Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
RSC Adv ; 14(2): 1501-1512, 2024 Jan 02.
Article in English | MEDLINE | ID: mdl-38178810

ABSTRACT

Photocatalysis is widely acknowledged as an efficient and environmentally friendly method for treating dye-contaminated wastewater. However, the utilization of powdered photocatalysts presents significant challenges, including issues related to recyclability and the potential for secondary pollution. Herein, a novel technique based on 3D printing for the synthesizing of iron oxide (Fe2O3) involving chlorella was presented. Initially, chlorella powders were immobilized within acrylonitrile butadiene styrene (ABS) and thermoplastic polyurethane (TPU) substrate plastics using melt extrusion technology. Subsequently, these composite materials were transformed into ABS/TPU/chlorella skeletons (ATCh40), through fused deposition molding (FDM) technology. The integration of Fe2O3 onto the ATCh40 (ATCh40-Fe2O3) skeletons was accomplished by subjecting them to controlled heating in an oil bath. A comprehensive characterization of the synthesized materials confirms the successful growth of Fe2O3 on the surface of 3D skeletons. This strategy effectively addresses the immobilization challenges associated with powdered photocatalysts. In photocatalytic degradation experiments targeting methyl orange (MO), the ATCh40-Fe2O3 skeletons exhibited a remarkable MO removal rate of 91% within 240 min. Under conditions where the pH of MO solution was maintained at 3, and the ATCh40-Fe2O3 skeletons were subjected to a heat treatment in a 150 °C blast drying oven for 2 hours, the degradation rate of MO remained substantial, achieving 90% removal after 6 cycles. In contrast, when the same synthetic procedure was applied to ABS/TPU (AT) skeletons, the resulting product was identified as α-FeOOH. The MO removal rate by the AT-α-FeOOH skeletons was considerably lower, reaching only 49% after 240 min. This research provided a practical approach for the construction of photocatalytic devices through the use of 3D printing technology.

2.
J Med Chem ; 55(5): 2185-95, 2012 Mar 08.
Article in English | MEDLINE | ID: mdl-22339047

ABSTRACT

A range of fluorinated 3-hydroxypyridin-4-ones has been synthesized where fluorine or fluorinated substituent was attached at 2- or 5- position of the pyridine ring in order to improve chemical and biological properties of 3-hydroxypyridin-4-ones. The synthetic route is different from conventional counterparts where a functional group is introduced to a preformed 3-hydroxypyridin-4-one ring. Herein, we introduce a novel method which starts with a fluorine containing precursor and the two hydroxyl groups at 3- and 4- positions of the pyridine ring are introduced at a later stage. The pK(a) values of the free ligands and the affinity constants of their iron complexes demonstrate that the presence of fluorine dramatically alters the values. The distribution coefficient values of the free ligands and corresponding iron(III) complexes between 1-octanol and MOPS buffer (pH 7.4) are also influenced. Glucuronidation and oxidation studies of selected fluorinated 3-hydroxypyridin-4-ones demonstrate that some such fluorinated compounds have clear advantage over deferiprone in that they are metabolized more slowly. Blood-brain barrier permeability studies indicated that although lipophilicity influences the permeability it is not the only factor. Two of the selected seven fluorinated 3-hydroxypyridin-4-ones have improved brain distribution when compared with deferiprone.


Subject(s)
Brain/metabolism , Coordination Complexes/chemical synthesis , Ferrous Compounds/chemical synthesis , Fluorine , Iron Chelating Agents/chemical synthesis , Pyridones/chemical synthesis , Animals , Blood-Brain Barrier/metabolism , Coordination Complexes/chemistry , Coordination Complexes/pharmacokinetics , Cytochrome P-450 Enzyme System/metabolism , Deferiprone , Ferrous Compounds/chemistry , Ferrous Compounds/pharmacokinetics , Glucuronides/metabolism , Guinea Pigs , Hydrogen-Ion Concentration , In Vitro Techniques , Iron Chelating Agents/chemistry , Iron Chelating Agents/pharmacokinetics , Microsomes, Liver/metabolism , Oxidation-Reduction , Permeability , Pyridones/chemistry , Pyridones/pharmacokinetics , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL