Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.767
Filter
1.
Neural Regen Res ; 20(1): 6-20, 2025 Jan 01.
Article in English | MEDLINE | ID: mdl-38767472

ABSTRACT

The endoplasmic reticulum, a key cellular organelle, regulates a wide variety of cellular activities. Endoplasmic reticulum autophagy, one of the quality control systems of the endoplasmic reticulum, plays a pivotal role in maintaining endoplasmic reticulum homeostasis by controlling endoplasmic reticulum turnover, remodeling, and proteostasis. In this review, we briefly describe the endoplasmic reticulum quality control system, and subsequently focus on the role of endoplasmic reticulum autophagy, emphasizing the spatial and temporal mechanisms underlying the regulation of endoplasmic reticulum autophagy according to cellular requirements. We also summarize the evidence relating to how defective or abnormal endoplasmic reticulum autophagy contributes to the pathogenesis of neurodegenerative diseases. In summary, this review highlights the mechanisms associated with the regulation of endoplasmic reticulum autophagy and how they influence the pathophysiology of degenerative nerve disorders. This review would help researchers to understand the roles and regulatory mechanisms of endoplasmic reticulum-phagy in neurodegenerative disorders.

2.
Proc Natl Acad Sci U S A ; 121(33): e2406654121, 2024 Aug 13.
Article in English | MEDLINE | ID: mdl-39116129

ABSTRACT

Protein therapeutics play a critical role in treating a large variety of diseases, ranging from infections to genetic disorders. However, their delivery to target tissues beyond the liver, such as the lungs, remains a great challenge. Here, we report a universally applicable strategy for lung-targeted protein delivery by engineering Lung-Specific Supramolecular Nanoparticles (LSNPs). These nanoparticles are designed through the hierarchical self-assembly of metal-organic polyhedra (MOP), featuring a customized surface chemistry that enables protein encapsulation and specific lung affinity after intravenous administration. Our design of LSNPs not only addresses the hurdles of cell membrane impermeability of protein and nonspecific tissue distribution of protein delivery, but also shows exceptional versatility in delivering various proteins, including those vital for anti-inflammatory and CRISPR-based genome editing to the lung, and across multiple animal species, including mice, rabbits, and dogs. Notably, the delivery of antimicrobial proteins using LSNPs effectively alleviates acute bacterial pneumonia, demonstrating a significant therapeutic potential. Our strategy not only surmounts the obstacles of tissue-specific protein delivery but also paves the way for targeted treatments in genetic disorders and combating antibiotic resistance, offering a versatile solution for precision protein therapy.


Subject(s)
Gene Editing , Lung , Nanoparticles , Animals , Gene Editing/methods , Lung/metabolism , Mice , Nanoparticles/chemistry , Dogs , Rabbits , Humans , CRISPR-Cas Systems , Drug Delivery Systems/methods
3.
Cancer Res ; 2024 Aug 09.
Article in English | MEDLINE | ID: mdl-39120596

ABSTRACT

N6-methyladenosine (m6A) is the most prevalent RNA modification and is associated with various biological processes. Proteins that function as readers and writers of m6A modifications have been shown to play critical roles in human malignancies. Here, we identified KH-type splicing regulatory protein (KHSRP) as an m6A binding protein that contributes to the progression of pancreatic ductal adenocarcinoma (PDAC). High KHSRP levels were detected in PDAC and predicted poor patient survival. KHSRP deficiency suppressed PDAC growth and metastasis in vivo. Mechanistically, KHSRP recognized and stabilized FAK pathway mRNAs, including MET, ITGAV and ITGB1, in an m6A-dependent manner, which led to activation of downstream FAK signaling that promoted PDAC progression. Targeting KHSRP with a PROTAC showed promising tumor suppressive effects in mouse models, leading to prolonged survival. Together, these findings indicate that KHSRP mediates FAK pathway activation in an m6A-dependent manner to support PDAC growth and metastasis, highlighting the potential of KHSRP as a therapeutic target in pancreatic cancer.

