Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
1.
Cancer Cell ; 42(2): 209-224.e9, 2024 02 12.
Article in English | MEDLINE | ID: mdl-38215748

ABSTRACT

Although immunotherapy with PD-(L)1 blockade is routine for lung cancer, little is known about acquired resistance. Among 1,201 patients with non-small cell lung cancer (NSCLC) treated with PD-(L)1 blockade, acquired resistance is common, occurring in >60% of initial responders. Acquired resistance shows differential expression of inflammation and interferon (IFN) signaling. Relapsed tumors can be separated by upregulated or stable expression of IFNγ response genes. Upregulation of IFNγ response genes is associated with putative routes of resistance characterized by signatures of persistent IFN signaling, immune dysfunction, and mutations in antigen presentation genes which can be recapitulated in multiple murine models of acquired resistance to PD-(L)1 blockade after in vitro IFNγ treatment. Acquired resistance to PD-(L)1 blockade in NSCLC is associated with an ongoing, but altered IFN response. The persistently inflamed, rather than excluded or deserted, tumor microenvironment of acquired resistance may inform therapeutic strategies to effectively reprogram and reverse acquired resistance.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Animals , Mice , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Signal Transduction , Immunotherapy , Antigen Presentation , B7-H1 Antigen/metabolism , Tumor Microenvironment
2.
Life Sci Alliance ; 7(1)2024 01.
Article in English | MEDLINE | ID: mdl-37891002

ABSTRACT

We previously reported that activation of p53 by APR-246 reprograms tumor-associated macrophages to overcome immune checkpoint blockade resistance. Here, we demonstrate that APR-246 and its active moiety, methylene quinuclidinone (MQ) can enhance the immunogenicity of tumor cells directly. MQ treatment of murine B16F10 melanoma cells promoted activation of melanoma-specific CD8+ T cells and increased the efficacy of a tumor cell vaccine using MQ-treated cells even when the B16F10 cells lacked p53. We then designed a novel combination of APR-246 with the TLR-4 agonist, monophosphoryl lipid A, and a CD40 agonist to further enhance these immunogenic effects and demonstrated a significant antitumor response. We propose that the immunogenic effect of MQ can be linked to its thiol-reactive alkylating ability as we observed similar immunogenic effects with the broad-spectrum cysteine-reactive compound, iodoacetamide. Our results thus indicate that combination of APR-246 with immunomodulatory agents may elicit effective antitumor immune response irrespective of the tumor's p53 mutation status.


Subject(s)
CD8-Positive T-Lymphocytes , Melanoma , Mice , Animals , Tumor Suppressor Protein p53/genetics , Antigens, Neoplasm
3.
Cell ; 186(7): 1432-1447.e17, 2023 03 30.
Article in English | MEDLINE | ID: mdl-37001503

ABSTRACT

Cancer immunotherapies, including adoptive T cell transfer, can be ineffective because tumors evolve to display antigen-loss-variant clones. Therapies that activate multiple branches of the immune system may eliminate escape variants. Here, we show that melanoma-specific CD4+ T cell therapy in combination with OX40 co-stimulation or CTLA-4 blockade can eradicate melanomas containing antigen escape variants. As expected, early on-target recognition of melanoma antigens by tumor-specific CD4+ T cells was required. Surprisingly, complete tumor eradication was dependent on neutrophils and partly dependent on inducible nitric oxide synthase. In support of these findings, extensive neutrophil activation was observed in mouse tumors and in biopsies of melanoma patients treated with immune checkpoint blockade. Transcriptomic and flow cytometry analyses revealed a distinct anti-tumorigenic neutrophil subset present in treated mice. Our findings uncover an interplay between T cells mediating the initial anti-tumor immune response and neutrophils mediating the destruction of tumor antigen loss variants.


Subject(s)
Melanoma , T-Lymphocytes , Mice , Animals , T-Lymphocytes/pathology , Neutrophils/pathology , Antigenic Drift and Shift , Immunotherapy , CTLA-4 Antigen
4.
J Clin Invest ; 132(18)2022 09 15.
Article in English | MEDLINE | ID: mdl-36106631

ABSTRACT

In addition to playing a major role in tumor cell biology, p53 generates a microenvironment that promotes antitumor immune surveillance via tumor-associated macrophages. We examined whether increasing p53 signaling in the tumor microenvironment influences antitumor T cell immunity. Our findings indicate that increased p53 signaling induced either pharmacologically with APR-246 (eprenetapopt) or in p53-overexpressing transgenic mice can disinhibit antitumor T cell immunity and augment the efficacy of immune checkpoint blockade. We demonstrated that increased p53 expression in tumor-associated macrophages induces canonical p53-associated functions such as senescence and activation of a p53-dependent senescence-associated secretory phenotype. This was linked with decreased expression of proteins associated with M2 polarization by tumor-associated macrophages. Our preclinical data led to the development of a clinical trial in patients with solid tumors combining APR-246 with pembrolizumab. Biospecimens from select patients participating in this ongoing trial showed that there was a suppression of M2-polarized myeloid cells and increase in T cell proliferation with therapy in those who responded to the therapy. Our findings, based on both genetic and a small molecule-based pharmacological approach, suggest that increasing p53 expression in tumor-associated macrophages reprograms the tumor microenvironment to augment the response to immune checkpoint blockade.


Subject(s)
Immune Checkpoint Inhibitors , Tumor-Associated Macrophages , Animals , Immune Checkpoint Inhibitors/pharmacology , Mice , Quinuclidines , Tumor Microenvironment , Tumor Suppressor Protein p53/genetics
5.
JCI Insight ; 6(20)2021 10 22.
Article in English | MEDLINE | ID: mdl-34676831

ABSTRACT

Only a subset of cancer patients responds to checkpoint blockade inhibition in the clinic. Strategies to overcome resistance are promising areas of investigation. Targeting glucocorticoid-induced tumor necrosis factor receptor-related protein (GITR) has shown efficacy in preclinical models, but GITR engagement is ineffective in controlling advanced, poorly immunogenic tumors, such as B16 melanoma, and has not yielded benefit in clinical trials. The alkylating agent cyclophosphamide (CTX) depletes regulatory T cells (Tregs), expands tumor-specific effector T cells (Teffs) via homeostatic proliferation, and induces immunogenic cell death. GITR agonism has an inhibitory effect on Tregs and activates Teffs. We therefore hypothesized that CTX and GITR agonism would promote effective antitumor immunity. Here we show that the combination of CTX and GITR agonism controlled tumor growth in clinically relevant mouse models. Mechanistically, we show that the combination therapy caused tumor cell death, clonal expansion of highly active CD8+ T cells, and depletion of Tregs by activation-induced cell death. Control of tumor growth was associated with the presence of an expanded population of highly activated, tumor-infiltrating, oligoclonal CD8+ T cells that led to a diminished TCR repertoire. Our studies show that the combination of CTX and GITR agonism is a rational chemoimmunotherapeutic approach that warrants further clinical investigation.


Subject(s)
Cyclophosphamide/therapeutic use , Glucocorticoid-Induced TNFR-Related Protein/metabolism , Immunosuppressive Agents/therapeutic use , Immunotherapy/methods , T-Lymphocytes, Regulatory/immunology , Animals , Cyclophosphamide/pharmacology , Humans , Immunosuppressive Agents/pharmacology , Mice
6.
Cancer Cell ; 39(7): 973-988.e9, 2021 07 12.
Article in English | MEDLINE | ID: mdl-34115989

ABSTRACT

Immune checkpoint blockade (ICB) has been a remarkable clinical advance for cancer; however, the majority of patients do not respond to ICB therapy. We show that metastatic disease in the pleural and peritoneal cavities is associated with poor clinical outcomes after ICB therapy. Cavity-resident macrophages express high levels of Tim-4, a receptor for phosphatidylserine (PS), and this is associated with reduced numbers of CD8+ T cells with tumor-reactive features in pleural effusions and peritoneal ascites from patients with cancer. We mechanistically demonstrate that viable and cytotoxic anti-tumor CD8+ T cells upregulate PS and this renders them susceptible to sequestration away from tumor targets and proliferation suppression by Tim-4+ macrophages. Tim-4 blockade abrogates this sequestration and proliferation suppression and enhances anti-tumor efficacy in models of anti-PD-1 therapy and adoptive T cell therapy in mice. Thus, Tim-4+ cavity-resident macrophages limit the efficacy of immunotherapies in these microenvironments.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Colonic Neoplasms/immunology , Gene Expression Regulation, Neoplastic , Macrophages/immunology , Membrane Proteins/metabolism , Tumor Microenvironment , Animals , Apoptosis , Cell Proliferation , Colonic Neoplasms/metabolism , Colonic Neoplasms/pathology , Female , Humans , Membrane Proteins/genetics , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Prognosis , Retrospective Studies , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
7.
Nature ; 591(7851): 652-658, 2021 03.
Article in English | MEDLINE | ID: mdl-33588426

