Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 339
1.
Anal Chim Acta ; 1314: 342796, 2024 Jul 25.
Article En | MEDLINE | ID: mdl-38876515

BACKGROUND: Excessive pesticide residues in agricultural products could accumulate in organisms through the food chain, causing potential harm to human health. The investigation of dissipation kinetics and residues of pesticides in crops is crucial for the scientific application of pesticides and the mitigation of their adverse effects on human health. In vivo solid-phase microextraction (in vivo SPME) has unique advantages, but the research on field plants is still lacking and the quantitative correction methods need to be further developed. RESULTS: A method combining in vivo solid-phase microextraction with ultra-performance liquid chromatography-tandem mass spectrometry (in vivo SPME-UPLC-MS/MS) was developed to monitor the presence of acetamiprid, cyromazine, thiamethoxam and imidacloprid in cowpea fruits grown in the field. The sampling rates (Rs) were determined using both in vitro SPME in homogenized cowpea samples and in vivo SPME in intact cowpea fruit samples. The in vivo-Rs values were significantly higher than the in vitro-Rs for the same analyte, which were used for in vivo SPME correction. The accuracy of this method was confirmed by comparison with a QuEChERS-based approach and subsequently applied to trace pesticide residues in field-grown cowpea fruits. The residual concentrations of each pesticide positively correlated with application doses. After 7 days of application at two different doses, all of the pesticides had residual concentrations below China's maximum residue limits. Both experimental data and predictions indicated that a safe preharvest interval for these pesticides is 7 days; however, if the European Union standards are to be met, a safe preharvest interval for cyromazine should be at least 13 days. SIGNIFICANCE: This study highlights the advantages of in vivo SPME for simultaneous analysis and tracking of multiple pesticides in crops under field conditions. This technique is environmentally friendly, minimally invasive, highly sensitive, accurate, rapid, user-friendly, cost-effective, and capable of providing precise and timely data for long-term pesticide surveillance. Consequently, it furnishes valuable insights to guide the safe utilization of pesticides in agricultural production.


Neonicotinoids , Pesticide Residues , Solid Phase Microextraction , Tandem Mass Spectrometry , Triazines , Vigna , Vigna/chemistry , Tandem Mass Spectrometry/methods , Neonicotinoids/analysis , Solid Phase Microextraction/methods , Chromatography, High Pressure Liquid/methods , Triazines/analysis , Pesticide Residues/analysis , Pesticide Residues/isolation & purification , Fruit/chemistry
2.
Medicine (Baltimore) ; 103(18): e38005, 2024 May 03.
Article En | MEDLINE | ID: mdl-38701267

Bladder Urothelial Carcinoma (BLCA), a prevalent and lethal cancer, lacks understanding regarding the roles and prognostic value of cuproptosis-related lncRNAs (CRLs), a novel form of cell death induced by copper. We collected RNA-seq data, clinical information, and prognostic data for 414 BLCA samples and 19 matched controls from The Cancer Genome Atlas. Using multivariate and univariate Cox regression analyses, we identified CRLs to create a prognostic signature. Patients were then divided into low- and high-risk groups based on their risk scores. We analyzed overall survival using the Kaplan-Meier method, evaluated stromal and immune scores, and explored functional differences between these risk groups with gene set enrichment analysis. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were also conducted to understand the links between CRLs and BLCA development. We developed a prognostic signature using 4 independent CRLs: RC3H1-IT1, SPAG5-AS1, FAM13A-AS1, and GNG12-AS1. This signature independently predicted the prognosis of BLCA patients. High-risk patients had worse outcomes, with gene set enrichment analysis revealing enrichment in tumor- and immune-related pathways in the high-risk group. Notably, high-risk patients exhibited enhanced responses to immunotherapy and conventional chemotherapy drugs like sunitinib, paclitaxel, and gemcitabine. The independent prognostic signature variables RC3H1-IT1, SPAG5-AS1, FAM13A-AS1, and GNG12-AS1 predicted the prognoses of BLCA patients and provided a basis for the study of the mechanism of CRLs in BLCA development and progression, and the guidance of clinical treatments for patients with BLCA.


