Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 801
1.
Int J Biol Macromol ; : 132485, 2024 May 23.
Article En | MEDLINE | ID: mdl-38821794

The study investigated the impacts of repeated (RDH) and continuous dry heat (CDH) treatments on the physicochemical, structural, and in vitro digestion properties of chickpea starch. The results of SEM and CLSM showed that more fissures and holes appeared on the surface of granules as the treated time of CDH and the circles of RDH increased, both of which made the starch sample much easier to break down by digestive enzymes. Moreover, the fissures and holes of starch granules treated by CDH were more obvious than those of RDH. The XRD and FT-IR results suggested that the crystal type remained C-type, and the relative crystallinity and R1047/1022 of the chickpea starch decreased after dry heat treatments. In addition, a marked decline in the pasting viscosity and gelatinization temperature of chickpea starches was found with dry heat treatments. Moreover, the increased enzyme accessibility of starch was fitted as suggested by the increased RDS content and digestion rate. This study provided basic data for the rational design of chickpea starch-based foods with nutritional functions.

2.
Front Microbiol ; 15: 1374618, 2024.
Article En | MEDLINE | ID: mdl-38774509

Ammonia oxidation is the rate-limiting step in nitrification and the key step in the nitrogen (N) cycle. Most soil nutrients and biological indicators are extremely sensitive to irrigation systems, from the perspective of improving soil fertility and soil ecological environment, the evaluation of different irrigation systems and suitability of selection, promote crop production and soil quality, study the influence of the soil microenvironment contribute to accurate evaluation of irrigation farmland soil health. Based on the amoA gene, the abundance and community diversity of ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB) and their responses to soil physicochemical factors and enzyme activities were studied in semi-arid areas of Northeast China. The study consisted of three irrigation systems: flood irrigation (FP), shallow buried drip irrigation (DI), and mulched drip irrigation (MF). The results showed that DI and MF significantly increased the contents of alkaline hydrolyzed nitrogen (AN), nitrate nitrogen (NO3--N), soil moisture, and the activities of ammonia monooxygenase (AMO) and hydroxylamine oxidase (HAO). Compared with FP, DI significantly increased the abundance of soil AOA and AOB, while MF significantly increased the abundance of soil AOB. Irrigation systems significantly affected the community composition of ammonia-oxidizing microorganisms (AOM). Also, AN and soil moisture had the greatest influence on the community composition of AOA and AOB, respectively. The AOB community had better stability and stress resistance. Moreover, the symbiotic network of AOB in the three irrigation systems was more complex than that of AOA. Compared with FP, the AOA community under treatment DI had higher complexity and stability, maintaining the versatility and sustainability of the ecosystem, while the AOB community under treatment MF had higher transfer efficiency in terms of matter and energy. In conclusion, DI and MF were more conducive to the propagation of soil AOM in the semi-arid area of Northeast China, which can provide a scientific basis for rational irrigation and N regulation from the perspective of microbiology.

3.
Plants (Basel) ; 13(9)2024 Apr 23.
Article En | MEDLINE | ID: mdl-38732392

The analysis of plant phenotype parameters is closely related to breeding, so plant phenotype research has strong practical significance. This paper used deep learning to classify Arabidopsis thaliana from the macro (plant) to the micro level (organelle). First, the multi-output model identifies Arabidopsis accession lines and regression to predict Arabidopsis's 22-day growth status. The experimental results showed that the model had excellent performance in identifying Arabidopsis lines, and the model's classification accuracy was 99.92%. The model also had good performance in predicting plant growth status, and the regression prediction of the model root mean square error (RMSE) was 1.536. Next, a new dataset was obtained by increasing the time interval of Arabidopsis images, and the model's performance was verified at different time intervals. Finally, the model was applied to classify Arabidopsis organelles to verify the model's generalizability. Research suggested that deep learning will broaden plant phenotype detection methods. Furthermore, this method will facilitate the design and development of a high-throughput information collection platform for plant phenotypes.