ABSTRACT

Limiting metabolic competition in the tumour microenvironment may increase the effectiveness of immunotherapy. Owing to its crucial role in the glucose metabolism of activated T cells, CD28 signalling has been proposed as a metabolic biosensor of T cells1. By contrast, the engagement of CTLA-4 has been shown to downregulate T cell glycolysis1. Here we investigate the effect of CTLA-4 blockade on the metabolic fitness of intra-tumour T cells in relation to the glycolytic capacity of tumour cells. We found that CTLA-4 blockade promotes metabolic fitness and the infiltration of immune cells, especially in glycolysis-low tumours. Accordingly, treatment with anti-CTLA-4 antibodies improved the therapeutic outcomes of mice bearing glycolysis-defective tumours. Notably, tumour-specific CD8+ T cell responses correlated with phenotypic and functional destabilization of tumour-infiltrating regulatory T (Treg) cells towards IFNγ- and TNF-producing cells in glycolysis-defective tumours. By mimicking the highly and poorly glycolytic tumour microenvironments in vitro, we show that the effect of CTLA-4 blockade on the destabilization of Treg cells is dependent on Treg cell glycolysis and CD28 signalling. These findings indicate that decreasing tumour competition for glucose may facilitate the therapeutic activity of CTLA-4 blockade, thus supporting its combination with inhibitors of tumour glycolysis. Moreover, these results reveal a mechanism by which anti-CTLA-4 treatment interferes with Treg cell function in the presence of glucose.


Subject(s)
CTLA-4 Antigen/antagonists & inhibitors , Glycolysis , Neoplasms/immunology , Neoplasms/metabolism , T-Lymphocytes, Regulatory/immunology , Animals , Breast Neoplasms/immunology , Breast Neoplasms/metabolism , Cell Line, Tumor , Female , Humans , Melanoma/genetics , Melanoma/immunology , Melanoma/metabolism , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL
8.
Cell Rep ; 34(2): 108620, 2021 01 12.
Article in English | MEDLINE | ID: mdl-33440157

ABSTRACT

Phosphatidylserine (PS) is exposed on the surface of apoptotic cells and is known to promote immunosuppressive signals in the tumor microenvironment (TME). Antibodies that block PS interaction with its receptors have been shown to repolarize the TME into a proinflammatory state. Radiation therapy (RT) is an effective focal treatment of isolated solid tumors but is less effective at controlling metastatic cancers. We found that tumor-directed RT caused an increase in expression of PS on the surface of viable immune infiltrates in mouse B16 melanoma. We hypothesize that PS expression on immune cells may provide negative feedback to immune cells in the TME. Treatment with an antibody that targets PS (mch1N11) enhanced the anti-tumor efficacy of tumor-directed RT and improved overall survival. This combination led to an increase in proinflammatory tumor-associated macrophages. The addition of anti-PD-1 to RT and mch1N11 led to even greater anti-tumor efficacy and overall survival. We found increased PS expression on several immune subsets in the blood of patients with metastatic melanoma after receiving tumor-directed RT. These findings highlight the potential of combining PS targeting with RT and PD-1 pathway blockade to improve outcomes in patients with advanced-stage cancers.