RNA, Long Noncoding , Urinary Bladder Neoplasms , Humans , Urinary Bladder Neoplasms/genetics , Urinary Bladder Neoplasms/mortality , RNA, Long Noncoding/genetics , Male , Prognosis , Female , Aged , Middle Aged , Biomarkers, Tumor/genetics , Kaplan-Meier Estimate , Carcinoma, Transitional Cell/genetics , Carcinoma, Transitional Cell/mortality , Carcinoma, Transitional Cell/pathology
3.
Sci Total Environ ; 932: 173030, 2024 Jul 01.
Article En | MEDLINE | ID: mdl-38719043

Antibiotic pollution and biological invasion pose significant risks to freshwater biodiversity and ecosystem health. However, few studies have compared the ecological adaptability and ciprofloxacin (CIPR) degradation potential between alien and native macrophytes. We examined growth, physiological response, and CIPR accumulation, translocation and metabolic abilities of two alien plants (Eichhornia crassipes and Myriophyllum aquaticum) and one native submerged species (Vallisneria natans) exposed to CIPR at 0, 1 and 10 mg/L. We found that E. crassipes and M. aquaticum's growth were unaffected by CIPR while V. natans was significantly hindered under the 10 mg/L treatment. CIPR significantly decreased the maximal quantum yield of PSII, actual quantum yield of PSII and relative electron transfer rate in E. crassipes and V. natans but didn't impact these photosynthetic characteristics in M. aquaticum. All the plants can accumulate, translocate and metabolize CIPR. M. aquaticum and E. crassipes in the 10 mg/L treatment group showed greater CIPR accumulation potential than V. natans indicated by higher CIPR contents in their roots. The oxidative cleavage of the piperazine ring acts as a key pathway for these aquatic plants to metabolize CIPR and the metabolites mainly distributed in plant roots. M. aquaticum and E. crassipes showed a higher production of CIPR metabolites compared to V. natans, with M. aquaticum exhibiting the strongest CIPR metabolic ability, as indicated by the most extensive structural breakdown of CIPR and the largest number of potential metabolic pathways. Taken together, alien species outperformed the native species in ecological adaptability, CIPR accumulation and metabolic capacity. These findings may shed light on the successful invasion mechanisms of alien aquatic species under antibiotic pressure and highlight the potential ecological impacts of alien species, particularly M. aquaticum. Additionally, the interaction of antibiotic contamination and invasion might further challenge the native submerged macrophytes and pose greater risks to freshwater ecosystems.


Ciprofloxacin , Water Pollutants, Chemical , Water Pollutants, Chemical/toxicity , Water Pollutants, Chemical/metabolism , Introduced Species , Eichhornia/metabolism , Eichhornia/physiology , Anti-Bacterial Agents/toxicity , Hydrocharitaceae/physiology , Hydrocharitaceae/metabolism , Biodegradation, Environmental
4.
Chemistry ; : e202400842, 2024 May 01.
Article En | MEDLINE | ID: mdl-38691421

Recent interest has surged in using heterogeneous carriers to boost synergistic photocatalysis for organic transformations. Heterogeneous catalysts not only facilitate synergistic enhancement of distinct catalytic centers compared to their homogeneous counterparts, but also allow for the easy recovery and reuse of catalysts. This mini-review summarizes recent advancements in developing heterogeneous carriers, including metal-organic frameworks, covalent-organic frameworks, porous organic polymers, and others, for synergistic catalytic reactions. The advantages of porous materials in heterogeneous catalysis originate from their ability to provide a high surface area, facilitate enhanced mass transport, offer a tunable chemical structure, ensure the stability of active species, and enable easy recovery and reuse of catalysts. Both photosensitizers and catalysts can be intricately incorporated into suitable porous carriers to create heterogeneous dual photocatalysts for organic transformations. Notably, experimental evidence from reported cases has shown that the catalytic efficacy of heterogeneous catalysts often surpasses that of their homogeneous analogues. This enhanced performance is attributed to the proximity and confinement effects provided by the porous nature of the carriers. It is expected that porous carriers will provide a versatile platform for integrating diverse catalysts, thus exhibiting superior performance across a range of organic transformations and appealing prospect for industrial applications.