4.
Clin Case Rep ; 12(8): e9230, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39091621

ABSTRACT

Maxillary canines are often impacted, which can result in tooth disorders and adversely affect occlusal and facial development. The case report describes complete bilateral impaction of maxillary canines and significant root resorption of a central incisor. The multidisciplinary approach is the optimal strategy for addressing impacted maxillary canines.

5.
Bioorg Chem ; 151: 107684, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39094507

ABSTRACT

Twenty-nine sesquiterpenoids, including pseudoguaiane-type (1-11), eudesmane-type (12-23), and carabrane-type (24-29), have been identified from the plant Carpesium abrotanoides. Of them, compounds 1-4, 12-15, and 24-27, namely carpabrotins A-L, are twelve previously undescribed ones. Compound 3 possessed a pseudoguaiane backbone with a rearrangement modification at C-11, C-12 and C-13, while compound 4 suffered a carbon bond break between the C-4 and C-5 to form a rare 4,5-seco-pseudoguaiane lactone. Compounds 1-3, 5, 13-16 and 25-27 exhibited anti-inflammatory activity by inhibiting NO production in LPS-induced RAW264.7 macrophages with IC50 values less than 40 µM, while compounds 1, 2, 5, 13, 14, 16, and 25-27 showed significant inhibitory activity comparable to that of dexamethasone. The anti-atopic dermatitis (AD) effects of compounds 5 and 16 were tested according to 2,4-dinitrochlorobenzene (DNCB)-induced AD-like skin lesions in KM mice, and the results revealed that the major products 5 and 16 improved the histological features of AD-like skin lesions and mast cell infiltration in mice. This study suggested that sesquiterpenoids in C. abrotanoides should play a key role in its anti-inflammatory use.

6.
J Sci Food Agric ; 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39087633

ABSTRACT

BACKGROUND: Research on the co-production of multiple enzymes by Bacillus velezensis as a novel species is still a topic that needs to be studied. This study aimed to investigate the fermentation characteristics of B. velezensis D6 co-producing α-amylase and protease and to explore their enzymatic properties and applications in fermentation. RESULTS: The maximum co-production of α-amylase and protease reached 13.13 ± 0.72 and 2106.63 ± 64.42 U mL-1, respectively, under the optimal fermented conditions (nutrients: 20.0 g L-1 urea, 20.0 g L-1 glucose, 0.7 g L-1 MnCl2; incubation conditions: initial pH 7.0, temperature 41 °C, 8% inoculation size and 30% working volume). Moreover, the genetic co-expression of α-amylase and protease increased from 0 to 24 h and then decreased after 36 h at the transcriptional level, which coincided with the growth trend of B. velezensis D6. The optimal reaction temperature of α-amylase was 55-60 °C, while that of protease was 35-40 °C. The activities of α-amylase and protease were retained by over 80% after thermal treatment (90 °C, 1 h), which indicated that two enzymes co-produced by B. velezensis D6 demonstrated excellent thermal stability. Moreover, the two enzymes were stable over a wide pH range (pH 4.0-8.0 for α-amylase; pH 4.0-9.0 for protease). Finally, the degrees of hydrolysis of corn, rice, sorghum and soybeans by α-amylase from B. velezensis D6 reached 44.95 ± 2.95%, 57.16 ± 2.75%, 52.53 ± 4.01% and 20.53 ± 2.42%, respectively, suggesting an excellent hydrolysis effect on starchy raw materials. The hydrolysis degrees of mackerel heads and soybeans by protease were 43.93 ± 2.19% and 26.38 ± 1.72%, respectively, which suggested that the protease from B. velezensis D6 preferentially hydrolyzed animal-based protein. CONCLUSION: This is a systematic study on the co-production of α-amylase and protease by B. velezensis D6, which is crucial in widening the understanding of this species co-producing multi-enzymes and in exploring its potential application. © 2024 Society of Chemical Industry.

