Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 317
Filter
1.
Int J Antimicrob Agents ; : 107262, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38945178

ABSTRACT

PURPOSE: Polymyxin B, with its unique structure and mechanism of action, has emerged as a key therapeutic agent against Gram-negative bacteria. The study aims to explore potential factors to influence its effectiveness and safety. METHODS: A Model-Based Meta-Analysis (MBMA) of 96 articles was conducted, focusing on factors like dosage, bacterial species, and combined antibiotic therapy. The analysis evaluated mortality rates and incidence rate of renal dysfunction, also employing parametric survival models to assess 30-day survival rates. RESULTS: In the study involving 96 articles and 9,716 patients, polymyxin B's daily dose showed minimal effect on overall mortality, with high-dose group mortality at 33.57% (95% CI: 29.15-38.00) compared to the low-dose group at 35.44% (95% CI: 28.99-41.88), p=0.64. Mortality significantly varied by bacterial species, with Pseudomonas aeruginosa infections at 58.50% (95% CI: 55.42-63.58). Monotherapy exhibited the highest mortality at 40.25% (95% CI: 34.75-45.76), p<0.01. Renal dysfunction was more common in high-dose patients at 29.75% (95% CI: 28.52-30.98), with no significant difference across antibiotic regimens, p=0.54. The 30-day Overall Survival rate for monotherapy therapy was 63.6% (95% CI: 59.3-67.5) and 70.2% (95% CI: 64.4-76.2) for association therapy with ß-lactam drugs. CONCLUSIONS: The dosage of Polymyxin B doesn't significantly change death rates, but its effectiveness varies based on the bacterial infection. Certain bacteria like Pseudomonas aeruginosa are associated with higher mortality. Combining Polymyxin B with other antibiotics, especially ß-lactam drugs, improves survival rates. Side effects depend on the dose, with lower doses being safer. These findings emphasize the importance of customizing treatment to balance effectiveness and safety.

2.
Int J Cardiol ; 411: 132265, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38880416

ABSTRACT

BACKGROUND: The prognostic efficacy of a coronary computed tomography angiography (CCTA)-derived myocardial radiomics model in patients with chronic myocardial infarction (MI) is unclear. METHODS: In this retrospective study, a cohort of 236 patients with chronic MI who underwent both CCTA and cardiac magnetic resonance (CMR) examinations within 30 days were enrolled and randomly divided into training and testing datasets at a ratio of 7:3. The clinical endpoints were major adverse cardiovascular events (MACE), defined as all-cause death, myocardial reinfarction and heart failure hospitalization. The entire three-dimensional left ventricular myocardium on CCTA images was segmented as the volume of interest for the extraction of radiomics features. Five models, namely the clinical model, CMR model, clinical+CMR model, CCTA-radiomics model, and clinical+CCTA-radiomics model, were constructed using multivariate Cox regression. The prognostic performances of these models were evaluated through receiver operating characteristic curve analysis and the index of concordance (C-index). RESULTS: Fifty-one (20.16%) patients experienced MACE during a median follow-up of 1439.5 days. The predictive performance of the CCTA-radiomics model surpassed that of the clinical model, CMR model, and clinical+CMR model in both the training (area under the curve (AUC) of 0.904 vs. 0.691, 0.764, 0.785; C-index of 0.88 vs. 0.71, 0.75, 0.76, all p values <0.001) and testing (AUC of 0.893 vs. 0.704, 0.851, 0.888; C-index of 0.86 vs. 0.73, 0.85, 0.85, all p values <0.05) datasets. CONCLUSIONS: The CCTA-based myocardial radiomics model is a valuable tool for predicting adverse outcomes in chronic MI, providing incremental value to conventional clinical and CMR parameters.

3.
Org Lett ; 26(25): 5335-5340, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38885466

ABSTRACT

Here we disclose a CuB-catalyzed reaction between aurone-derived α,ß-unsaturated imines and styrenes to produce 2-substituted benzofuran derivatives bearing both the γ-boryl functionality and α,ß-unsymmetric stereogenic centers. The reaction represents the first transition-metal-catalyzed unsymmetric 1,4-Michael additions of azadienes, which would enrich the arsenal of CuB catalysis in organic synthesis. In addition, the synthetically versatile boron-alkylated products can be elaborated by chemical transformations to useful optically active benzofuran heterocycles.

4.
BMC Anesthesiol ; 24(1): 200, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38840092

ABSTRACT

BACKGROUND: The inhalational anesthetic isoflurane is commonly utilized in clinical practice, particularly in the field of pediatric anesthesia. Research has demonstrated its capacity to induce neuroinflammation and long-term behavioral disorders; however, the underlying mechanism remains unclear [1]. The cation-chloride cotransporters Na+-K+-2Cl--1 (NKCC1) and K+-2Cl--2 (KCC2) play a pivotal role in regulating neuronal responses to gamma-aminobutyric acid (GABA) [2]. Imbalances in NKCC1/KCC2 can disrupt GABA neurotransmission, potentially leading to neural circuit hyperexcitability and reduced inhibition following neonatal exposure to anesthesia [3]. Therefore, this study postulates that anesthetics have the potential to dysregulate NKCC1 and/or KCC2 during brain development. METHODS: We administered 1.5% isoflurane anesthesia to neonatal rats for a duration of 4 h at postnatal day 7 (PND7). Anxiety levels were assessed using the open field test at PND28, while cognitive function was evaluated using the Morris water maze test between PND31 and PND34. Protein levels of NKCC1, KCC2, BDNF, and phosphorylated ERK (P-ERK) in the hippocampus were measured through Western blotting analysis. Pro-inflammatory cytokines IL-1ß, IL-6, and TNF-α were quantified using ELISA. RESULTS: We observed a decrease in locomotion trajectories within the central region and a significantly shorter total distance in the ISO group compared to CON pups, indicating that isoflurane induces anxiety-like behavior. In the Morris water maze (MWM) test, rats exposed to isoflurane exhibited prolonged escape latency onto the platform. Additionally, isoflurane administration resulted in reduced time spent crossing in the MWM experiment at PND34, suggesting long-term impairment of memory function. Furthermore, we found that isoflurane triggered activation of pro-inflammatory cytokines IL-1ß, IL-6, and TNF-α; downregulated KCC2/BDNF/P-ERK expression; and increased the NKCC1/KCC2 ratio in the hippocampus of PND7 rats. Bumetadine (NKCC1 specific inhibitors) reversed cognitive damage and effective disorder induced by isoflurane in neonatal rats by inhibiting TNF-α activation, normalizing IL-6 and IL-1ß levels, restoring KCC2 expression levels as well as BDNF and ERK signaling pathways. Based on these findings, it can be speculated that BDNF, P-ERK, IL-1ß, IL-6 and TNF - α may act downstream of the NKCC1/KCC2 pathway. CONCLUSIONS: Our findings provide evidence that isoflurane administration in neonatal rats leads to persistent cognitive deficits through dysregulation of the Cation-Chloride Cotransporters NKCC1 and KCC2, BDNF, p-ERK proteins, as well as neuroinflammatory processes.


Subject(s)
Anesthetics, Inhalation , Animals, Newborn , Isoflurane , K Cl- Cotransporters , Solute Carrier Family 12, Member 2 , Symporters , Animals , Isoflurane/pharmacology , Solute Carrier Family 12, Member 2/metabolism , Symporters/metabolism , Anesthetics, Inhalation/pharmacology , Anesthetics, Inhalation/adverse effects , Rats , Mice , Rats, Sprague-Dawley , Male , Neuroinflammatory Diseases/chemically induced , Neuroinflammatory Diseases/metabolism , Female , Cognitive Dysfunction/chemically induced , Cognitive Dysfunction/metabolism
5.
Diabetes Res Clin Pract ; 213: 111728, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38838943