Subject(s)
Melanoma/radiotherapy , Phosphatidylserines/metabolism , Animals , Disease Models, Animal , Humans , Melanoma/pathology , Mice , Tumor Microenvironment
9.
Cell ; 183(2): 363-376.e13, 2020 10 15.
Article in English | MEDLINE | ID: mdl-33007267

ABSTRACT

Although treatment of non-small cell lung cancer (NSCLC) with immune checkpoint inhibitors (ICIs) can produce remarkably durable responses, most patients develop early disease progression. Furthermore, initial response assessment by conventional imaging is often unable to identify which patients will achieve durable clinical benefit (DCB). Here, we demonstrate that pre-treatment circulating tumor DNA (ctDNA) and peripheral CD8 T cell levels are independently associated with DCB. We further show that ctDNA dynamics after a single infusion can aid in identification of patients who will achieve DCB. Integrating these determinants, we developed and validated an entirely noninvasive multiparameter assay (DIREct-On, Durable Immunotherapy Response Estimation by immune profiling and ctDNA-On-treatment) that robustly predicts which patients will achieve DCB with higher accuracy than any individual feature. Taken together, these results demonstrate that integrated ctDNA and circulating immune cell profiling can provide accurate, noninvasive, and early forecasting of ultimate outcomes for NSCLC patients receiving ICIs.


Subject(s)
Biomarkers, Pharmacological/blood , Circulating Tumor DNA/analysis , Immune Checkpoint Inhibitors/therapeutic use , Adult , Antineoplastic Agents, Immunological/pharmacology , B7-H1 Antigen/immunology , B7-H1 Antigen/metabolism , Biomarkers, Tumor/genetics , CD8-Positive T-Lymphocytes/pathology , Carcinoma, Non-Small-Cell Lung/pathology , Circulating Tumor DNA/genetics , Female , Humans , Immune Checkpoint Inhibitors/immunology , Immune Checkpoint Inhibitors/metabolism , Immunotherapy/methods , Lung Neoplasms/pathology , Male , Middle Aged , Programmed Cell Death 1 Receptor/metabolism
10.
Nat Commun ; 11(1): 4011, 2020 08 11.
Article in English | MEDLINE | ID: mdl-32782249

ABSTRACT

Tryptophan catabolism by the enzymes indoleamine 2,3-dioxygenase 1 and tryptophan 2,3-dioxygenase 2 (IDO/TDO) promotes immunosuppression across different cancer types. The tryptophan metabolite L-Kynurenine (Kyn) interacts with the ligand-activated transcription factor aryl hydrocarbon receptor (AHR) to drive the generation of Tregs and tolerogenic myeloid cells and PD-1 up-regulation in CD8+ T cells. Here, we show that the AHR pathway is selectively active in IDO/TDO-overexpressing tumors and is associated with resistance to immune checkpoint inhibitors. We demonstrate that IDO-Kyn-AHR-mediated immunosuppression depends on an interplay between Tregs and tumor-associated macrophages, which can be reversed by AHR inhibition. Selective AHR blockade delays progression in IDO/TDO-overexpressing tumors, and its efficacy is improved in combination with PD-1 blockade. Our findings suggest that blocking the AHR pathway in IDO/TDO expressing tumors would overcome the limitation of single IDO or TDO targeting agents and constitutes a personalized approach to immunotherapy, particularly in combination with immune checkpoint inhibitors.


Subject(s)
Kynurenine/immunology , Macrophages/immunology , Receptors, Aryl Hydrocarbon/antagonists & inhibitors , T-Lymphocytes, Regulatory/immunology , Animals , Drug Resistance, Neoplasm , Humans , Immune Tolerance , Immunotherapy , Indoleamine-Pyrrole 2,3,-Dioxygenase/genetics , Indoleamine-Pyrrole 2,3,-Dioxygenase/metabolism , Mice , Neoplasms/immunology , Neoplasms/therapy , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Programmed Cell Death 1 Receptor/immunology , Receptors, Aryl Hydrocarbon/genetics , Receptors, Aryl Hydrocarbon/metabolism , Signal Transduction , Tryptophan Oxygenase/genetics , Tryptophan Oxygenase/metabolism , Tumor Cells, Cultured , Tumor Microenvironment
11.
Nat Med ; 25(5): 759-766, 2019 05.
Article in English | MEDLINE | ID: mdl-31036879