7.
Cell Death Dis ; 15(8): 591, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-39143050

ABSTRACT

Neurons rely heavily on high mitochondrial metabolism to provide sufficient energy for proper development. However, it remains unclear how neurons maintain high oxidative phosphorylation (OXPHOS) during development. Mitophagy plays a pivotal role in maintaining mitochondrial quality and quantity. We herein describe that G protein-coupled receptor 50 (GPR50) is a novel mitophagy receptor, which harbors the LC3-interacting region (LIR) and is required in mitophagy under stress conditions. Although it does not localize in mitochondria under normal culturing conditions, GPR50 is recruited to the depolarized mitochondrial membrane upon mitophagy stress, which marks the mitochondrial portion and recruits the assembling autophagosomes, eventually facilitating the mitochondrial fragments to be engulfed by the autophagosomes. Mutations Δ502-505 and T532A attenuate GPR50-mediated mitophagy by disrupting the binding of GPR50 to LC3 and the mitochondrial recruitment of GPR50. Deficiency of GPR50 causes the accumulation of damaged mitochondria and disrupts OXPHOS, resulting in insufficient ATP production and excessive ROS generation, eventually impairing neuronal development. GPR50-deficient mice exhibit impaired social recognition, which is rescued by prenatal treatment with mitoQ, a mitochondrially antioxidant. The present study identifies GPR50 as a novel mitophagy receptor that is required to maintain mitochondrial OXPHOS in developing neurons.


Subject(s)
Mitochondria , Mitophagy , Neurons , Receptors, G-Protein-Coupled , Animals , Receptors, G-Protein-Coupled/metabolism , Receptors, G-Protein-Coupled/genetics , Neurons/metabolism , Mitochondria/metabolism , Mice , Humans , Oxidative Phosphorylation , Microtubule-Associated Proteins/metabolism , Microtubule-Associated Proteins/genetics , Reactive Oxygen Species/metabolism , Mice, Knockout , Neurogenesis
8.
Adv Mater ; : e2408538, 2024 Aug 16.
Article in English | MEDLINE | ID: mdl-39149779

ABSTRACT

Hydrogel bioadhesives have emerged as a promising alternative to wound dressings for chronic wound management. However, many existing bioadhesives do not meet the functional requirements for efficient wound management through dynamically mechanical modulation, due to the reduced wound contractibility, frequent wound recurrence, incapability to actively adapt to external microenvironment variation, especially for those gradually-expanded chronic wounds. Here, a self-growing hydrogel bioadhesive (sGHB) patch that exhibits instant adhesion to biological tissues but also a gradual increase in mechanical strength and interfacial adhesive strength within a 120-h application is presented. The gradually increased mechanics of the sGHB patch could effectively mitigate the stress concentration at the wound edge, and also resist the wound expansion at various stages, thus mechanically contracting the chronic wounds in a programmable manner. The self-growing hydrogel patch demonstrated enhanced wound healing efficacy in a mouse diabetic wound model, by regulating the inflammatory response, promoting the faster re-epithelialization and angiogenesis through mechanical modulation. Such kind of self-growing hydrogel bioadhesives have potential clinical utility for a variety of wound management where dynamic mechanical modulation is indispensable.

10.
J Neurosci Methods ; 409: 110212, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38960331

ABSTRACT

BACKGROUND: The forced swim test (FST) and tail suspension test (TST) are widely used to assess depressive-like behaviors in animals. Immobility time is used as an important parameter in both FST and TST. Traditional methods for analyzing FST and TST rely on manually setting the threshold for immobility, which is time-consuming and subjective. NEW METHOD: We proposed a threshold-free method for automated analysis of mice in these tests using a Dual-Stream Activity Analysis Network (DSAAN). Specifically, this network extracted spatial information of mice using a limited number of video frames and combined it with temporal information extracted from differential feature maps to determine the mouse's state. To do so, we developed the Mouse FSTST dataset, which consisted of annotated video recordings of FST and TST. RESULTS: By using DSAAN methods, we identify immobility states at accuracies of 92.51 % and 88.70 % for the TST and FST, respectively. The predicted immobility time from DSAAN is nicely correlated with a manual score, which indicates the reliability of the proposed method. Importantly, the DSAAN achieved over 80 % accuracy for both FST and TST by utilizing only 94 annotated images, suggesting that even a very limited training dataset can yield good performance in our model. COMPARISON WITH EXISTING METHOD(S): Compared with DBscorer and EthoVision XT, our method exhibits the highest Pearson correlation coefficient with manual annotation results on the Mouse FSTST dataset. CONCLUSIONS: We established a powerful tool for analyzing depressive-like behavior independent of threshold, which is capable of freeing users from time-consuming manual analysis.