4.
Nanomaterials (Basel) ; 14(9)2024 May 06.
Article En | MEDLINE | ID: mdl-38727403

With the rapid development of anion exchange membrane technology and the availability of high-performance non-noble metal cathode catalysts in alkaline media, the commercialization of anion exchange membrane fuel cells has become feasible. Currently, anode materials for alkaline anion-exchange membrane fuel cells still rely on platinum-based catalysts, posing a challenge to the development of efficient low-Pt or Pt-free catalysts. Low-cost ruthenium-based anodes are being considered as alternatives to platinum. However, they still suffer from stability issues and strong oxophilicity. Here, we employ a metal-organic framework compound as a template to construct three-dimensional porous ruthenium-tungsten-zinc nanocages via solvothermal and high-temperature pyrolysis methods. The experimental results demonstrate that this porous ruthenium-tungsten-zinc nanocage with an electrochemical surface area of 116 m2 g-1 exhibits excellent catalytic activity for hydrogen oxidation reaction in alkali, with a kinetic density 1.82 times and a mass activity 8.18 times higher than that of commercial Pt/C, and a good catalytic stability, showing no obvious degradation of the current density after continuous operation for 10,000 s. These findings suggest that the developed catalyst holds promise for use in alkaline anion-exchange membrane fuel cells.

5.
Bioorg Chem ; 147: 107420, 2024 Jun.
Article En | MEDLINE | ID: mdl-38718461

Phytochemical analysis of Chloranthus henryi var. hupehensis roots led to the identification of a new eudesmane sesquiterpenoid dimer, 18 new sesquiterpenoids, and three known sesquiterpenoids. Among the isolates, 1 was a rare sesquiterpenoid dimer that is assembled by a unique oxygen bridge (C11-O-C8') of two highly rearranged eudesmane-type sesquiterpenes with the undescribed C16 carbon framework. (+)-2 and (-)-2 were a pair of new skeleton dinorsesquiterpenoids with a remarkable 6/6/5 tricyclic ring framework including one γ-lactone ring and the bicyclo[3.3.1]nonane core. Their structures were elucidated using spectroscopic data, single-crystal X-ray diffraction analysis, and quantum chemical computations. In the LPS-induced BV-2 microglial cell model, 17 suppressed IL-1ß and TNF-α expression with EC50 values of 6.81 and 2.76 µM, respectively, indicating its excellent efficacy in inhibiting inflammatory factors production in a dose dependent manner and without cytotoxicity. In subsequent mechanism studies, compounds 3, 16, and 17 could reduce IL-1ß and TNF-α production by inhibiting IKBα/p65 pathway activation.


Dose-Response Relationship, Drug , Plant Roots , Sesquiterpenes , Signal Transduction , Sesquiterpenes/pharmacology , Sesquiterpenes/chemistry , Sesquiterpenes/isolation & purification , Plant Roots/chemistry , Signal Transduction/drug effects , Molecular Structure , Mice , Animals , Structure-Activity Relationship , Transcription Factor RelA/metabolism , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Anti-Inflammatory Agents, Non-Steroidal/chemistry , Anti-Inflammatory Agents, Non-Steroidal/isolation & purification , Lipopolysaccharides/antagonists & inhibitors , Lipopolysaccharides/pharmacology , Drug Discovery , NF-KappaB Inhibitor alpha/metabolism , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/isolation & purification
7.
Adv Sci (Weinh) ; : e2309257, 2024 May 05.
Article En | MEDLINE | ID: mdl-38704697

The urgent demand for addressing dye contaminants in water necessitates the development of microrobots that exhibit remote navigation, rapid removal, and molecular identification capabilities. The progress of microrobot development is currently hindered by the scarcity of multifunctional materials. In this study, a plasmonic MXene hydrogel (PM-Gel) is synthesized by combining bimetallic nanocubes and Ti3C2Tx MXene through the rapid gelation of degradable alginate. The hydrogel can efficiently adsorb over 60% of dye contaminants within 2 min, ultimately achieving a removal rate of >90%. Meanwhile, the hydrogel exhibits excellent sensitivity in surface enhanced Raman scattering (SERS) detection, with a limit of detection (LOD) as low as 3.76 am. The properties of the plasmonic hydrogel can be further adjusted for various applications. As a proof-of-concept experiment, thermosensitive polymers and superparamagnetic particles are successfully integrated into this hydrogel to construct a versatile, light-responsive microrobot for dye contaminants. With magnetic and optical actuation, the robot can remotely sample, identify, and remove pollutants in maze-like channels. Moreover, light-driven hydrophilic-hydrophobic switch of the microrobots through photothermal effect can further enhance the adsorption capacity and reduced the dye residue by up to 58%. These findings indicate of a broad application potential in complex real-world environments.

8.
Food Chem ; 453: 139689, 2024 May 17.
Article En | MEDLINE | ID: mdl-38781902

In this study, based on the discovery of thymol/glycerol monolaurate (GML) eutectic solvent, we studied the effect of GML as a multi-functional component (ripening inhibitor and antibacterial agent) on the formation, stability and antibacterial activity of eutectic nanoemulsions, and investigated the preservation of nanoemulsion in fresh pork. These results indicated that the formation of eutectic solvent was due to the hydrogen bonding between thymol and GML in the molten state. And eutectic nanoemulsions prepared with medium GML concentrations (20%, 40%, and 60%) of eutectic solvents as oil phases had small droplet diameters (<150 nm), exhibited sustained-release characteristics, and had excellent physicochemical stability. Moreover, the addition of GML enhanced the antibacterial activity of thymol nanoemulsion against S. aureus. as seen by their ability to inhibit affect formation more effectively. Treatment of fresh pork with optimized eutectic nanoemulsions (40% thymol/60% GML) extended its shelf life during refrigeration, which was mainly attributed to the ability of the encapsulated essential oil to inhibit microbial growth and lipid oxidation. These results provide a novel strategy to control Ostwald ripening and maintain the high antibacterial activity of thymol in nanoemulsion-based delivery systems.

9.
Postgrad Med ; : 1-12, 2024 May 27.
Article En | MEDLINE | ID: mdl-38782760

BACKGROUND AND AIM: Patients with inflammatory bowel disease (IBD) often have the condition of malnutrition, which can be presented as sarcopenia, micronutrient deficiencies, etc. Trace elements (magnesium, calcium, iron, copper, zinc, plumbum and manganese) belonging to micronutrients, are greatly vital for the assessment of nutritional status in humans. Trace element deficiencies are also the main manifestation of malnutrition. Calcium (Ca) has been proved to play an important part in maintaining body homeostasis and regulating cellular function. However, there are still a lack of studies on the association between malnutrition and Ca deficiency in IBD. This research aimed to investigate the role of Ca for malnutrition in IBD patients. METHODS: We prospectively collected blood samples from 149 patients and utilized inductively coupled plasma mass spectrometry to examine their venous serum trace element concentrations. Logistic regression analyses were used to investigate the association between Ca and malnutrition. Receiver operating characteristic (ROC) curves were generated to calculate the cutoffs for determination of Ca deficiency. RESULTS: Except Ca, the concentrations of the other six trace elements presented no statistical significance between non-malnutrition and malnutrition group. In comparison with the non-malnutrition group, the serum concentration of Ca decreased in the malnutrition group (89.36 vs 87.03 mg/L, p = 0.023). With regard to ROC curve, Ca < 87.21 mg/L showed the best discriminative capability with an area of 0.624 (95% CI: 0.520, 0.727, p = 0.023). Multivariate analyses demonstrated that Ca < 87.21 mg/L (OR = 3.393, 95% CI: 1.524, 7.554, p = 0.003) and age (OR = 0.958, 95% CI: 0.926, 0.990, p = 0.011) were associated with malnutrition risk. Serum Ca levels were significantly lower in the malnutrition group than those in the non-malnutrition group among UC patients, those with severe disease state or the female group. CONCLUSIONS: In patients with IBD, Ca deficiency is an independent factor for high malnutrition risk.

10.
Technol Cancer Res Treat ; 23: 15330338241255585, 2024.
Article En | MEDLINE | ID: mdl-38780486

OBJECTIVES: Prostate cancer (PRAD) is a highly malignant disease with poor prognosis, and its development is regulated by a complex network of genes and signaling pathways. LncRNAs and miRNAs have significant regulatory roles in PRAD through the ceRNA network. Cuproptosis is a unique form of programmed cell death that is involved in various signaling pathways and biological processes related to tumor development. Nuclear factor of activated T cells 5 (NFAT5), a transcription factor that activates T cells, has been implicated in cuproptosis. However, the regulatory mechanism by which NFAT5 is involved in the ceRNA network in PRAD remains unclear. METHODS: Through bioinformatics analysis, we found the ceRNA axis that regulates cuproptosis. By performing ROS assay and copper ion concentration assay, we demonstrated that inhibiting NFAT5 can increase the sensitivity of PRAD to cuproptosis inducers. By using luciferase assay, we discovered that AP000842.3 acts as the ceRNA of miR-206 to regulate the expression of NFAT5. RESULTS: In this study, we found that lncRNA AP000842.3, as a ceRNA of miR-206, was involved in the regulation of levels of the transcription factor NFAT5 associated with cuproptosis in PRAD. First, knocking down NFAT5 can increase the sensitivity of PRAD to cuproptosis inducers. Meanwhile, changes in the expression of AP000842.3 and miR-206 could affect the proliferation of PRAD by regulating NFAT5. Mechanistically, AP000842.3 acts as the ceRNA of miR-206 to regulate the expression of NFAT5. In addition, the effects of lncRNA AP000842.3 on malignant progression of PRAD and NFAT5 were partially dependent on miR-206. CONCLUSION: Taken together, our study reveals a key ceRNA regulatory network in PRAD and can be regarded as a new potential target for PRAD diagnosis and treatment.


Disease Progression , Gene Expression Regulation, Neoplastic , MicroRNAs , Prostatic Neoplasms , RNA, Long Noncoding , Transcription Factors , Humans , Prostatic Neoplasms/genetics , Prostatic Neoplasms/pathology , Prostatic Neoplasms/metabolism , RNA, Long Noncoding/genetics , Male , MicroRNAs/genetics , Cell Line, Tumor , Transcription Factors/genetics , Transcription Factors/metabolism , Mice , Cell Proliferation , Animals , Computational Biology/methods , Gene Regulatory Networks
11.
J Am Chem Soc ; 146(20): 14287-14296, 2024 May 22.
Article En | MEDLINE | ID: mdl-38718348

PEDOT: PSS has been widely used as a hole extraction layer (HEL) in organic solar cells (OSCs). However, their acidic nature can potentially corrode the indium tin oxide (ITO) electrode over time, leading to adverse effects on the longevity of the OSCs. Herein, we have developed a class of biphosphonic acid molecules with tunable dipole moments for self-assembled monolayers (SAMs), namely, 3-BPIC(i), 3-BPIC, and 3-BPIC-F, which exhibit an increasing dipole moment in sequence. Compared to centrosymmetric 3-BPIC(i), the axisymmetric 3-BPIC and 3-BPIC-F exhibit higher adsorption energies (Eads) with ITO, shorter interface spacing, more uniform coverage on ITO surface, and better interfacial compatibility with the active layer. Thanks to the incorporation of fluorine atoms, 3-BPIC-F exhibits a deeper highest occupied molecular orbital (HOMO) energy level and a larger dipole moment compared to 3-BPIC, resulting in an enlarged work function (WF) for the ITO/3-BPIC-F substrate. These advantages of 3-BPIC-F could not only improve hole extraction within the device but also lower the interfacial impedance and reduce nonradiative recombination at the interface. As a result, the OSCs using SAM based on 3-BPIC-F obtained a record high efficiency of 19.71%, which is higher than that achieved from the cells based on 3-BPIC(i) (13.54%) and 3-BPIC (19.34%). Importantly, 3-BPIC-F-based OSCs exhibit significantly enhanced stability compared to that utilizing PEDOT:PSS as HEL. Our work offers guidance for the future design of functional molecules for SAMs to realize even higher performance in organic solar cells.

12.
Sci Rep ; 14(1): 11854, 2024 05 24.
Article En | MEDLINE | ID: mdl-38789571

To evaluate the predictive and prognostic value of fibroblast growth factor 21 (FGF21) levels in retinal artery occlusion (RAO) patients. In this case-control study, serum FGF21 levels were detected by using the ELISA method. Multivariable logistic regression analyses were performed to evaluate the significance of FGF21 in assessing the risk of developing RAO and its impact on vision and concurrent ischemic stroke. Compared with control group, serum FGF21 levels were significantly higher (median [IQR] = 230.90[167.40,332.20] pg/ml) in RAO patients. Multivariate logistic regression analysis showed that elevated serum FGF21 levels were associated with a higher risk of RAO occurrence (P = 0.025, OR [95%CI] = 9.672 [2.573, 36.359]) after adjustment for multiple confounding factors. Higher serum FGF21 levels were negatively associated with visual acuity improvement (P = 0.029, OR [95%CI] = 0.466[0.235, 0.925]) and positively correlated with concurrent ischemic stroke (P = 0.04, OR [95% CI] = 1.944[1.029, 3.672]) in RAO patients. Elevated serum FGF21 levels could promote the development of RAO and indicate worse visual prognosis and increase the risk of concurrent ischemic stroke, which might help clinicians early diagnose and treat RAO patients.


Biomarkers , Fibroblast Growth Factors , Retinal Artery Occlusion , Humans , Retinal Artery Occlusion/blood , Retinal Artery Occlusion/diagnosis , Fibroblast Growth Factors/blood , Male , Female , Biomarkers/blood , Middle Aged , Prognosis , Case-Control Studies , Aged , Risk Factors
13.
Ying Yong Sheng Tai Xue Bao ; 35(3): 858-866, 2024 Mar 18.
Article En | MEDLINE | ID: mdl-38646774

Insect visual electrophysiological techniques are important to study the electrical characteristics of photoreceptor cells and visual neurons in insects, including electroretinography (ERG) and microelectrode intracellular recording (MIR). ERG records the changes of voltage or electric current in the retina of insects in response to different light stimuli, which occurs outside the cell. MIR records the changes in individual photoreceptor cells or visual neurons of an insect exposed to different lights, which occurs inside the cell. Insect visual electrophysiological techniques can explore the mechanism of electrophysiological response of insects' vision to light and reveal their sensitive light spectra and photoreceptor types. This review introduced the basic structure and the principle of ERG and MIR, and summarized their applications in insect researches in the past 20 years, which would provide references for elucidating the mechanism of light perception in insects and the use of insect phototropism to control pests.


Electroretinography , Insecta , Photoreceptor Cells, Invertebrate , Animals , Insecta/physiology , Electroretinography/methods , Photoreceptor Cells, Invertebrate/physiology , Vision, Ocular/physiology , Microelectrodes , Electrophysiological Phenomena , Electrophysiology/methods
14.
Sci Data ; 11(1): 430, 2024 Apr 25.
Article En | MEDLINE | ID: mdl-38664437

Prorocentrum shikokuense (formerly P. donghaiense) is a pivotal dinoflagellate species associating with the HABs in the East China Sea. The complexity of its large nuclear genome hindered us from understanding its genomic characteristics. Full-length transcriptome sequencing offers a practical solution to decipher the physiological mechanisms of a species without the reference genome. In this study, we employed single-molecule real-time (SMRT) sequencing technology to sequence the full-length transcriptome of Prorocentrum shikokuense. We successfully generated 41.73 Gb of clean SMRT sequencing reads and isolated 105,249 non-redundant full-length non-chimeric reads. Our trial has led to the identification of 11,917 long non-coding RNA transcripts, 514 alternative splicing events, 437 putative transcription factor genes from 17 TF gene families, and 34,723 simple sequence repeats. Additionally, a total of 78,265 open reading frames were identified, of them 15,501 were the protein coding sequences. This dataset is valuable for annotating P. shikokuense genome, and will contribute significantly to the in-depth studies on the molecular mechanisms underlining the dinoflagellate bloom formation.