ABSTRACT

Modulating T cell homeostatic mechanisms with checkpoint blockade can efficiently promote endogenous anti-tumor T cell responses1-11. However, many patients still do not benefit from checkpoint blockade12, highlighting the need for targeting of alternative immune pathways13. Glucocorticoid-induced tumor necrosis factor receptor-related protein (GITR) is an attractive target for immunotherapy, owing to its capacity to promote effector T cell (Teff) functions14,15 and hamper regulatory T cell (Treg) suppression16-20. On the basis of the potent preclinical anti-tumor activity of agonist anti-GITR antibodies, reported by us and others16,21,22, we initiated the first in-human phase 1 trial of GITR agonism with the anti-GITR antibody TRX518 ( NCT01239134 ). Here, we report the safety profile and immune effects of TRX518 monotherapy in patients with advanced cancer and provide mechanistic preclinical evidence to rationally combine GITR agonism with checkpoint blockade in future clinical trials. We demonstrate that TRX518 reduces circulating and intratumoral Treg cells to similar extents, providing an easily assessable biomarker of anti-GITR activity. Despite Treg reductions and increased Teff:Treg ratios, substantial clinical responses were not seen. Similarly, in mice with advanced tumors, GITR agonism was not sufficient to activate cytolytic T cells due to persistent exhaustion. We demonstrate that T cell reinvigoration with PD-1 blockade can overcome resistance of advanced tumors to anti-GITR monotherapy. These findings led us to start investigating TRX518 with PD-1 pathway blockade in patients with advanced refractory tumors ( NCT02628574 ).


Subject(s)
Antibodies, Monoclonal, Humanized/therapeutic use , Glucocorticoid-Induced TNFR-Related Protein/agonists , Immunotherapy/methods , Animals , Biomarkers, Tumor/immunology , Drug Design , Glucocorticoid-Induced TNFR-Related Protein/antagonists & inhibitors , Glucocorticoid-Induced TNFR-Related Protein/immunology , Humans , Melanoma, Experimental/immunology , Melanoma, Experimental/therapy , Mice , Mice, Inbred C57BL , Neoplasms/immunology , Neoplasms/therapy , Programmed Cell Death 1 Receptor/antagonists & inhibitors , T-Lymphocytes, Regulatory/immunology
13.
Oncotarget ; 9(47): 28702-28716, 2018 Jun 19.
Article in English | MEDLINE | ID: mdl-29983890

ABSTRACT

Intratumoral therapy with oncolytic viruses is increasingly being explored as a strategy to potentiate an immune response against cancer, but it remains unknown whether such therapy should be restricted to cancers sensitive to virus-mediated lysis. Using Newcastle Disease Virus (NDV) as a model, we explore immunogenic potential of an oncolytic virus in bladder cancer, where existing immunotherapy with PD-1 and PD-L1-targeting antibodies to date has shown suboptimal response rates. Infection of human and mouse bladder cancer cells with NDV resulted in immunogenic cell death, activation of innate immune pathways, and upregulation of MHC and PD-L1 in all tested cell lines, including the cell lines completely resistant to NDV-mediated lysis. In a bilateral flank NDV-lysis-resistant syngeneic murine bladder cancer model, intratumoral therapy with NDV led to an increase of immune infiltration in both treated and distant tumors and a shift from an inhibitory to effector T cell phenotype. Consequently, combination of intratumoral NDV with systemic PD-1 or CTLA-4 blockade led to improved local and abscopal tumor control and overall survival. These findings encourage future clinical trials combining intratumoral NDV therapy with systemic immunomodulatory agents and underscore the rationale for such treatments irrespective of tumor cell sensitivity to NDV-mediated lysis.