Subject(s)
Behavior, Animal , Deep Learning , Hindlimb Suspension , Swimming , Animals , Hindlimb Suspension/methods , Swimming/physiology , Mice , Behavior, Animal/physiology , Depression/diagnosis , Male , Video Recording/methods , Mice, Inbred C57BL
11.
Adv Sci (Weinh) ; : e2404433, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39005186

ABSTRACT

Growing demand for wound care resulting from the increasing chronic diseases and trauma brings intense pressure to global medical health service system. Artificial skin provides mechanical and microenvironmental support for wound, which is crucial in wound healing and tissue regeneration. However, challenges still remain in the clinical application of artificial skin since the lack of the synergy effect of necessary performance. In this study, a multi-functional artificial skin is fabricated through microfluidic spinning technology by using core-shell gel nanofiber scaffolds (NFSs). This strategy can precisely manipulate the microstructure of artificial skin under microscale. The as-prepared artificial skin demonstrates superior characteristics including surface wettability, breathability, high mechanical strength, strain sensitivity, biocompatibility and biodegradability. Notably, this artificial skin has the capability to deliver medications in a controlled and sustained manner, thereby accelerating the wound healing process. This innovative approach paves the way for the development of a new generation of artificial skin and introduces a novel concept for the structural design of the unique core-shell gel NFSs.

12.
Front Immunol ; 15: 1405146, 2024.
Article in English | MEDLINE | ID: mdl-38947338

ABSTRACT

Background: Patients with resectable esophageal squamous cell carcinoma (ESCC) receiving neoadjuvant immunotherapy (NIT) display variable treatment responses. The purpose of this study is to establish and validate a radiomics based on enhanced computed tomography (CT) and combined with clinical data to predict the major pathological response to NIT in ESCC patients. Methods: This retrospective study included 82 ESCC patients who were randomly divided into the training group (n = 57) and the validation group (n = 25). Radiomic features were derived from the tumor region in enhanced CT images obtained before treatment. After feature reduction and screening, radiomics was established. Logistic regression analysis was conducted to select clinical variables. The predictive model integrating radiomics and clinical data was constructed and presented as a nomogram. Area under curve (AUC) was applied to evaluate the predictive ability of the models, and decision curve analysis (DCA) and calibration curves were performed to test the application of the models. Results: One clinical data (radiotherapy) and 10 radiomic features were identified and applied for the predictive model. The radiomics integrated with clinical data could achieve excellent predictive performance, with AUC values of 0.93 (95% CI 0.87-0.99) and 0.85 (95% CI 0.69-1.00) in the training group and the validation group, respectively. DCA and calibration curves demonstrated a good clinical feasibility and utility of this model. Conclusion: Enhanced CT image-based radiomics could predict the response of ESCC patients to NIT with high accuracy and robustness. The developed predictive model offers a valuable tool for assessing treatment efficacy prior to initiating therapy, thus providing individualized treatment regimens for patients.


Subject(s)
Esophageal Neoplasms , Esophageal Squamous Cell Carcinoma , Immunotherapy , Machine Learning , Neoadjuvant Therapy , Tomography, X-Ray Computed , Humans , Esophageal Squamous Cell Carcinoma/therapy , Esophageal Squamous Cell Carcinoma/diagnostic imaging , Male , Female , Neoadjuvant Therapy/methods , Tomography, X-Ray Computed/methods , Esophageal Neoplasms/therapy , Esophageal Neoplasms/diagnostic imaging , Middle Aged , Retrospective Studies , Aged , Immunotherapy/methods , Nomograms , Treatment Outcome , Adult , Radiomics
13.
mLife ; 3(2): 240-250, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38948148