5.
Zhongguo Zhong Yao Za Zhi ; 49(8): 2088-2105, 2024 Apr.
Article Zh | MEDLINE | ID: mdl-38812225

Chinese medicinal preparations play an equally important role in reducing toxicity and treating tumors. Few studies discriminate the quality markers(Q-markers) conferring different therapeutic effects of traditional Chinese medicine preparations. Therefore, we take Aidi Injection(AD) as an example to comprehensively identify the Q-markers of anti-tumor and cardioprotective effects based on the "spider web" mode. Firstly, based on the principle of measurability, the chemical components in the prescription were qualitatively analyzed, and then the components with high content and capable to be measured were quantitatively analyzed as measurable evaluation indexes. Based on the principle of stability, the effects of light and temperature on the content of each component of AD were investigated as indicators of stability. Based on the principle of compatibility, the compounds were classified according to the law of compatibility of sovereign, minister, assistant, and guide medicinal materials in the prescription. Based on the principle of efficacy, the anti-tumor and antiangiogenic activities of the Q-markers were evaluated, and their synergistic effects with doxorubicin(DOX) in inhibiting tumorigenesis and angiogenesis and lowering cardiotoxicity were evaluated as the evaluation indexes of effectiveness. The seven-dimensional spider web of "compatibility-content-stability-antitumor activity-synergistic anti-tumor activity with DOX-antiangiogenic activity-synergistic anti-angiogenic activity with DOX" and the four-dimensional spider web of "compatibility-content-stability-protective effects against DOX-induced myocardial toxicity" were established, on the basis of which the Q-markers of anti-tumor and cardioprotective effects of AD were comprehensively analyzed. The results showed that 12 components were selected as the Q-markers of AD, among which cantharidin, ginsenoside Re, ginsenoside Rb_1, astragaloside Ⅱ, cryptochlorogenic acid, and ginsenoside Rg_2 were the anti-tumor Q-markers of AD. Ginsenoside Rd, isofraxidin, syringin, eleutheroside E, calycosin-7-O-ß-D-glucoside, and azelaic acid were the cardioprotective Q-markers of AD. Taking into account both the anti-tumor and cardioprotective effects, these Q-markers could cover the four herbs constituting the prescription. The findings provides a scientific basis for the quality control of AD and an effective method for identifying comprehensive and reasonable Q-markers for the two effects of Chinese medicinal preparations.


Antineoplastic Agents , Cardiotonic Agents , Drugs, Chinese Herbal , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/chemistry , Animals , Cardiotonic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Humans , Mice , Doxorubicin , Male , Injections , Drug Combinations
6.
Pharmacol Biochem Behav ; 240: 173788, 2024 Jul.
Article En | MEDLINE | ID: mdl-38734150

Autism is a complex neurodevelopmental disorder with no effective treatment available currently. Repetitive transcranial magnetic stimulation (rTMS) is emerging as a promising neuromodulation technique to treat autism. However, the mechanism how rTMS works remains unclear, which restrict the clinical application of magnetic stimulation in the autism treatment. In this study, we investigated the effect of low-frequency rTMS on the autistic-like symptoms and explored if this neuroprotective effect was associated with synaptic plasticity and neuroinflammation in the hippocampus. A rat model of autism was established by intraperitoneal injection of valproic acid (VPA) in pregnant rats and male offspring were treated with 1 Hz rTMS daily for two weeks continuously. Behavior tests were performed to identify behavioral abnormality. Synaptic plasticity was measured by in vivo electrophysiological recording and Golgi-Cox staining. Synapse and inflammation associated proteins were detected by immunofluorescence and Western blot analyses. Results showed prenatal VPA-exposed rats exhibited autistic-like and anxiety-like behaviors, and cognitive impairment. Synaptic plasticity deficits and the abnormality expression of synapse-associated proteins were found in the hippocampus of prenatal VPA-exposed rats. Prenatal VPA exposure increased the level of inflammation cytokines and promoted the excessive activation of microglia. rTMS significantly alleviated the prenatal VPA-induced abnormalities including behavioral and synaptic plasticity deficits, and excessive neuroinflammation. TMS maybe a potential strategy for autism therapy via rescuing synaptic plasticity and inhibiting neuroinflammation.


Autistic Disorder , Disease Models, Animal , Hippocampus , Neuronal Plasticity , Prenatal Exposure Delayed Effects , Transcranial Magnetic Stimulation , Valproic Acid , Animals , Valproic Acid/pharmacology , Neuronal Plasticity/drug effects , Rats , Autistic Disorder/therapy , Autistic Disorder/chemically induced , Female , Male , Pregnancy , Prenatal Exposure Delayed Effects/chemically induced , Hippocampus/metabolism , Hippocampus/drug effects , Rats, Sprague-Dawley , Neuroinflammatory Diseases/therapy , Behavior, Animal/drug effects
7.
Behav Brain Res ; 469: 115052, 2024 Jul 09.
Article En | MEDLINE | ID: mdl-38782096

Autism spectrum disorder (ASD) is a pervasive developmental disorder with gender differences. Oxytocin (OXT) is currently an important candidate drug for autism, but the lack of data on female autism is a big issue. It has been reported that the effect of OXT is likely to be different between male and female ASD patients. In the study, we specifically explored the role of the OXT signaling pathway in a VPA-induced female rat's model of autism. The data showed that there was an increase of either oxytocin or its receptor expressions in both the hippocampus and the prefrontal cortex of VPA-induced female offspring. To determine if the excess of OXT signaling contributed to autism symptoms in female rats, exogenous oxytocin and oxytocin receptor antagonists Atosiban were used in the experiment. It was found that exogenous oxytocin triggered autism-like behaviors in wild-type female rats by intranasal administration. More interestingly, several autism-like deficits including social interaction, anxiety, and repeat stereotypical sexual behavior in the VPA female offspring were significantly attenuated by oxytocin receptor antagonists Atosiban. Moreover, Atosiban also effectively improved the synaptic plasticity impairment induced by VPA in female offspring. Our results suggest that oxytocin receptor antagonists significantly improve autistic-like behaviors in a female rat model of valproic acid-induced autism.