Dinoflagellida , Transcriptome , Alternative Splicing , China , Dinoflagellida/genetics , Gene Expression Profiling , Open Reading Frames , Transcription Factors/genetics , Eutrophication
15.
Chemosphere ; 358: 142177, 2024 Jun.
Article En | MEDLINE | ID: mdl-38679182

Tris(1-chloro-2-propyl) phosphate (TCPP) and tris(2-butoxyethyl) phosphate (TBEP) as pollutants of emerging concern have aroused the rising attention due to their potential risks on aquatic ecosystem and public health. Nevertheless, there is a lack of toxicological mechanisms exploration of TCPP and TBEP at molecular levels. Herein, the toxicity effects and molecular mechanism of them were fully researched and summarized on Escherichia coli (E.coli). Acute exposure to them significantly activated antioxidant defense system and caused lipid peroxidation, as proved by the changes of antioxidant enzymes and MDA. The ROS overload resulted in the drop of membrane potential as well as the downregulated synthesis of ATPase, endorsing that E. coli cytotoxicity was ascribed to oxidative stress damage induced by TCPP and TBEP. The combination of GC-MS and LC-MS based metabolomics validated that TCPP and TBEP induced metabolic reprogramming in E.coli. More specifically, the responsive metabolites in carbohydrate metabolism, lipids metabolism, nucleotide metabolism, amino acid metabolism, and organic acids metabolism were significantly disturbed by TCPP and TBEP, confirming the negative effects on metabolic functions and key bioprocesses. Additionally, several biomarkers including PE(16:1(5Z)/15:0), PA(17:1(9Z)/18:2(9Z,12Z)), PE(19:1(9Z)/0:0), and LysoPE(0:0/18:1(11Z)) were remarkably upregulated, verifying that the protection of cellular membrane was conducted by regulating the expression of lipids-associated metabolites. Collectively, this work sheds new light on the potential molecular toxicity mechanism of TCPP and TBEP on aquatic organisms, and these findings using GC-MS and LC-MS metabolomics generate a fresh insight into assessing the effects of OPFRs on target and non-target aquatic organisms.


Biomarkers , Escherichia coli , Gas Chromatography-Mass Spectrometry , Metabolomics , Oxidative Stress , Escherichia coli/drug effects , Biomarkers/metabolism , Oxidative Stress/drug effects , Chromatography, Liquid , Water Pollutants, Chemical/toxicity , Organophosphorus Compounds/toxicity , Lipid Peroxidation/drug effects , Organophosphates/toxicity , Liquid Chromatography-Mass Spectrometry
17.
Plant Physiol Biochem ; 210: 108615, 2024 May.
Article En | MEDLINE | ID: mdl-38631158

Magnesium is one of the essential nutrients for plant growth, and plays a pivotal role in plant development and metabolism. Soil magnesium deficiency is evident in citrus production, which ultimately leads to failure of normal plant growth and development, as well as decreased productivity. Citrus is mainly propagated by grafting, so it is necessary to fully understand the different regulatory mechanisms of rootstock and scion response to magnesium deficiency. Here, we characterized the differences in morphological alterations, physiological metabolism and differential gene expression between trifoliate orange rootstocks and lemon scions under normal and magnesium-deficient conditions, revealing the different responses of rootstocks and scions to magnesium deficiency. The transcriptomic data showed that differentially expressed genes were enriched in 14 and 4 metabolic pathways in leaves and roots, respectively, after magnesium deficiency treatment. And the magnesium transport-related genes MHX and MRS2 may respond to magnesium deficiency stress. In addition, magnesium deficiency may affect plant growth by affecting POD, SOD, and CAT enzyme activity, as well as altering the levels of hormones such as IAA, ABA, GA3, JA, and SA, and the expression of related responsive genes. In conclusion, our research suggests that the leaves of lemon grafted onto trifoliate orange were more significantly affected than the roots under magnesium-deficient conditions, further indicating that the metabolic imbalance of scion lemon leaves was more severe.