ABSTRACT

Cytidine triphosphate synthase (CTPS) plays a pivotal role in the de novo synthesis of cytidine triphosphate (CTP), a fundamental building block for RNA and DNA that is essential for life. CTPS is capable of directly binding to all four nucleotide triphosphates: adenine triphosphate, uridine triphosphate, CTP, and guanidine triphosphate. Furthermore, CTPS can form cytoophidia in vivo and metabolic filaments in vitro, undergoing regulation at multiple levels. CTPS is considered a potential therapeutic target for combating invasions or infections by viral or prokaryotic pathogens. Utilizing cryo-electron microscopy, we determined the structure of Escherichia coli CTPS (ecCTPS) filament in complex with CTP, nicotinamide adenine dinucleotide (NADH), and the covalent inhibitor 6-diazo-5-oxo- l-norleucine (DON), achieving a resolution of 2.9 Å. We constructed a phylogenetic tree based on differences in filament-forming interfaces and designed a variant to validate our hypothesis, providing an evolutionary perspective on CTPS filament formation. Our computational analysis revealed a solvent-accessible ammonia tunnel upon DON binding. Through comparative structural analysis, we discern a distinct mode of CTP binding of ecCTPS that differs from eukaryotic counterparts. Combining biochemical assays and structural analysis, we determined and validated the synergistic inhibitory effects of CTP with NADH or adenine on CTPS. Our results expand our comprehension of the diverse regulatory aspects of CTPS and lay a foundation for the design of specific inhibitors targeting prokaryotic CTPS.

14.
Ultrasound Q ; 40(3)2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38958999

ABSTRACT

ABSTRACT: The objective of the study was to use a deep learning model to differentiate between benign and malignant sentinel lymph nodes (SLNs) in patients with breast cancer compared to radiologists' assessments.Seventy-nine women with breast cancer were enrolled and underwent lymphosonography and contrast-enhanced ultrasound (CEUS) examination after subcutaneous injection of ultrasound contrast agent around their tumor to identify SLNs. Google AutoML was used to develop image classification model. Grayscale and CEUS images acquired during the ultrasound examination were uploaded with a data distribution of 80% for training/20% for testing. The performance metric used was area under precision/recall curve (AuPRC). In addition, 3 radiologists assessed SLNs as normal or abnormal based on a clinical established classification. Two-hundred seventeen SLNs were divided in 2 for model development; model 1 included all SLNs and model 2 had an equal number of benign and malignant SLNs. Validation results model 1 AuPRC 0.84 (grayscale)/0.91 (CEUS) and model 2 AuPRC 0.91 (grayscale)/0.87 (CEUS). The comparison between artificial intelligence (AI) and readers' showed statistical significant differences between all models and ultrasound modes; model 1 grayscale AI versus readers, P = 0.047, and model 1 CEUS AI versus readers, P < 0.001. Model 2 r grayscale AI versus readers, P = 0.032, and model 2 CEUS AI versus readers, P = 0.041.The interreader agreement overall result showed κ values of 0.20 for grayscale and 0.17 for CEUS.In conclusion, AutoML showed improved diagnostic performance in balance volume datasets. Radiologist performance was not influenced by the dataset's distribution.


Subject(s)
Breast Neoplasms , Deep Learning , Sentinel Lymph Node , Humans , Female , Breast Neoplasms/diagnostic imaging , Breast Neoplasms/pathology , Sentinel Lymph Node/diagnostic imaging , Middle Aged , Aged , Adult , Radiologists/statistics & numerical data , Ultrasonography, Mammary/methods , Contrast Media , Lymphatic Metastasis/diagnostic imaging , Ultrasonography/methods , Sentinel Lymph Node Biopsy/methods , Breast/diagnostic imaging , Reproducibility of Results
15.
Sci Rep ; 14(1): 15246, 2024 07 02.
Article in English | MEDLINE | ID: mdl-38956068

ABSTRACT

This study aimed to explore the effects of peroxisome proliferator-activated receptor α (PPAR-α), a known inhibitor of ferroptosis, in Myocardial ischemia/reperfusion injury (MIRI) and its related mechanisms. In vivo and in vitro MIRI models were established. Our results showed that activation of PPAR-α decreased the size of the myocardial infarct, maintained cardiac function, and decreased the serum contents of creatine kinase-MB (CK-MB), lactate dehydrogenase (LDH), and Fe2+ in ischemia/reperfusion (I/R)-treated mice. Additionally, the results of H&E staining, DHE staining, TUNEL staining, and transmission electron microscopy demonstrated that activation of PPAR-α inhibited MIRI-induced heart tissue and mitochondrial damage. It was also found that activation of PPAR-α attenuated MIRI-induced ferroptosis as shown by a reduction in malondialdehyde, total iron, and reactive oxygen species (ROS). In vitro experiments showed that intracellular contents of malondialdehyde, total iron, LDH, reactive oxygen species (ROS), lipid ROS, oxidized glutathione disulphide (GSSG), and Fe2+ were reduced by the activation of PPAR-α in H9c2 cells treated with anoxia/reoxygenation (A/R), while the cell viability and GSH were increased after PPAR-α activation. Additionally, changes in protein levels of the ferroptosis marker further confirmed the beneficial effects of PPAR-α activation on MIRI-induced ferroptosis. Moreover, the results of immunofluorescence and dual-luciferase reporter assay revealed that PPAR-α achieved its activity via binding to the 14-3-3η promoter, promoting its expression level. Moreover, the cardioprotective effects of PPAR-α could be canceled by pAd/14-3-3η-shRNA or Compound C11 (14-3-3η inhibitor). In conclusion, our results indicated that ferroptosis plays a key role in aggravating MIRI, and PPAR-α/14-3-3η pathway-mediated ferroptosis and mitochondrial injury might be an effective therapeutic target against MIRI.


Subject(s)
14-3-3 Proteins , Ferroptosis , Myocardial Reperfusion Injury , PPAR alpha , Animals , Male , Mice , Rats , 14-3-3 Proteins/metabolism , Cell Line , Disease Models, Animal , Ferroptosis/drug effects , Mice, Inbred C57BL , Mitochondria/metabolism , Mitochondria/drug effects , Myocardial Reperfusion Injury/metabolism , Myocardial Reperfusion Injury/pathology , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/pathology , PPAR alpha/metabolism , Reactive Oxygen Species/metabolism , Up-Regulation/drug effects
16.
Front Immunol ; 15: 1349033, 2024.
Article in English | MEDLINE | ID: mdl-38989283

ABSTRACT

Background: Extramammary Paget's disease (EMPD) is a rare epithelial malignancy, and approximately 30%-40% of EMPD patients overexpress human epidermal growth factor receptor 2 (Her-2). Currently, there are no established standard treatments for advanced EMPD while anti-Her-2 therapy is recommended for Her-2-positive cases. Case presentation: Here, we report a 51-year-old male diagnosed with advanced Her-2-positive EMPD, presenting with numerous lymph node metastases. This patient received disitamab vedotin (an antibody-drug conjugate, targeting Her-2) combined with serplulimab as first-line treatment. After seven cycles of combination therapy, the patient tolerated the treatment well and the lymph node lesions continued to shrink. However, the patient developed immunotherapy-related pneumonia following the eighth treatment. Hormone therapy was administered while all the anti-tumor therapies were halted. After the pneumonia improved, the patient underwent positron emission tomography-computed tomography, revealing a complete response to his tumor. To consolidate the effect, he received another five cycles of disitamab vedotin monotherapy as maintenance therapy, without experiencing any adverse events. To date, the patient has remained in good health without any recurrence 10 months after drug discontinuance. Conclusion: Disitamab vedotin combined with immunotherapy demonstrated a long-term clinical benefit in advanced Her-2-positive EMPD. For rare solid tumors with Her-2 overexpression, disitamab vedotin combined with immunotherapy might offer a viable therapeutic choice.


Subject(s)
Paget Disease, Extramammary , Receptor, ErbB-2 , Humans , Male , Middle Aged , Receptor, ErbB-2/genetics , Receptor, ErbB-2/metabolism , Paget Disease, Extramammary/drug therapy , Paget Disease, Extramammary/therapy , Scrotum/pathology , Treatment Outcome , Immunotherapy/methods , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Immunoconjugates/therapeutic use
17.
Cells ; 13(14)2024 Jul 20.
Article in English | MEDLINE | ID: mdl-39056805

ABSTRACT

The real-time detection of intracellular biological processes by encoded sensors has broad application prospects. Here, we developed a degron-based modular reporting system, the Device of Death Operation (DODO), that can monitor various biological processes. The DODO system consists of a "reporter", an "inductor", and a "degron". After zymogen activation and cleavage, the degron will be released from the "reporter", which eventually leads to the stabilization of the "reporter", and can be detected. By replacing different "inductors" and "reporters", a series of biological processes can be reported through various signals. The system can effectively report the existence of TEV protease. To prove this concept, we successfully applied the DODO system to report apoptosis in 2D and 3D cultures. In addition, the reporter based on degron will help to design protease reporters other than caspase.


Subject(s)
Apoptosis , Humans , Cell Culture Techniques/methods , Cell Culture Techniques/instrumentation
18.
Nat Prod Res ; : 1-10, 2024 Jul 31.
Article in English | MEDLINE | ID: mdl-39084318

ABSTRACT

The Paeonia ostii, also known as "Feng Dan" have a crucial role in folk medicine to treat lumbar muscles strain, knee osteoarthritis and cervical spondylosis. In this study, four new phenolic compounds, specifically Paeoniaostiph A-E (1-4) phenolic compounds were characterised through spectroscopic techniques, including 1D and 2D NMR, HRESIMS, UV, IR, and electronic circular dichroism computations to explore their structures. Cytotoxicity and NO production inhibition of the new phenolic compounds were also studied. The results of the cytotoxicity experiment showed that compound 1 is cytotoxic to two human cancer cell lines with IC50 values ranging from 13.3 to 13.5 µM. Compounds 1 and 2 showed certain inhibitory activity on NO production. This is the first report on isolating the components from natural sources.

19.
Exp Mol Med ; 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39085354

ABSTRACT

NMDA receptor-dependent long-term depression (LTD) in the hippocampus is a well-known form of synaptic plasticity that has been linked to different cognitive functions. Although the underlying mechanisms remain unclear, this form of LTD cannot be induced by low-frequency stimulation (LFS) in adult mice. In this study, we found that LFS-induced LTD was not easily induced in adult animals and was age dependent. Interestingly, the level of the 5-HT1A receptor was correspondingly increased and exhibited an inverse correlation with the magnitude of LFS-LTD during development. Knockout or pharmacological inhibition of the 5-HT1A receptor reversed impaired LFS-LTD in adult mice (P60), while activation or inhibition of this receptor disturbed or enhanced LFS-LTD in adolescent mice (P21), respectively. Furthermore, the astrocytic 5-HT1A receptor in the hippocampus predominantly mediated age-dependent LFS-LTD through enhancing GABAergic neurotransmission. Finally, fear memory extinction differed among the above conditions. These observations enrich our knowledge of LTD at the cellular level and suggest a therapeutic approach for LTD-related psychiatric disorders.

20.
Acta Pharmacol Sin ; 2024 Jul 31.
Article in English | MEDLINE | ID: mdl-39085407

ABSTRACT

Tumor immunotherapy characterized by its high specificity and minimal side effects has achieved revolutionary progress in the field of cancer treatment. However, the complex mechanisms of tumor immune microenvironment (TIME) and the individual variability of patients' immune system still present significant challenges to its clinical application. Immunocyte membrane-coated nanocarrier systems, as an innovative biomimetic drug delivery platform, exhibit remarkable advantages in tumor immunotherapy due to their high targeting capability, good biocompatibility and low immunogenicity. In this review we summarize the latest research advances in biomimetic delivery systems based on immune cells for tumor immunotherapy. We outline the existing methods of tumor immunotherapy including immune checkpoint therapy, adoptive cell transfer therapy and cancer vaccines etc. with a focus on the application of various immunocyte membranes in tumor immunotherapy and their prospects and challenges in drug delivery and immune modulation. We look forward to further exploring the application of biomimetic delivery systems based on immunocyte membrane-coated nanoparticles, aiming to provide a new framework for the clinical treatment of tumor immunity.

SELECTION OF CITATIONS
SEARCH DETAIL