Autistic Disorder , Disease Models, Animal , Oxytocin , Receptors, Oxytocin , Valproic Acid , Vasotocin , Animals , Valproic Acid/pharmacology , Female , Receptors, Oxytocin/antagonists & inhibitors , Receptors, Oxytocin/metabolism , Oxytocin/pharmacology , Oxytocin/metabolism , Oxytocin/administration & dosage , Rats , Vasotocin/analogs & derivatives , Vasotocin/pharmacology , Autistic Disorder/chemically induced , Autistic Disorder/drug therapy , Prefrontal Cortex/drug effects , Prefrontal Cortex/metabolism , Autism Spectrum Disorder/chemically induced , Autism Spectrum Disorder/drug therapy , Hippocampus/drug effects , Hippocampus/metabolism , Behavior, Animal/drug effects , Rats, Sprague-Dawley , Neuronal Plasticity/drug effects , Social Interaction/drug effects , Sexual Behavior, Animal/drug effects , Anxiety/drug therapy , Anxiety/chemically induced , Pregnancy
8.
Sci Total Environ ; 927: 172271, 2024 Jun 01.
Article En | MEDLINE | ID: mdl-38583606

The decomposition rates and stoichiometric characteristics of many aquatic plants remain unclear, and our understanding of material flow and nutrient cycles within freshwater ecosystems is limited. In this study, an in-situ experiment involving 23 aquatic plants (16 native and 7 exotic species) was carried out via the litter bag method for 63 days, during which time the mass loss and nutrient content (carbon (C), nitrogen (N), and phosphorus (P)) of plants were measured. Floating-leaved plants exhibited the highest decomposition rate (0.038 ± 0.002 day-1), followed by submerged plants and free-floating plants (0.029 ± 0.002 day-1), and emergent plants had the lowest decomposition rate (0.019 ± 0.001 day-1). Mass loss by aquatic plants correlated with stoichiometric characteristics; the decomposition rate increased with an increasing P content and with a decreasing C content, C:N ratio, and C:P ratio. Notably, the decomposition rate of submerged exotic plants (0.044 ± 0.002 day-1) significantly exceeded that of native plants (0.026 ± 0.004 day-1), while the decomposition rate of emergent exotic plants was 55 ± 4 % higher than that of native plants. The decomposition rates of floating-leaved and free-floating plants did not significantly differ between the native and exotic species. During decomposition, emergent plants displayed an increase in C content and a decrease in N content, contrary to patterns observed in other life forms. The P content decreased for submerged (128 ± 7 %), emergent (90 ± 5 %), floating-leaved (104 ± 6 %), and free-floating plants (32 ± 6 %). Exotic plants released more C and P but accumulated more N than did native plants. In conclusion, the decomposition of aquatic plants is closely linked to litter quality and influences nutrient cycling in freshwater ecosystems. Given these findings, the invasion of the littoral zone by submerged and emergent exotic plants deserves further attention.


Introduced Species , Lakes , Nitrogen , Phosphorus , Plants , Lakes/chemistry , Phosphorus/analysis , Nitrogen/analysis , Carbon/analysis , Ecosystem , Plant Leaves/chemistry , China
9.
Environ Int ; 185: 108557, 2024 Mar.
Article En | MEDLINE | ID: mdl-38458117

Globally intensified lake eutrophication, attributed to excessive anthropogenic nitrogen loading, emerges as a significant driver of submerged vegetation degradation. Consequently, the impact of nitrogen on the decline of submerged macrophytes has received increasing attention. However, a functional trait-based approach to exploring the response of submerged macrophytes to nitrogen loading and its environmental feedback mechanism was unclear. Our study utilized two different growth forms of submerged macrophytes (canopy-forming Myriophyllum spicatum, and rosette-forming Vallisneria natans) to established "submerged macrophytes-water-sediment" microcosms. We assessed the influence of nitrogen loading, across four targeted total nitrogen concentrations (original control, 2, 5, 10 mg/L), on plant traits, water parameters, sediment properties, enzyme activities, and microbial characteristics. Our findings revealed that high nitrogen (10 mg/L) adversely impacted the relative growth rate of fresh biomass and total chlorophyll content in canopy-forming M. spicatum, while the chlorophyll a/b and free amino acid content increased. On the contrary, the growth and photosynthetic traits of resource-conservative V. natans were not affected by nitrogen loading. Functional traits (growth, photosynthetic, and stoichiometric) of M. spicatum but not V. natans exhibited significant correlations with environmental variables. Nitrogen loading significantly increased the concentration of nitrogen components in overlying water and pore water. The presence of submerged macrophytes significantly reduced the ammonia nitrogen and total nitrogen both in overlying water and pore water, and decreased total organic carbon in pore water. Nitrogen loading significantly inhibited sediment extracellular enzyme activities, but the planting of submerged macrophytes mitigated their negative effects. Furthermore, rhizosphere bacterial interactions were less compact compared to bare control, while eukaryotic communities exhibited increased complexity and connectivity. Path modeling indicated that submerged macrophytes mitigated the direct effects of nitrogen loading on overlying water and amplified the indirect effects on pore water, while also attenuating the direct negative effects of pore water on extracellular enzymes. The findings indicated that the restoration of submerged vegetation can mitigate eutrophication resulting from increased nitrogen loading through species-specific changes in functional traits and direct or indirect feedback mechanisms in the water-sediment system.


