Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 52
1.
J Nat Prod ; 86(6): 1437-1448, 2023 06 23.
Article En | MEDLINE | ID: mdl-37200063

Seven previously undescribed diterpenoids, tinocrisposides A-D (1-4) and borapetic acids A (5), B (6), and C (7), together with 16 known compounds, were isolated from the stem of Tinospora crispa (Menispermaceae). The structures of the new isolates were elucidated by spectroscopic and chemical methods. The ß-cell protective effect of the tested compounds was examined on insulin-secreting BRIN-BD11 cells under dexamethasone treatment. Diterpene glycosides 12, 14-16, and 18 presented a substantial protective effect on BRIN-BD11 cells treated with dexamethasone in a dose-dependent manner. Compounds 4 and 17 with two sugar moieties exhibited clear protective effects on ß-cells.


Diterpenes , Tinospora , Glycosides/pharmacology , Glycosides/chemistry , Tinospora/chemistry , Diterpenes/pharmacology , Dexamethasone
2.
Viruses ; 15(3)2023 02 27.
Article En | MEDLINE | ID: mdl-36992350

The outbreak of coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) poses a serious threat to global public health. In an effort to develop novel anti-coronavirus therapeutics and achieve prophylactics, we used gene set enrichment analysis (GSEA) for drug screening and identified that Astragalus polysaccharide (PG2), a mixture of polysaccharides purified from Astragalus membranaceus, could effectively reverse COVID-19 signature genes. Further biological assays revealed that PG2 could prevent the fusion of BHK21-expressing wild-type (WT) viral spike (S) protein and Calu-3-expressing ACE2. Additionally, it specifically prevents the binding of recombinant viral S of WT, alpha, and beta strains to ACE2 receptor in our non-cell-based system. In addition, PG2 enhances let-7a, miR-146a, and miR-148b expression levels in the lung epithelial cells. These findings speculate that PG2 has the potential to reduce viral replication in lung and cytokine storm via these PG2-induced miRNAs. Furthermore, macrophage activation is one of the primary issues leading to the complicated condition of COVID-19 patients, and our results revealed that PG2 could regulate the activation of macrophages by promoting the polarization of THP-1-derived macrophages into an anti-inflammatory phenotype. In this study, PG2 stimulated M2 macrophage activation and increased the expression levels of anti-inflammatory cytokines IL-10 and IL-1RN. Additionally, PG2 was recently used to treat patients with severe COVID-19 symptoms by reducing the neutrophil-to-lymphocyte ratio (NLR). Therefore, our data suggest that PG2, a repurposed drug, possesses the potential to prevent WT SARS-CoV-2 S-mediated syncytia formation with the host cells; it also inhibits the binding of S proteins of WT, alpha, and beta strains to the recombinant ACE2 and halts severe COVID-19 development by regulating the polarization of macrophages to M2 cells.


Angiotensin-Converting Enzyme 2 , COVID-19 , Polysaccharides , Spike Glycoprotein, Coronavirus , Humans , Angiotensin-Converting Enzyme 2/metabolism , Anti-Inflammatory Agents/pharmacology , Drug Repositioning , MicroRNAs , Polysaccharides/pharmacology , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/metabolism , Astragalus propinquus/chemistry
3.
J Cell Biol ; 222(2)2023 02 06.
Article En | MEDLINE | ID: mdl-36445308

Insulin-stimulated translocation of glucose transporter 4 (GLUT4) to plasma membrane of skeletal muscle is critical for postprandial glucose uptake; however, whether the internalization of GLUT4 is also regulated by insulin signaling remains unclear. Here, we discover that the activity of dynamin-2 (Dyn2) in catalyzing GLUT4 endocytosis is negatively regulated by insulin signaling in muscle cells. Mechanistically, the fission activity of Dyn2 is inhibited by binding with the SH3 domain of Bin1. In the absence of insulin, GSK3α phosphorylates Dyn2 to relieve the inhibition of Bin1 and promotes endocytosis. Conversely, insulin signaling inactivates GSK3α and leads to attenuated GLUT4 internalization. Furthermore, the isoform-specific pharmacological inhibition of GSK3α significantly improves insulin sensitivity and glucose tolerance in diet-induced insulin-resistant mice. Together, we identify a new role of GSK3α in insulin-stimulated glucose disposal by regulating Dyn2-mediated GLUT4 endocytosis in muscle cells. These results highlight the isoform-specific function of GSK3α on membrane trafficking and its potential as a therapeutic target for metabolic disorders.