14.
Cancer Cell ; 33(6): 1017-1032.e7, 2018 06 11.
Article in English | MEDLINE | ID: mdl-29894689

ABSTRACT

A significant proportion of cancer patients do not respond to immune checkpoint blockade. To better understand the molecular mechanisms underlying these treatments, we explored the role of CD4+Foxp3- T cells expressing PD-1 (4PD1hi) and observed that 4PD1hi accumulate intratumorally as a function of tumor burden. Interestingly, CTLA-4 blockade promotes intratumoral and peripheral 4PD1hi increases in a dose-dependent manner, while combination with PD-1 blockade mitigates this effect and improves anti-tumor activity. We found that lack of effective 4PD1hi reduction after anti-PD-1 correlates with poor prognosis. Mechanistically, we provide evidence that mouse and human circulating and intra-tumor 4PD1hi inhibit T cell functions in a PD-1/PD-L1 dependent fashion and resemble follicular helper T cell (TFH)-like cells. Accordingly, anti-CTLA-4 activity is improved in TFH deficient mice.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , Forkhead Transcription Factors/immunology , Neoplasms/immunology , Programmed Cell Death 1 Receptor/immunology , Animals , Antibodies/pharmacology , CD4-Positive T-Lymphocytes/drug effects , CD4-Positive T-Lymphocytes/metabolism , Cell Line, Tumor , Forkhead Transcription Factors/genetics , Forkhead Transcription Factors/metabolism , Gene Expression Profiling , Gene Expression Regulation, Neoplastic/drug effects , Gene Expression Regulation, Neoplastic/immunology , Humans , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Neoplasms/drug therapy , Neoplasms/genetics , Programmed Cell Death 1 Receptor/genetics , Programmed Cell Death 1 Receptor/metabolism , T-Lymphocytes, Regulatory/drug effects , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/metabolism
15.
Cancer Cell ; 33(5): 843-852.e4, 2018 05 14.
Article in English | MEDLINE | ID: mdl-29657128

ABSTRACT

Combination immune checkpoint blockade has demonstrated promising benefit in lung cancer, but predictors of response to combination therapy are unknown. Using whole-exome sequencing to examine non-small-cell lung cancer (NSCLC) treated with PD-1 plus CTLA-4 blockade, we found that high tumor mutation burden (TMB) predicted improved objective response, durable benefit, and progression-free survival. TMB was independent of PD-L1 expression and the strongest feature associated with efficacy in multivariable analysis. The low response rate in TMB low NSCLCs demonstrates that combination immunotherapy does not overcome the negative predictive impact of low TMB. This study demonstrates the association between TMB and benefit to combination immunotherapy in NSCLC. TMB should be incorporated in future trials examining PD-(L)1 with CTLA-4 blockade in NSCLC.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Carcinoma, Non-Small-Cell Lung/drug therapy , Exome Sequencing/methods , Ipilimumab/therapeutic use , Lung Neoplasms/drug therapy , Nivolumab/therapeutic use , Adult , Aged , Aged, 80 and over , Carcinoma, Non-Small-Cell Lung/genetics , Female , Humans , Immunotherapy , Lung Neoplasms/genetics , Male , Middle Aged , Mutation , Progression-Free Survival
16.
Mol Ther ; 26(4): 1008-1019, 2018 04 04.
Article in English | MEDLINE | ID: mdl-29478729

ABSTRACT

Anti-viral immunity presents a major hurdle for systemically administered oncolytic viruses (OV). Intratumoral OV therapy has a potential to overcome this problem through activation of anti-tumor immune response, with local and abscopal effects. However, the effects of anti-viral immunity in such a setting are still not well defined. Using Newcastle Disease Virus (NDV) as a model, we explore the effects of pre-existing anti-viral immunity on therapeutic efficacy in syngeneic mouse tumor models. Unexpectedly, we find that while pre-existing immunity to NDV limits its replication in tumors, tumor clearance, abscopal anti-tumor immune effects, and survival are not compromised and, on the contrary, are superior in NDV-immunized mice. These findings demonstrate that pre-existing immunity to NDV may increase its therapeutic efficacy through potentiation of systemic anti-tumor immunity, which provides clinical rationale for repeated therapeutic dosing and prompts investigation of such effects with other OVs.


Subject(s)
Genetic Therapy/adverse effects , Genetic Vectors/immunology , Neoplasms/immunology , Oncolytic Virotherapy/adverse effects , Oncolytic Viruses/immunology , Adaptive Immunity , Animals , Cell Line, Tumor , Disease Models, Animal , Gene Expression , Genetic Therapy/methods , Genetic Vectors/administration & dosage , Genetic Vectors/adverse effects , Genetic Vectors/genetics , Humans , Injections, Intralesional , Lymphocyte Activation/genetics , Lymphocyte Activation/immunology , Melanoma, Experimental , Mice , Neoplasms/pathology , Neoplasms/therapy , Newcastle disease virus/genetics , Newcastle disease virus/immunology , Oncolytic Viruses/genetics , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/metabolism , Transgenes , Treatment Outcome , Xenograft Model Antitumor Assays
17.
Nature ; 539(7629): 443-447, 2016 11 17.
Article in English | MEDLINE | ID: mdl-27828943