Nitrogen , Water , Nitrogen/metabolism , Chlorophyll A , Lakes/chemistry , Biomass
10.
J Environ Manage ; 355: 120512, 2024 Mar.
Article En | MEDLINE | ID: mdl-38442660

Biological manipulation, involving fish stockings, is commonly used to counteract the deterioration of submerged vegetation in eutrophic lakes. Nevertheless, the non-consumptive effects (NCEs) of stocked carnivorous fish are often overlooked. Using a controlled experimental system, we investigated the NCEs of a native carnivorous fish, snakehead (Channa argus), on two key biological factors, herbivore-dominated grass carp (Ctenopharyngodon idella) and disturbance-dominated loach (Misgurnus anguillicaudatus), influencing submerged plants growth. Additionally, we conducted a meta-analysis on predation risk and primary productivity. The results reveal that predation risk induces oxidative stress damage and affects grass carp growth. Non-significant changes in cortisol and glucose may be linked to predation risk prediction. Simultaneously, predation risk reduces fish feeding and disturbance behavior, relieving pressure on submerged plants to be grazed and disturbed, thereby supporting plant development. The presence of submerged plants, in turn, enhances loach activity and influences water body characteristics through negative feedback. Furthermore, the meta-analysis results indicate the facilitative effect of predation risk on primary producers. Our findings contribute to the understanding of biological manipulation theory. We demonstrate that the predation risk associated with introducing carnivorous fish can promote the growth of submerged plants through behaviorally mediated indirect effects. This highlights the potential utility of predation risk in lake restoration efforts.


Carps , Lakes , Animals , Predatory Behavior , Herbivory , Plant Development
11.
Front Neurol ; 15: 1348048, 2024.
Article En | MEDLINE | ID: mdl-38510377

Objective: This study analyzed the current research hotspots and future development trends of the therapeutic effects of microRNA on PNI axonal regeneration through bibliometric methods. Moreover, the current advantages and disadvantages of this field as well as future development prospects are discussed in depth. Methods: CiteSpace V and VOSviewer were used as bibliometric tools to complete the analysis of the research focus and direction of the published articles. To supplement, sort out, and summarize, we analyzed the research status of the study on the application of microRNAs for axonal regeneration after peripheral nerve injury from 2013 to 2023. Results: A total of 207 publications were retrieved from the Web of Science database. After exclusion and screening, a final selection of 174 articles that met the research criteria. These 174 articles were authored by a total of 846 individuals, representing 24 countries and 199 institutions. Additionally, this study presents information on the annual publication output, country distribution, top 5 contributing authors, top 5 most cited articles, and top 10 contributing institutions. Conclusion: As one of the hottest topics today, microRNAs have become the current research hotspot in neural inflammation, neural cell repair and regeneration, neural protection, and functional recovery. With more investment in research in this field, more high-quality articles will be published in both domestic and international outstanding journals, which will bring a new era for the treatment of peripheral nerve injury.

12.
J Hazard Mater ; 469: 133929, 2024 May 05.
Article En | MEDLINE | ID: mdl-38452672

Asexual reproduction is one of the most important propagations in aquatic plants. However, there is a lack of information about the growth-limiting mechanisms induced by microplastics on the submerged plant during asexual propagule germination to seedling. Hence, we investigated the effects of two sizes (2 µm, 0.2 µm) and three concentrations (0.5 mg/L, 5 mg/L, and 50 mg/L) of polystyrene microplastics (PSMPs) on Potamogeton crispus turion germination and seedling growth. Both PSMPs sizes were found in P. crispus seedling tissues. Metabolic profile alterations were observed in leaves, particularly affecting secondary metabolic pathways and ATP-binding cassette transporters. Metal elements are indispensable cofactors for photosynthesis; however, alterations in the metabolic profile led to varying degrees of reduced concentrations in magnesium, iron, copper, and zinc within P. crispus. Therefore, the maximum quantum yield of photosystem II significantly decreased in all concentrations with 0.2 µm-PSMPs, and at 50 mg/L with 2 µm-PSMPs. These findings reveal that internalization of microplastics, nutrient absorption inhibition, and metabolic changes contribute to the negative impact on P. crispus seedlings.


Germination , Seedlings , Polystyrenes/pharmacology , Microplastics/pharmacology , Plastics
13.
J Ethnopharmacol ; 325: 117852, 2024 May 10.
Article En | MEDLINE | ID: mdl-38307356

ETHNOPHARMACOLOGICAL RELEVANCE: Gerberae Piloselloides Herba (GPH) is derived from Gerbera piloselloides (Linn.) Cass. It is a commonly used traditional medicine in China, featured by its special bioactivities as antitussive, expectorant, anti-asthma, anti-bacterial and anti-tumor. It is often used as an effective treatment for cough and sore throat as well as bronchial asthma (BA) in China. It was demonstrated in our previous studies that GPH exerted significant effects on the treatment of BA, but its underlying mechanism remains unclear. AIM OF THE STUDY: This study was aimed at revealing the mechanism through which GPH protects against BA. MATERIALS AND METHODS: The protective effect of GPH against BA was evaluated in a mouse model of BA induced by ovalbumin. Through integrated metabolomics and transcriptomics analysis, the most critical pathways were discovered. The effects of GPH in regulating these pathways was verified through molecular biology experiments and molecular docking. RESULTS: GPH have anti-BA effects. In plasma and lung tissue, 5 and 17 differentially expressed metabolites (DEMs), respectively, showed a reversed tendency in the GPH group compared with the model group; apart from gamma-aminobutyric acid and butyrylcarnitine, these DEMs might aid in BA diagnosis. The DEMs were involved primarily in the regulation of lipid metabolism, followed by glucose metabolism and amino acid metabolism. Transcriptomic analysis indicated that GPH modulated 268 differentially expressed genes (DEGs). Integration analysis of metabolomics and transcriptomics revealed that GPH might regulate the PPAR signaling pathway, thus affecting the expression of key gene targets such as Cyp4a12a, Cyp4a12b, Adh7, Acaa1b and Gpat2; controlling fatty acid degradation, unsaturated fatty acid biosynthesis, glycerophospholipid metabolism and other lipid metabolic pathways; and ameliorating BA. This possibility was confirmed through reverse-transcription quantitative polymerase chain reaction, western blotting, immunofluorescence and molecular docking. CONCLUSION: GPH was found to activate the PPAR signaling pathway, decrease the levels of Cyp4a12a and Cyp4a12b, and increase the levels of Adh7, Acaa1b and Gpat2, thereby regulating lipid metabolism disorder, decreasing the generation of inflammatory mediators and limiting lung injury.


Asteraceae , Asthma , Animals , Mice , Molecular Docking Simulation , Peroxisome Proliferator-Activated Receptors , Metabolomics , Asthma/drug therapy , Asthma/genetics , Gene Expression Profiling
14.
Nat Prod Res ; : 1-6, 2024 Feb 01.
Article En | MEDLINE | ID: mdl-38299977

Phytochemical investigation of the whole plant of Gerbera delavayi afforded four new glycosides including three coumarin glycosides, Gerbelavinside A (1), Gerbelavinside B (2) and Gerbelavinside C (3) and one acetophenone glycoside, Gerbelavinside F (4). The structures of isolated compounds were elucidated by analysis of 1D and 2D NMR, HR-ESI-MS, acid hydrolysis, as well as comparing with the literature. The isolated compounds were examined the effects of nitric oxide (NO) production inhibition in lipopolysaccharide (LPS)-induced RAW264.7 macrophage cells, and Gerbelavinside C presented a certain inhibitory activity.

15.
Cancer Res Treat ; 56(2): 602-615, 2024 Apr.
Article En | MEDLINE | ID: mdl-37846469

PURPOSE: Patients with advanced biliary tract cancer (BTC) have a poor survival. We aim to evaluate the efficacy and safety of nab-paclitaxel plus gemcitabine and cisplatin regimen in Chinese advanced BTC patients. MATERIALS AND METHODS: Eligible patients with locally advanced or metastatic BTC administrated intravenous 100 mg/m2 nab-paclitaxel, 800 mg/m2 gemcitabine, and 25 mg/m2 cisplatin every 3 weeks. The primary endpoint was progression-free survival (PFS). The secondary endpoints included overall survival (OS) and adverse events, while exploratory endpoint was the association of biomarkers with efficacy. RESULTS: After the median follow-up of 25.0 months, the median PFS and OS of 34 enrolled patients were 7.1 months (95% confidence interval [CI], 5.4 to 13.7) and 16.4 months (95% CI, 10.9 to 23.6), respectively. The most common treatment-related adverse events at ≥ 3 grade were neutropenia (26.5%) and leukopenia (26.5%). Survival analyses demonstrated that carcinoembryonic antigen (CEA) levels could monitor patients' survival outcomes. A significant increase in the number of infiltrating CD4+ cells (p=0.008) and a decrease in programmed death-1-positive (PD-1+) cells (p=0.032) were observed in the response patients. CONCLUSION: In advanced BTC patients, nab-paclitaxel plus gemcitabine and cisplatin regimen showed therapeutic potential. Potential prognostic factors of CEA levels, number of CD4+ cells and PD-1+ cells may help us maximize the efficacy benefit.


Albumins , Bile Duct Neoplasms , Paclitaxel , Pancreatic Neoplasms , Humans , Gemcitabine , Cisplatin/adverse effects , Deoxycytidine/adverse effects , Carcinoembryonic Antigen/therapeutic use , Programmed Cell Death 1 Receptor , Bile Duct Neoplasms/drug therapy , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Pancreatic Neoplasms/pathology
17.
Neuroreport ; 35(1): 17-26, 2024 Jan 03.
Article En | MEDLINE | ID: mdl-37983626

The present study elucidated cuproptosis-related molecular clusters involved in ischemic stroke and developed predictive models. Transcriptomic and immunological profiles of ischemic stroke-related datasets were extracted from the Gene Expression Omnibus database. Next, we conducted weighted gene co-expression network analysis to determine cluster-specific differentially expressed genes (DEGs). Models such as random forest and eXtreme gradient boosting (XGB) were evaluated to select the best prediction performance model. Subsequently, we validated the model's predictive efficiency by using nomograms, decision curve analysis, calibration curves, and receiver operating characteristic curve analysis with an external dataset. We identified two cuproptosis-related clusters involved in ischemic stroke. The DEGs in Cluster 2 were closely associated with amino acid metabolism, various immune responses, and cell proliferation pathways. The XGB model showed lower residuals, a smaller root mean square error, and a greater area under the curve value (AUC = 0.923), thus exhibiting the best discriminative performance. The AUC value for the external validation dataset was 0.921, thus confirming the high performance of the model. NFE2L2, NLRP3, GLS, LIPT1, and MTF1 were identified as potential cuproptosis predictors, thus shedding new light on ischemic stroke pathogenesis and heterogeneity.


Ischemic Stroke , Humans , Ischemic Stroke/genetics , Cell Proliferation , Databases, Factual , Gene Expression Profiling , ROC Curve
18.
J Pharm Biomed Anal ; 239: 115899, 2024 Feb 15.
Article En | MEDLINE | ID: mdl-38103414

Shenxiong glucose injection (SGI) containing a water extract from the roots of Danshen and Ligustrazine hydrochloride, is the main drug used for the prevention and treatment of acute myocardial ischemia (AMI) in China. Based on the characteristics of drug clinical applications, this study aims to uncover the compatibility mechanism of SGI by investigating pharmacokinetic (PK) and pharmacodynamic (PD) differences between Danshen glucose injection (DGI), Ligustrazine glucose injection (LGI) and SGI groups after multiple dosing during the pathological state from the perspective of metabolic enzymes. Compared to the LGI group, the absorption (Cmax) and exposure (AUC) of ligustrazine increased significantly, and the protein expression of CYP1A2, CYP2C11 and CYP3A2 in the SGI group decreased significantly. Furthermore, the PK and PD experimental data for Danshen and ligustrazine in AMI rats were fitted to obtain a PK-PD binding model with three components. PK-PD parameter analysis showed that in the SGI group the IC50 values of ligustrazine and danshensu on AST, CK-MB, cTn-I and the IC50 values of rosmarinic acid on AST and CK-MB were lower than the DGI or LGI group. It is speculated that Danshen inhibited CYP1A2, CYP2C11 and CYP3A2 mediating the metabolism of ligustrazine and decreased the expression of these three isozymes, which further affected the in vivo process of ligustrazine. Moreover, the combination of Danshen and ligustrazine could have better regulating effect on AST, CK-MB and cTn-I. This preliminary study has provided a scientific basis for understanding the compatibility mechanism of SGI from the viewpoint of the regulation of CYP enzymes in the PK-PD model.