Dynamin II , Endocytosis , Glucose Transporter Type 4 , Glycogen Synthase Kinase 3 , Muscle Cells , Animals , Mice , Adaptor Proteins, Signal Transducing , Dynamin II/metabolism , Glucose , Glucose Transporter Type 4/metabolism , Glycogen Synthase Kinase 3/metabolism , Insulin , Insulin Resistance , Muscle Cells/metabolism
4.
J Food Drug Anal ; 31(4): 739-771, 2023 Dec 15.
Article En | MEDLINE | ID: mdl-38526826

Boehmeria formosana, with its related species, demonstrates anti-glycemic effect, inhibition of HBV production, anti-cancer activities, etc. Some indolizidine alkaloids from the same genus are bioactive but sensitive to light. To overcome this problem and obtain more phenanthroindolizidine alkaloids, isolation was performed in darkness, yielding 10 new indolizidine alkaloids and 17 known compounds. Among them, seven enhanced glucagon-like receptor 1 (GLP-1) activity at 50 mM, especially 14 and 6 (3.5- and 2.3-fold than the negative control). This procedure yielded bioactive indolizidine alkaloids with novel structures.


Alkaloids , Boehmeria , Indolizidines , Alkaloids/pharmacology
5.
Pharmaceuticals (Basel) ; 15(12)2022 Dec 12.
Article En | MEDLINE | ID: mdl-36558993

A phytochemical investigation of the leaves and twigs of Glycosmis pentaphylla (Rutaceae), collected in Vietnam, yielded three new compounds named glyfuran (1), glyphyllamide (2), and glyphyllazole (3), along with twenty-five known compounds (4-28). The structures of isolates were determined by IR, MS, NMR, and UV data analyses. In the anti-diabetic activity screening, (+)-isoaltholacton (4), glycoborinine (17), 2',4'-dihydroxy-4,6'-dimethoxychalcone (24), and flavokawain A (25) simultaneously exhibited inhibition of dipeptidyl peptidase-4 (DPP4) and stimulation of the glucagon-like peptide-1 (GLP-1) secretion on the murine intestinal secretin tumor cell line (STC-1).

6.
Food Funct ; 13(18): 9481-9495, 2022 Sep 22.
Article En | MEDLINE | ID: mdl-35993118

Obesity is a chronic disease that may lead to the development of metabolic diseases, cardiovascular diseases, and cancers and has been predicted to affect one billion adults by 2030. Owing to the pivotal role of the gut microbiota in health, including metabolism and energy homeostasis, dietary fiber, the primary energy resource for the gut microbiota, not only helps reduce appetite and short-term food intake but also modulates the structure of the gut microbiota. In this study, we investigated whether high-amylose maize (HAM), with a particular amount of dietary fiber, improves dysmetabolism and gut microbiota dysbiosis in diet-induced obese mice. Promisingly, the HAM dietary intervention not only reduced body weight gain, adipocyte hypertrophy, and dyslipidemia but also mitigated non-alcoholic fatty liver disease, insulin resistance, impaired glucose tolerance, and inflammation in the liver and epididymal white adipose tissues in high-fat diet (HFD)-fed obese mice. In addition, the HAM dietary intervention ameliorated gut microbiota dysbiosis in HFD-fed mice. Changes in families, genera, and species of gut biota that have a relative abundance of 0.01% in at least one group were scrutinized. At the species level, HAM dietary intervention increased Bifidobacterium pseudolongum, Bifidobacterium animalis, Bifidobacterium bifidum, and Lactobacillus paraplantarum and decreased Streptococcus agalactiae, Mucispirillum schaedleri, and Alistipes indistinctus. This change in the gut microbiota driven by the HAM diet was strongly associated with obesity-related indices, highlighting the nutraceutical potential of HAM for improving overall metabolic health. Taken together, this study demonstrates the potential of the HAM diet for mediating metabolic syndrome and gut microbiota dysbiosis.


Gastrointestinal Microbiome , Amylose , Animals , Diet, High-Fat/adverse effects , Dietary Fiber , Dysbiosis/microbiology , Mice , Mice, Inbred C57BL , Mice, Obese , Obesity/metabolism , Zea mays
7.
Front Pharmacol ; 13: 905197, 2022.
Article En | MEDLINE | ID: mdl-35860023

Coronavirus disease 2019 (COVID-19) remains a threat with the emergence of new variants, especially Delta and Omicron, without specific effective therapeutic drugs. The infection causes dysregulation of the immune system with a cytokine storm that eventually leads to fatal acute respiratory distress syndrome (ARDS) and further irreversible pulmonary fibrosis. Therefore, the promising way to inhibit infection is to disrupt the binding and fusion between the viral spike and the host ACE2 receptor. A transcriptome-based drug screening platform has been developed for COVID-19 to explore the possibility and potential of the long-established drugs or herbal medicines to reverse the unique genetic signature of COVID-19. In silico analysis showed that Virofree, an herbal medicine, reversed the genetic signature of COVID-19 and ARDS. Biochemical validations showed that Virofree could disrupt the binding of wild-type and Delta-variant spike proteins to ACE2 and its syncytial formation via cell-based pseudo-typed viral assays, as well as suppress binding between several variant recombinant spikes to ACE2, especially Delta and Omicron. Additionally, Virofree elevated miR-148b-5p levels, inhibited the main protease of SARS-CoV-2 (Mpro), and reduced LPS-induced TNF-α release. Virofree also prevented cellular iron accumulation leading to ferroptosis which occurs in SARS-CoV-2 patients. Furthermore, Virofree was able to reduce pulmonary fibrosis-related protein expression levels in vitro. In conclusion, Virofree was repurposed as a potential herbal medicine to combat COVID-19. This study highlights the inhibitory effect of Virofree on the entry of Delta and Omicron variants of SARS-CoV-2, which have not had any effective treatments during the emergence of the new variants spreading.

8.
Int J Mol Sci ; 23(7)2022 Apr 06.
Article En | MEDLINE | ID: mdl-35409415

Phytochemicals that interrupt adipocyte lifecycle can provide anti-obesity effects. 1,2,3,4,6-penta-O-galloyl-d-glucose (PGG) is a tannin with two isomers that occurs widely in plants and exhibits various pharmacological activities. The aim of the investigation is to comprehensively examine effects of PGG isomer(s) on adipocyte lifecycle and diet-induced obesity. Human mesenchymal stem cells (hMSC), 3T3-L1 fibroblasts, and H4IIE hepatoma cells were used to determine the effects of PGG isomers on cell viability and adipogenesis. Mice with diet-induced obesity were generated from male C57/BL6 mice fed with a 45% high fat diet. Oral administration of ß-PGG (0.1 and 5 mg/kg) lasted for 14 weeks. Viability was reduced by repeated PGG treatment in hMSC, preadipocytes, and cells under differentiation. PGG mainly induces apoptosis, and this effect is independent of its insulin mimetic action. In vivo, administration of ß-PGG attenuated shortening of the colon, hyperlipidaemia, fat cells and islet hypertrophy in DIO mice. Hepatic steatosis and related gene expression were improved along with glucose intolerance. Increased serum adiponectin, leptin, and glucagon-like peptide-1 levels were also observed. In conclusion, repeated PGG treatment interrupts the adipocyte lifecycle. PGG administration reduces adiposity and fatty liver development in DIO mice, and therefore, PGG could aid in clinical management of obesity.


Adiposity , Fatty Liver , Adipocytes/metabolism , Animals , Diet, High-Fat/adverse effects , Glucose/pharmacology , Hydrolyzable Tannins/pharmacology , Hydrolyzable Tannins/therapeutic use , Male , Mice , Obesity/drug therapy , Obesity/etiology , Obesity/metabolism
9.
Phytochemistry ; 195: 113026, 2022 Mar.
Article En | MEDLINE | ID: mdl-34890886

Phytochemical investigation of the ethanol extract from wild Momordica charantia vines has resulted in isolation of seven cucurbitane-type triterpenoids, including six undescribed compounds, kuguaovins H‒M, and the known compound, momordicoside K. The structures of the isolated compounds were elucidated on the basis of spectroscopic analyses, including 1D and 2D NMR, and MS experiments. The chemical structure of momordicoside K was determined for the first time by X-ray crystallographic analysis and its absolute configuration assigned. The cytotoxicity against four human tumor cell lines and anti-inflammatory activities on LPS-stimulated RAW264.7 macrophages were evaluated. Of the isolates, kaguaovin L exhibited potential cytotoxicity against MCF-7, HEp-2, Hep-G2, and WiDr cancer cell lines and showed moderate anti-NO production activity. In addition, kuguaovins H and J also showed the stimulatory effect of GLP-1 secretion on the murine intestinal secretin tumor cell line (STC-1).