Citrus , Gene Expression Regulation, Plant , Magnesium , Seedlings , Citrus/metabolism , Citrus/genetics , Seedlings/metabolism , Seedlings/genetics , Seedlings/growth & development , Magnesium/metabolism , Plant Roots/metabolism , Plant Roots/growth & development , Plant Roots/genetics , Magnesium Deficiency/metabolism , Plant Leaves/metabolism , Stress, Physiological , Plant Growth Regulators/metabolism , Plant Proteins/metabolism , Plant Proteins/genetics
18.
ACS Appl Mater Interfaces ; 16(17): 21857-21867, 2024 May 01.
Article En | MEDLINE | ID: mdl-38635974

Aqueous zinc-ion batteries are emerging as promising sustainable energy-storage devices. However, their cyclic stability is still a great challenge due to the inevitable parasitic reaction and dendrite growth induced by water. Herein, a cosolvent strategy based on competitive effect is proposed to address the aforementioned challenges. Ethanol with a higher Gutmann donor number demonstrates lower polarity and better wettability on the Zn surface compared with water, which endows ethanol with the ability of minimizing water activity by weakening H bonds and preferentially adsorbing on the Zn electrode. The above competitive advantages synergistically contribute to inhibiting the decomposition of free water and dendrite growth. Besides, an organic-inorganic hybrid solid-electrolyte interphase layer is in situ built based on ethanol additives, where organic matrix suppresses water corrosion while inorganic fillers promote fast Zn2+ diffusion. Consequently, the electrolyte with ethanol additives boosts a high reversibility of Zn deposition, long-term durability, as well as superior Zn2+ diffusibility in both Zn half-cells (Zn||Cu and Zn||Zn batteries) and Zn full cells (Zn||PTCDA and Zn||VO2 batteries). This work sheds light on a universal strategy to design a high-reversible and dendrite-free Zn anode for stable aqueous batteries.

19.
Appl Opt ; 63(7): 1737-1743, 2024 Mar 01.
Article En | MEDLINE | ID: mdl-38437275

In this paper, we investigate a 1018 nm gain-switched ytterbium-doped fiber oscillator at a low repetition rate in terms of theory and experiment. Theoretically, a numerical model applicable to a 1018 nm gain-switched ytterbium-doped fiber laser was established. The influence of the pump peak power and active fiber lengths on the 1018 nm gain-switched ytterbium-doped fiber laser was numerically simulated. Experimentally, a compact 1018 nm all-fiber-structured pulsed laser oscillator is constructed, in which a pulse width of 110 ns and a single-pulse energy of 0.1 mJ were obtained. Moreover, the experimental results are in agreement with the numerical simulation ones. To the best of our knowledge, this is the first time that gain-switching technology has been applied to 1018 nm fiber lasers to generate nanosecond pulsed lasers. The model and experimental results can provide a reference for the engineering design of the same type of low repetition rate fiber lasers below the kilohertz level.

20.
Mol Neurobiol ; 2024 Mar 08.
Article En | MEDLINE | ID: mdl-38459364

Central retinal artery occlusion (CRAO) is a kind of ophthalmic emergency which may cause loss of functional visual acuity. However, the limited treatment options emphasize the significance of early disease prevention. Metabolomics has the potential to be a powerful tool for early identification of individuals at risk of CRAO. The aim of the study was to identify potential biomarkers for CRAO through a comprehensive analysis. We employed metabolomics analysis to compare venous blood samples from CRAO patients with cataract patients for the venous difference, as well as arterial and venous blood from CRAO patients for the arteriovenous difference. The analysis of metabolites showed that PC(P-18:0/22:6(4Z,7Z,10Z,13Z,16Z,19Z)), PC(P-18:0/20:4(5Z,8Z,11Z,14Z)) and octanoylcarnitine were strongly correlated with CRAO. We also used univariate logistic regression, random forest (RF), and support vector machine (SVM) to screen clinical parameters of patients and found that HDL-C and ApoA1 showed significant predictive efficacy in CRAO patients. We compared the predictive performance of the clinical parameter model with combined model. The prediction efficiency of the combined model was significantly better with area under the receiver operating characteristic curve (AUROC) of 0.815. Decision curve analysis (DCA) also exhibited a notably higher net benefit rate. These results underscored the potency of these three substances as robust predictors of CRAO occurrence.

...