Cytochrome P-450 CYP1A2 , Drugs, Chinese Herbal , Rats , Animals , Cytochrome P-450 Enzyme System/metabolism , Glucose
19.
Inflammation ; 47(3): 921-938, 2024 Jun.
Article En | MEDLINE | ID: mdl-38133702

Rheumatoid arthritis (RA) is an enduring, progressive autoimmune disorder. Abnormal activation of fibroblast-like synoviocytes (FLSs) has been proposed as the initiating factor for inflammation of the synovium and bone destruction. Neutrophil extracellular traps (NETs), which are web-like structures composed of DNA, histones, and granule proteins, are involved in the development of RA in multiple aspects. Pyroptosis, gasdermin-mediated inflammatory programmed cell death, plays a vital function in the etiopathogenesis of RA. However, the exact mechanism underlying NETs-induced pyroptosis in FLSs of RA and its impact on cellular pathogenic behavior remain undefined. In this study, we demonstrated that gasdermin E (GSDME) expression was upregulated in RA plasma and synoviums, which was positively correlated with the elevated cell-free DNA (cfDNA) and citrullinated histone 3 (Cit H3) levels in the plasma. Additionally, in vitro experiments have shown that NETs triggered caspase 3/GSDME-mediated pyroptosis in RA-FLSs, characterized by decreased cell viability, cell membrane blebbing, and rupture, as well as increased levels of pyroptosis-related proteins and pro-inflammatory cytokines. Again, silencing GSDME significantly inhibited pyroptosis and suppressed the migration, invasion, and secretion of pro-inflammatory cytokines in RA-FLSs. Furthermore, we also found that the nuclear factor-kappa B (NF-κB) pathway, serving as an upstream mechanism, was involved in FLS pyroptosis. In conclusion, our investigation indicated that NETs could induce RA-FLS pyroptosis and facilitate phenotypic transformation through targeting the NF-κB/caspase 3/GSDME axis. This is the first to explore the crucial role of NETs-induced FLS pyroptosis in the progression of RA, providing novel targets for the clinical management of refractory RA.


Arthritis, Rheumatoid , Caspase 3 , Extracellular Traps , NF-kappa B , Pyroptosis , Synoviocytes , Arthritis, Rheumatoid/pathology , Arthritis, Rheumatoid/metabolism , Humans , Extracellular Traps/metabolism , Pyroptosis/physiology , Synoviocytes/metabolism , Synoviocytes/pathology , NF-kappa B/metabolism , Caspase 3/metabolism , Fibroblasts/metabolism , Fibroblasts/pathology , Signal Transduction , Neutrophils/metabolism , Cells, Cultured , Male , Female , Gasdermins
20.
Insights Imaging ; 14(1): 223, 2023 Dec 21.
Article En | MEDLINE | ID: mdl-38129708

OBJECTIVE: This study aims to compare the feasibility and effectiveness of automatic deep learning network and radiomics models in differentiating low tumor stroma ratio (TSR) from high TSR in pancreatic ductal adenocarcinoma (PDAC). METHODS: A retrospective analysis was conducted on a total of 207 PDAC patients from three centers (training cohort: n = 160; test cohort: n = 47). TSR was assessed on hematoxylin and eosin-stained specimens by experienced pathologists and divided as low TSR and high TSR. Deep learning and radiomics models were developed including ShuffulNetV2, Xception, MobileNetV3, ResNet18, support vector machine (SVM), k-nearest neighbor (KNN), random forest (RF), and logistic regression (LR). Additionally, the clinical models were constructed through univariate and multivariate logistic regression. Kaplan-Meier survival analysis and log-rank tests were conducted to compare the overall survival time between different TSR groups. RESULTS: To differentiate low TSR from high TSR, the deep learning models based on ShuffulNetV2, Xception, MobileNetV3, and ResNet18 achieved AUCs of 0.846, 0.924, 0.930, and 0.941, respectively, outperforming the radiomics models based on SVM, KNN, RF, and LR with AUCs of 0.739, 0.717, 0.763, and 0.756, respectively. Resnet 18 achieved the best predictive performance. The clinical model based on T stage alone performed worse than deep learning models and radiomics models. The survival analysis based on 142 of the 207 patients demonstrated that patients with low TSR had longer overall survival. CONCLUSIONS: Deep learning models demonstrate feasibility and superiority over radiomics in differentiating TSR in PDAC. The tumor stroma ratio in the PDAC microenvironment plays a significant role in determining prognosis. CRITICAL RELEVANCE STATEMENT: The objective was to compare the feasibility and effectiveness of automatic deep learning networks and radiomics models in identifying the tumor-stroma ratio in pancreatic ductal adenocarcinoma. Our findings demonstrate deep learning models exhibited superior performance compared to traditional radiomics models. KEY POINTS: • Deep learning demonstrates better performance than radiomics in differentiating tumor-stroma ratio in pancreatic ductal adenocarcinoma. • The tumor-stroma ratio in the pancreatic ductal adenocarcinoma microenvironment plays a protective role in prognosis. • Preoperative prediction of tumor-stroma ratio contributes to clinical decision-making and guiding precise medicine.

...