Momordica charantia , Triterpenes , Animals , Anti-Inflammatory Agents/pharmacology , Glycosides , Hypoglycemic Agents/pharmacology , Mice , Molecular Structure , Triterpenes/pharmacology
10.
Int J Mol Sci ; 22(19)2021 Sep 27.
Article En | MEDLINE | ID: mdl-34638752

Alzheimer's disease (AD) is characterized by the deposition of ß-amyloid peptide (Aß). There are currently no drugs that can successfully treat this disease. This study first explored the anti-inflammatory activity of seven components isolated from Antrodia cinnamonmea in BV2 cells and selected EK100 and antrodin C for in vivo research. APPswe/PS1dE9 mice were treated with EK100 and antrodin C for one month to evaluate the effect of these reagents on AD-like pathology by nesting behavior, immunohistochemistry, and immunoblotting. Ergosterol and ibuprofen were used as control. EK100 and antrodin C improved the nesting behavior of mice, reduced the number and burden of amyloid plaques, reduced the activation of glial cells, and promoted the perivascular deposition of Aß in the brain of mice. EK100 and antrodin C are significantly different in activating astrocytes, regulating microglia morphology, and promoting plaque-associated microglia to express oxidative enzymes. In contrast, the effects of ibuprofen and ergosterol are relatively small. In addition, EK100 significantly improved hippocampal neurogenesis in APPswe/PS1dE9 mice. Our data indicate that EK100 and antrodin C reduce the pathology of AD by reducing amyloid deposits and promoting nesting behavior in APPswe/PS1dE9 mice through microglia and perivascular clearance, indicating that EK100 and antrodin C have the potential to be used in AD treatment.


Alzheimer Disease , Amyloid beta-Protein Precursor/metabolism , Maleimides , Microglia/metabolism , Plaque, Amyloid , Polyporales/chemistry , Presenilin-1/metabolism , Alzheimer Disease/drug therapy , Alzheimer Disease/genetics , Alzheimer Disease/metabolism , Amyloid beta-Protein Precursor/genetics , Animals , Cell Line , Maleimides/chemistry , Maleimides/pharmacology , Mice , Mice, Transgenic , Microglia/pathology , Plaque, Amyloid/drug therapy , Plaque, Amyloid/genetics , Plaque, Amyloid/metabolism , Presenilin-1/genetics
11.
Antiviral Res ; 195: 105184, 2021 11.
Article En | MEDLINE | ID: mdl-34627935

Hepatitis B virus (HBV) infection leads to severe liver diseases, including cirrhosis and hepatocellular carcinoma (HCC). More than 257 million individuals are chronically infected, particularly in the Western Pacific region and Africa. Although nucleotide and nucleoside analogues (NUCs) and interferons (IFNs) are the standard therapeutics for HBV infection, none eradicates HBV covalently closed circular DNA (cccDNA) from the infected hepatocytes. In addition, long-term treatment with NUCs increases the risk of developing drug resistance and IFNs may cause severe side effects in patients. Thus, a novel HBV therapy that can achieve a functional cure, or even complete elimination of the virus, is highly desirable. Regarding the HBV life cycle, agents targeting the entry step of HBV infection reduce the intrahepatic cccDNA pool preemptively. The initial entry step in HBV infection involves interaction between the pre-S1 domain of the large hepatitis B surface protein (LHBsAg) and the sodium taurocholate cotransporting polypeptide (NTCP), which is a receptor for HBV. In this study, ergosterol peroxide (EP) was identified as a new inhibitor of HBV entry. EP inhibits an early step of HBV entry into DMSO-differentiated immortalized primary human hepatocytes HuS-E/2 cells, which were overexpressed NTCP. Also, EP interfered directly with the NTCP-LHBsAg interaction by acting on the NTCP. In addition, EP had no effect on HBV genome replication, virion integrity or virion secretion. Finally, the activity of EP against infection with HBV genotypes A-D highlights the therapeutic potential of EP for fighting HBV infection.


Ergosterol/analogs & derivatives , Hepatitis B virus/physiology , Organic Anion Transporters, Sodium-Dependent/metabolism , Symporters/metabolism , Virus Internalization/drug effects , DNA, Circular/metabolism , Ergosterol/pharmacology , Hep G2 Cells , Hepatitis B/pathology , Hepatitis B/virology , Hepatitis B virus/drug effects , Hepatitis B virus/genetics , Humans , Organic Anion Transporters, Sodium-Dependent/genetics , Symporters/genetics , Virus Replication
12.
J Nat Prod ; 84(4): 1096-1103, 2021 04 23.
Article En | MEDLINE | ID: mdl-33600175

Type 2 diabetes mellitus (T2DM) is associated with pancreatic ß-cell dysfunction and insulin resistance. Islet amyloid polypeptide (IAPP) aggregation is found to induce islet ß-cell death in T2DM patients. Recently, we demonstrated that yakuchinone B derivative 1 exhibited inhibitory activity against IAPP aggregation. Thus, in this study, a series of synthesized yakuchinone B-inspired compounds were tested for their anti-IAPP aggregation activity. Four of these compounds, 4e-h, showed greater activity than the lead compound 1, in the sub-µM range (IC50 = 0.7-0.8 µM). The molecular docking analysis revealed crucial hydrogen bonds between the compounds and residues S19 and N22 and important hydrophobic interactions with residue I26. Notably, compounds 4g and 4h significantly protected ß-cells against IAPP-induced toxicity with EC50 values of 0.1 and 0.2 µM, respectively. In contrast, the protective activities of compounds 4e and 4f were weak. Overall, these results suggest that the compounds exhibiting IAPP aggregation-inhibiting activity have the potential to treat T2DM.


Diarylheptanoids/chemical synthesis , Islet Amyloid Polypeptide/antagonists & inhibitors , Animals , Cell Line , Insulin Resistance , Insulin-Secreting Cells/drug effects , Molecular Docking Simulation , Protein Aggregation, Pathological/drug therapy , Rats
13.
Pharmacol Res ; 163: 105298, 2021 01.
Article En | MEDLINE | ID: mdl-33220422

Closely associated with visceral obesity, hepatic steatosis resulting from non-alcoholic fatty liver disease (NAFLD) exacerbates insulin resistance. Developing effective drugs to treat NAFLD is imperative. Here, we investigated the pharmacological mechanism of ugonin J (UJ) in controlling metabolic disorder and ameliorating NAFLD pathophysiology in diet-induced obese mice. The effects of UJ were assessed in 5-week-old C57BL/6 J mice fed a high-fat diet (HFD) for 12 weeks. UJ treatment averted HFD-induced body weight gain by reducing fat deposition in adipose tissues and reduced HFD-induced hyperlipidemia and hepatic inflammation. UJ also improved HFD-induced glucose tolerance and insulin resistance. Moreover, the mode of action of UJ was analyzed in palmitate (PA)-induced steatotic human HuS-E/2 hepatocytes and in hyperglycemia-simulating rat BRIN-BD11 pancreatic ß cells. In PA-induced steatotic human hepatocytes, UJ treatment promoted lipid clearance via pAMPK, pACC and CPT-1 upregulation and SREBP-1c downregulation. Interestingly, UJ upregulated Akt activity in hepatocytes and increased insulin secretion from ß cells in acute insulin secretion tests. Taken together, UJ improved adipocyte hypertrophy, hyperinsulinemia, hyperglycemia, hyperlipidemia and fat deposition in livers. UJ also reduced fatty acid accumulation by modulating key metabolic regulators. Our findings demonstrated the therapeutic potential of UJ for the treatment of NAFLD and diet-induced metabolic disorders.


Metabolic Diseases/drug therapy , Non-alcoholic Fatty Liver Disease/drug therapy , Obesity/drug therapy , Adipokines/blood , Adipose Tissue/drug effects , Adipose Tissue/pathology , Animals , Cell Line , Cells, Cultured , Diet, High-Fat , Fatty Acids/metabolism , Glucose/metabolism , Hepatocytes/drug effects , Hepatocytes/metabolism , Humans , Insulin/metabolism , Insulin Resistance , Insulin-Secreting Cells/drug effects , Insulin-Secreting Cells/metabolism , Liver/drug effects , Liver/metabolism , Male , Metabolic Diseases/metabolism , Mice, Inbred C57BL , Non-alcoholic Fatty Liver Disease/metabolism , Obesity/metabolism , Rats , Weight Gain/drug effects
14.
Front Pharmacol ; 12: 765553, 2021.
Article En | MEDLINE | ID: mdl-35401158

COVID-19 is threatening human health worldwide but no effective treatment currently exists for this disease. Current therapeutic strategies focus on the inhibition of viral replication or using anti-inflammatory/immunomodulatory compounds to improve host immunity, but not both. Traditional Chinese medicine (TCM) compounds could be promising candidates due to their safety and minimal toxicity. In this study, we have developed a novel in silico bioinformatics workflow that integrates multiple databases to predict the use of honeysuckle (Lonicera japonica) and Huangqi (Astragalus membranaceus) as potential anti-SARS-CoV-2 agents. Using extracts from honeysuckle and Huangqi, these two herbs upregulated a group of microRNAs including let-7a, miR-148b, and miR-146a, which are critical to reduce the pathogenesis of SARS-CoV-2. Moreover, these herbs suppressed pro-inflammatory cytokines including IL-6 or TNF-α, which were both identified in the cytokine storm of acute respiratory distress syndrome, a major cause of COVID-19 death. Furthermore, both herbs partially inhibited the fusion of SARS-CoV-2 spike protein-transfected BHK-21 cells with the human lung cancer cell line Calu-3 that was expressing ACE2 receptors. These herbs inhibited SARS-CoV-2 Mpro activity, thereby alleviating viral entry as well as replication. In conclusion, our findings demonstrate that honeysuckle and Huangqi have the potential to be used as an inhibitor of SARS-CoV-2 virus entry that warrants further in vivo analysis and functional assessment of miRNAs to confirm their clinical importance. This fast-screening platform can also be applied to other drug discovery studies for other infectious diseases.

15.
Saudi J Biol Sci ; 27(9): 2227-2237, 2020 Sep.
Article En | MEDLINE | ID: mdl-32884403

The process of bone metabolism includes catabolism of old or mature bone and anabolism of new bone, carried out by osteoclasts and osteoblasts respectively. Any imbalance in this process results in loss of bone mass or osteoporosis. Drugs available to combat osteoporosis have certain adverse effects and are unable to improve bone formation, hence identifying new agents to fulfil these therapeutic gaps is required. To expand the scope of potential agents that enhance bone formation, we identified Euonymus spraguei Hayata as a plant material that possesses robust osteogenic potential using human osteoblast cells. We isolated three compounds, syringaresinol (1), syringin (2), and (-)-epicatechin (3), from E. spraguei. Results demonstrated that syringin (2), and (-)-epicatechin (3), increased alkaline phosphatase activity significantly up to 131.01% and 130.67%, respectively; they also elevated mineral deposition with respective values of up to 139.39% and 138.33%. In addition, 2 and 3 modulated autophagy and the bone morphogenetic protein (BMP)-2 signaling pathway. Our findings demonstrated that 2 and 3 induced osteogenesis by targeting multiple pathways and therefore can be considered as potent multi-targeted drugs for bone formation against osteoporosis.

16.
J Ginseng Res ; 44(2): 238-246, 2020 Mar.
Article En | MEDLINE | ID: mdl-32148405

BACKGROUND: Dietary fat has been suggested to be the cause of various health issues. Obesity, hypertension, cardiovascular disease, diabetes, dyslipidemia, and kidney disease are known to be associated with a high-fat diet (HFD). Obesity and associated conditions, such as type 2 diabetes mellitus and nonalcoholic fatty liver disease (NAFLD), are currently a worldwide health problem. Few prospective pharmaceutical therapies that directly target NAFLD are available at present. A Traditional Chinese Medicine, ginseng-plus-Bai-Hu-Tang (GBHT), is widely used by diabetic patients to control glucose level or thirst. However, whether it has therapeutic effects on fat-induced hepatic steatosis and metabolic syndrome remains unclear. METHODS: This study was conducted to examine the therapeutic effect of GBHT on fat-induced obesity, hepatic steatosis, and insulin resistance in mice. RESULTS: GBHT protected mice against HFD-induced body weight gain, hyperlipidemia, and hyperglycemia compared with mice that were not treated. GBHT inhibited the expansion of adipose tissue and adipocyte hypertrophy. No ectopic fat deposition was found in the livers of HFD mice treated with GBHT. In addition, glucose intolerance and insulin sensitivity in HFD mice was also improved by GBHT. CONCLUSION: GBHT prevents changes in lipid and carbohydrate metabolism in a HFD mouse model. Our findings provide evidence for the traditional use of GBHT as therapy for the management of metabolic syndrome.