ABSTRACT

Recent clinical trials using immunotherapy have demonstrated its potential to control cancer by disinhibiting the immune system. Immune checkpoint blocking (ICB) antibodies against cytotoxic-T-lymphocyte-associated protein 4 or programmed cell death protein 1/programmed death-ligand 1 have displayed durable clinical responses in various cancers. Although these new immunotherapies have had a notable effect on cancer treatment, multiple mechanisms of immune resistance exist in tumours. Among the key mechanisms, myeloid cells have a major role in limiting effective tumour immunity. Growing evidence suggests that high infiltration of immune-suppressive myeloid cells correlates with poor prognosis and ICB resistance. These observations suggest a need for a precision medicine approach in which the design of the immunotherapeutic combination is modified on the basis of the tumour immune landscape to overcome such resistance mechanisms. Here we employ a pre-clinical mouse model system and show that resistance to ICB is directly mediated by the suppressive activity of infiltrating myeloid cells in various tumours. Furthermore, selective pharmacologic targeting of the gamma isoform of phosphoinositide 3-kinase (PI3Kγ), highly expressed in myeloid cells, restores sensitivity to ICB. We demonstrate that targeting PI3Kγ with a selective inhibitor, currently being evaluated in a phase 1 clinical trial (NCT02637531), can reshape the tumour immune microenvironment and promote cytotoxic-T-cell-mediated tumour regression without targeting cancer cells directly. Our results introduce opportunities for new combination strategies using a selective small molecule PI3Kγ inhibitor, such as IPI-549, to overcome resistance to ICB in patients with high levels of suppressive myeloid cell infiltration in tumours.


Subject(s)
Cell Cycle Checkpoints/drug effects , Drug Resistance, Neoplasm/drug effects , Melanoma/drug therapy , Melanoma/immunology , Myeloid Cells/drug effects , Myeloid Cells/immunology , Phosphoinositide-3 Kinase Inhibitors , Protein Kinase Inhibitors/pharmacology , Animals , Cell Proliferation/drug effects , Disease Models, Animal , Drug Resistance, Neoplasm/immunology , Female , Humans , Immune Tolerance/drug effects , Male , Melanoma/pathology , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Myeloid Cells/enzymology , Neoplasm Metastasis/drug therapy , Phenotype , Phosphatidylinositol 3-Kinases/metabolism , Protein Kinase Inhibitors/therapeutic use , T-Lymphocytes, Cytotoxic/drug effects , T-Lymphocytes, Cytotoxic/immunology , Tumor Microenvironment/drug effects , Tumor Microenvironment/immunology
18.
Immunity ; 44(1): 179-193, 2016 Jan 19.
Article in English | MEDLINE | ID: mdl-26789923

ABSTRACT

Current approaches to cancer immunotherapy aim to engage the natural T cell response against tumors. One limitation is the elimination of self-antigen-specific T cells from the immune repertoire. Using a system in which precursor frequency can be manipulated in a murine melanoma model, we demonstrated that the clonal abundance of CD4(+) T cells specific for self-tumor antigen positively correlated with antitumor efficacy. At elevated precursor frequencies, intraclonal competition impaired initial activation and overall expansion of the tumor-specific CD4(+) T cell population. However, through clonally derived help, this population acquired a polyfunctional effector phenotype and antitumor immunity was enhanced. Conversely, development of effector function was attenuated at low precursor frequencies due to irreversible T cell exhaustion. Our findings assert that the differential effects of T cell clonal abundance on phenotypic outcome should be considered during the design of adoptive T cell therapies, including use of engineered T cells.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , Melanoma, Experimental/immunology , Tumor Escape/immunology , Adoptive Transfer , Animals , Cell Separation , Flow Cytometry , Male , Mice , Mice, Inbred C57BL , Mice, Knockout
19.
J Immunother Cancer ; 3: 23, 2015.
Article in English | MEDLINE | ID: mdl-26085931

