectional study patients with a definite diagnosis of primary trigeminal neuralgia were consecutively enrolled. Each patient underwent 3T MRI with sequences dedicated to the study of neurovascular compression. Major morphological changes of the trigeminal root were quantitatively assessed. Clinical characteristics were systematically collected through a dedicated questionnaire. A logistic regression model was implemented to predict radiological and clinical characteristics based on sex. RESULTS: A total of 114 patients with classical (87) or idiopathic trigeminal neuralgia (27) were enrolled. Female sex was predictive for idiopathic trigeminal neuralgia. Male sex was predictive, among the comorbidities and clinical characteristics, for hypertension, the involvement of the left side and the second trigeminal division, alone or with the ophthalmic division. DISCUSSION: The preponderance of TN in the female sex and the association between idiopathic TN and the female sex suggest the role of additional etiological factors in the framework of a multi-hit model. The identification of clinical variables predicted by sex suggests the possibility that distinct phenotypes, with peculiar pathophysiological and therapeutic aspects, may occur in females and males.


Trigeminal Neuralgia , Humans , Male , Female , Trigeminal Neuralgia/diagnostic imaging , Trigeminal Neuralgia/epidemiology , Sex Characteristics , Cross-Sectional Studies , Radiography , Magnetic Resonance Imaging , Trigeminal Nerve
4.
Pain Rep ; 8(5): e1089, 2023 Sep.
Article En | MEDLINE | ID: mdl-38225959

Introduction: Previous clinical observations raised the possibility that COVID-19 vaccination might trigger a small-fibre neuropathy. Objectives: In this uncontrolled observational study, we aimed to identify small fibre damage in patients complaining of generalized sensory symptoms and pain after COVID-19 vaccination. Methods: We collected clinical data, including a questionnaire for assessing autonomic symptoms (Composite Autonomic Symptom Score-31), and investigated quantitative sensory testing (QST) and skin biopsy in 15 prospectively enrolled patients with generalized sensory symptoms and pain after COVID-19 vaccination. Nine patients complaining of orthostatic intolerance also underwent cardiovascular autonomic tests. Results: We found that all patients experienced widespread pain, and most of them (11 of 15) had a fibromyalgia syndrome. All patients had normal skin biopsy findings, and in the 9 patients with orthostatic intolerance, cardiovascular autonomic tests showed normal findings. Nevertheless, 5 patients had cold and warm detection abnormalities at the QST investigation. Conclusions: In our study, most patients complaining of generalized sensory symptoms and pain after COVID-19 vaccination had clinical and diagnostic test findings compatible with a fibromyalgia syndrome. Although the abnormal QST findings we found in 5 patients might be compatible with a small-fibre neuropathy, they should be cautiously interpreted given the psychophysical characteristics of this diagnostic test. Further larger controlled studies are needed to define precisely the association between small fibre damage and COVID-19 vaccination.

5.
Clin Neurophysiol ; 142: 52-58, 2022 10.
Article En | MEDLINE | ID: mdl-35970059

OBJECTIVE: In this clinical and neurophysiological study, we aimed to test trigeminal nerve fibre function in patients with trigeminal neuralgia, with and without concomitant continuous pain. METHODS: We enrolled 65 patients with a definite diagnosis of primary trigeminal neuralgia. Patients were grouped according to whether they experienced purely paroxysmal pain (36) or also had concomitant continuous pain (29). All participants underwent trigeminal reflex testing to assess the function of large non-nociceptive myelinated fibres and laser-evoked potentials to assess the function of small myelinated Aδ and unmyelinated C fibres. Neurophysiological examiners were blinded to the affected side. RESULTS: The only neurophysiological abnormality distinguishing the two groups of patients was the side asymmetry of C fibre-related laser-evoked potential amplitude (p = 0.005), which was higher in patients with concomitant continuous pain than in patients with purely paroxysmal pain (indicative of a reduced C fibre-related laser-evoked potential amplitude in the affected side of patients with concomitant continuous pain). CONCLUSIONS: Our clinical and neurophysiological study indicates that in patients with trigeminal neuralgia concomitant continuous pain is associated with unmyelinated C fibre damage as assessed with laser-evoked potentials. SIGNIFICANCE: Our findings suggest that concomitant continuous pain is related to unmyelinated C fibre loss, possibly triggering abnormal activity in denervated trigeminal second-order neurons.


Laser-Evoked Potentials , Trigeminal Neuralgia , Humans , Nerve Fibers, Unmyelinated/physiology , Pain , Reflex , Trigeminal Nerve , Trigeminal Neuralgia/diagnosis
...