17.
Molecules ; 26(1)2020 Dec 31.
Article En | MEDLINE | ID: mdl-33396516

Constitutive androstane receptor (CAR) activation has found to ameliorate diabetes in animal models. However, no CAR agonists are available clinically. Therefore, a safe and effective CAR activator would be an alternative option. In this study, sixty courmarin derivatives either synthesized or purified from Artemisia capillaris were screened for CAR activation activity. Chemical modifications were on position 5,6,7,8 with mono-, di-, tri-, or tetra-substitutions. Among all the compounds subjected for in vitro CAR activation screening, 6,7-diprenoxycoumarin was the most effective and was selected for further preclinical studies. Chemical modification on the 6 position and unsaturated chains were generally beneficial. Electron-withdrawn groups as well as long unsaturated chains were hazardous to the activity. Mechanism of action studies showed that CAR activation of 6,7-diprenoxycoumarin might be through the inhibition of EGFR signaling and upregulating PP2Ac methylation. To sum up, modification mimicking natural occurring coumarins shed light on CAR studies and the established screening system provides a rapid method for the discovery and development of CAR activators. In addition, one CAR activator, scoparone, did showed anti-diabetes effect in db/db mice without elevation of insulin levels.


Carcinoma, Hepatocellular/drug therapy , Coumarins/pharmacology , Diabetes Mellitus, Experimental/drug therapy , Liver Neoplasms/drug therapy , Receptors, Cytoplasmic and Nuclear/metabolism , Animals , Carcinoma, Hepatocellular/metabolism , Carcinoma, Hepatocellular/pathology , Constitutive Androstane Receptor , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Experimental/pathology , ErbB Receptors/metabolism , Humans , Liver Neoplasms/metabolism , Liver Neoplasms/pathology , Male , Mice , Mice, Inbred C57BL , Protein Phosphatase 2C/metabolism , Tumor Cells, Cultured
18.
Br J Pharmacol ; 177(2): 239-253, 2020 01.
Article En | MEDLINE | ID: mdl-31497874

BACKGROUND AND PURPOSE: Non-alcoholic fatty liver disease (NAFLD), including non-alcoholic steatohepatitis, is closely related to metabolic diseases such as obesity and diabetes. Despite an accumulating number of studies, no pharmacotherapy that targets NAFLD has received general approval for clinical use. EXPERIMENTAL APPROACH: Inhibition of the sodium-glucose cotransporter 2 (SGLT2) is a promising approach to treat diabetes, obesity, and associated metabolic disorders. In this study, we investigated the effect of a novel SGLT2 inhibitor, NGI001, on NAFLD and obesity-associated metabolic symptoms in high-fat diet (HFD)-induced obese mice. KEY RESULTS: Delayed intervention with NGI001 protected against body weight gain, hyperglycaemia, hyperlipidaemia, and hyperinsulinaemia, compared with HFD alone. Adipocyte hypertrophy was prevented by administering NGI001. NGI001 inhibited impaired glucose metabolism and regulated the secretion of adipokines associated with insulin resistance. In addition, NGI001 supplementation suppressed hepatic lipid accumulation and inflammation but had little effect on kidney function. In-depth investigations showed that NGI001 ameliorated fat deposition and increased AMPK phosphorylation, resulting in phosphorylation of its major downstream target, acetyl-CoA carboxylase, in human hepatocyte HuS-E/2 cells. This cascade ultimately led to the down-regulation of downstream fatty acid synthesis-related molecules and the up-regulation of downstream ß oxidation-associated molecules. Surprisingly, NGI001 decreased gene and protein expression of SGLT1 and SGLT2 and glucose uptake in oleic acid-treated HuS-E/2 cells. CONCLUSION AND IMPLICATIONS: Our findings suggest the novel SGLT2 inhibitor, NGI001 has therapeutic potential to attenuate or delay the onset of diet-induced metabolic diseases and NAFLD.


Adipose Tissue/drug effects , Diet, High-Fat , Energy Metabolism/drug effects , Liver/drug effects , Metabolic Syndrome/prevention & control , Non-alcoholic Fatty Liver Disease/prevention & control , Sodium-Glucose Transporter 2 Inhibitors/pharmacology , Sodium-Glucose Transporter 2/metabolism , Adipose Tissue/metabolism , Adipose Tissue/pathology , Animals , Biomarkers/blood , Blood Glucose/drug effects , Blood Glucose/metabolism , Cell Line , Disease Models, Animal , Dyslipidemias/etiology , Dyslipidemias/metabolism , Dyslipidemias/prevention & control , Glucose Metabolism Disorders/etiology , Glucose Metabolism Disorders/metabolism , Glucose Metabolism Disorders/prevention & control , Humans , Insulin Resistance , Lipids/blood , Liver/metabolism , Liver/pathology , Male , Metabolic Syndrome/etiology , Metabolic Syndrome/metabolism , Metabolic Syndrome/pathology , Mice, Inbred C57BL , Non-alcoholic Fatty Liver Disease/etiology , Non-alcoholic Fatty Liver Disease/metabolism , Non-alcoholic Fatty Liver Disease/pathology
19.
Neurobiol Aging ; 90: 60-74, 2020 06.
Article En | MEDLINE | ID: mdl-31879131

High-fat and high-sugar diets contribute to the prevalence of type 2 diabetes and Alzheimer's disease (AD). Although the impact of high-fat diets on AD pathogenesis has been established, the effect of high-sucrose diets (HSDs) on AD pathogenesis remains unclear. This study sought to determine the impact of HSDs on AD-related pathologies. Male APPswe/PS1dE9 (APP/PS1) transgenic and wild-type mice were provided with HSD and their cognitive and hypothalamus-related noncognitive parameters, including feeding behaviors and glycemic regulation, were compared. HSD-fed APP/PS1 mice showed increased neuroinflammation, as well as increased cortical and serum levels of amyloid-ß. HSD-fed APP/PS1 mice showed aggravated obesity, hyperinsulinemia, insulin resistance, and leptin resistance, but there was no induction of hyperphagia or hyperleptinemia. Leptin-induced phosphorylation of signal transducer and activator of transcription 3 in the dorsomedial and ventromedial hypothalamus was reduced in HSD-fed APP/PS1 mice, which might be associated with attenuated food-anticipatory activity, glycemic dysregulation, and AD-related noncognitive symptoms. Our study demonstrates that HSD aggravates metabolic stresses, increases AD-related pathologies, and attenuates hypothalamic leptin signaling in APP/PS1 mice.


Alzheimer Disease/etiology , Alzheimer Disease/metabolism , Anticipation, Psychological/drug effects , Diet, Carbohydrate Loading/adverse effects , Eating/psychology , Hypothalamus/metabolism , Leptin/metabolism , Signal Transduction/drug effects , Sucrose/adverse effects , Alzheimer Disease/pathology , Alzheimer Disease/psychology , Amyloid beta-Peptides/metabolism , Animals , Inflammation , Mice, Transgenic , STAT3 Transcription Factor/metabolism
20.
BMC Complement Altern Med ; 19(1): 368, 2019 Dec 13.
Article En | MEDLINE | ID: mdl-31836013

BACKGROUND: Obesity and its associated health conditions, type 2 diabetes mellitus (T2DM) and nonalcoholic fatty liver disease (NAFLD), are worldwide health problems. It has been shown that insulin resistance is associated with increased hepatic lipid and causes hepatic steatosis through a myriad of mechanisms, including inflammatory signaling. METHODS: Helminthostachys zeylanica (HZ) is used widely as a common herbal medicine to relieve fever symptoms and inflammatory diseases in Asia. In the present study, we evaluated whether HZ has therapeutic effects on obesity, NAFLD and insulin resistance. The protective effects of HZ extract were examined using free fatty acid-induced steatosis in human HuS-E/2 cells and a high-fat diet-induced NAFLD in mice. RESULTS: The major components of the HZ extract are ugonins J and K, confirmed by HPLC. Incubation of human hepatocytes, HuS-E/2 cells, with palmitate markedly increased lipid accumulation and treatment with the HZ extract significantly decreased lipid deposition and facilitated AMPK and ACC activation. After 12 weeks of a high-fat diet with HZ extract treatment, the HFD mice were protected from hyperlipidemia and hyperglycemia. HZ extract prevented body weight gain, adipose tissue expansion and adipocyte hypertrophy in the HFD mice. In addition, fat accumulation was reduced in mice livers. Moreover, the insulin sensitivity-associated index, which evaluates insulin function, was also significantly restored. CONCLUSIONS: These results suggest that HZ has a promising pharmacological effect on high-fat diet-induced obesity, hepatic steatosis and insulin resistance, which may have the potential for clinical application.


Insulin Resistance , Non-alcoholic Fatty Liver Disease/metabolism , Obesity/metabolism , Plant Extracts/pharmacology , Tracheophyta , Adipocytes/drug effects , Animals , Body Weight/drug effects , Cell Line , Diet, High-Fat/adverse effects , Humans , Lipid Metabolism/drug effects , Male , Mice , Mice, Inbred C57BL , Plant Extracts/chemistry
...