ABSTRACT

BACKGROUND: Ipilimumab improves overall survival in a subset of patients with metastatic melanoma. Peripheral blood T cell receptor (TCR) repertoire diversity has been associated with favorable outcomes in patients with cancer, but its relevance as a biomarker for ipilimumab outcomes remains unknown. FINDINGS: In this pilot study, we analyzed the pre-treatment peripheral blood TCR repertoire in 12 patients with metastatic melanoma who received ipilimumab at 3 mg/kg (clinical benefit, n = 4; no clinical benefit, n = 8). TCR diversity was evaluated using a polymerase chain reaction assay which measures TCR combinatorial diversity between V and J genes from genomic DNA. TCR repertoire diversity was studied through richness (observed V-J rearrangements) and evenness (similarity between the frequencies of specific V-J rearrangements). The Wilcoxon rank sum test was used to compare patients with clinical benefit and those without. Association with benefit in a dichotomized analysis was assessed through a Fisher's exact test. Overall survival was studied through log-rank analysis. There was a significant difference in richness (p = 0.033) and evenness (p = 0.028) between patients with and without clinical benefit. Dichotomized analysis showed that none of the patients with low richness (n = 0/5, p = 0.081) nor low evenness (n = 0/7, p = 0.01) achieved clinical benefit. There were no significant differences in overall survival. CONCLUSIONS: In this small group of patients, baseline TCR diversity in the peripheral blood was associated with clinical outcomes. Further investigation is ongoing in larger cohorts of patients to explore these preliminary findings and determine whether TCR diversity can be used as a predictive biomarker in cancer immunotherapy.

20.
N Engl J Med ; 371(23): 2189-2199, 2014 Dec 04.
Article in English | MEDLINE | ID: mdl-25409260

ABSTRACT

BACKGROUND: Immune checkpoint inhibitors are effective cancer treatments, but molecular determinants of clinical benefit are unknown. Ipilimumab and tremelimumab are antibodies against cytotoxic T-lymphocyte antigen 4 (CTLA-4). Anti-CTLA-4 treatment prolongs overall survival in patients with melanoma. CTLA-4 blockade activates T cells and enables them to destroy tumor cells. METHODS: We obtained tumor tissue from patients with melanoma who were treated with ipilimumab or tremelimumab. Whole-exome sequencing was performed on tumors and matched blood samples. Somatic mutations and candidate neoantigens generated from these mutations were characterized. Neoantigen peptides were tested for the ability to activate lymphocytes from ipilimumab-treated patients. RESULTS: Malignant melanoma exomes from 64 patients treated with CTLA-4 blockade were characterized with the use of massively parallel sequencing. A discovery set consisted of 11 patients who derived a long-term clinical benefit and 14 patients who derived a minimal benefit or no benefit. Mutational load was associated with the degree of clinical benefit (P=0.01) but alone was not sufficient to predict benefit. Using genomewide somatic neoepitope analysis and patient-specific HLA typing, we identified candidate tumor neoantigens for each patient. We elucidated a neoantigen landscape that is specifically present in tumors with a strong response to CTLA-4 blockade. We validated this signature in a second set of 39 patients with melanoma who were treated with anti-CTLA-4 antibodies. Predicted neoantigens activated T cells from the patients treated with ipilimumab. CONCLUSIONS: These findings define a genetic basis for benefit from CTLA-4 blockade in melanoma and provide a rationale for examining exomes of patients for whom anti-CTLA-4 agents are being considered. (Funded by the Frederick Adler Fund and others.).


Subject(s)
Antibodies, Monoclonal/therapeutic use , Antineoplastic Agents/therapeutic use , CTLA-4 Antigen/antagonists & inhibitors , Melanoma/genetics , Skin Neoplasms/genetics , Adult , Aged , Aged, 80 and over , Antibodies, Monoclonal, Humanized , CTLA-4 Antigen/immunology , Exome , Female , High-Throughput Nucleotide Sequencing , Histocompatibility Testing , Humans , Ipilimumab , Male , Melanoma/drug therapy , Melanoma/immunology , Melanoma/secondary , Middle Aged , Mutation , Skin Neoplasms/drug therapy , Skin Neoplasms/immunology
SELECTION OF CITATIONS
SEARCH DETAIL