ABSTRACT

AIMS: This study aimed to investigate the association between serum levels of common and uncommon unsaturated fatty acids and prediabetes risk. METHODS: Data were collected from the National Health and Nutrition Examination Survey for 2003-2004 and 2011-2012. Weighted proportional and multivariate logistic regression analyses were performed to assess the association of serum PUFAs and MUFAs with prediabetes risk after adjusting for potential confounders. RESULTS: A total of 3575 individuals were enrolled in this study. Serum levels of PUFAs EPA (20:5 n3) and GLA (18:3 n6) were associated with increased prediabetes risk (EPA (20:5 n3): OR = 1.878, 95% CI: 1.177-2.996, Ptrend = 0.002; GLA (18:3 n6): 1.702, 95% CI: 1.140-2.541, Ptrend = 0.016). The MUFAs PA (16:1 n7) and EA (20:1 n9) were associated with the risk of prediabetes (OR in quintile5: PA (16:1 n7): 1.780, 95% CI: 1.056-3.001, Ptrend = 0.003; EA (20:1 n9): 0.587, 95% CI: 0.347-0.994, Ptrend = 0.010). Moreover, nonlinear analysis revealed that serum levels of EPA (20:5 n3) and EA (20:1 n-9) were nonlinearly associated with prediabetes risk. CONCLUSION: Some serum n-3 PUFAs are positively associated with prediabetes, several serum n-6 PUFAs are inversely associated with prediabetes. Regulating individual serum USFA levels may help prevent prediabetes, thereby providing evidence for clinical and nutritional practices.

6.
J Colloid Interface Sci ; 673: 922-933, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38909491

ABSTRACT

Potassium-ion hybrid capacitors (PIHC) are considered as ideal large-scale rechargeable energy storage devices due to their low-cost, high-power density and environmental protection. However, a low energy density is the main factor restricting the practical application of PIHC. The interface is formed on the surface of electrode material of PIHC through strong correlation to construct heterojunction, which can significantly improve the performance of ion energy storage. However, how to reveal the influence of the interfacial state of the heterojunction on the adsorption and electron transmission of energy storage ions at the atomic level is still one of the key scientific problems in this field. In this work, metal ion intercalation and microwave-assisted in-situ etching are used to construct the Hexagon MXene Ti3C2 heterojunction with TiOHO strong correlation. At the interface of heterojunction, TiOHO highway for electron transmission is developed to improve the rate performance of PIHC. Through experimental and theoretical calculation, the optimum adsorption position and maximum adsorption amount of potassium-ion at the single interface of heterojunction are obtained, and the specific energy density of PIHC is increased. This lays a foundation for the practical application of high-performance soft-package PIHC.

7.
BMC Pulm Med ; 24(1): 293, 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38914981

ABSTRACT

BACKGROUND: The risk of asthma in patients with psoriasis has been identified in previous studies, but the bidirectional association between the two has not been fully explored. METHODS: We thoroughly searched PubMed, Embase, and the Cochrane Library to find relevant observational studies published from the inception of these databases to October 2023. All the risk and bias assessments were analyzed by STATA 16.0. Where the heterogeneity was less than 50%, the fixed effect model was utilized. While where the level of heterogeneity was more than 50%, the random effect model was applied. Moreover, to identify publication bias, a visual funnel chart, and Egger's test were applied. RESULTS: A total of 12,396,911 participants from 16 studies, published between 2011 and 2023 were included in this meta-analysis. We found that psoriasis patients had a higher risk of developing asthma (OR = 1.48, 95%CI 1.28-1.68). Meanwhile, asthma patients also had a higher overall risk of developing psoriasis (OR = 1.33, 95%CI 1.23-1.44). In the subgroup analysis, we found that the type of study, age, and severity of the psoriasis were significant factors in the survey of asthma risk in psoriasis patients. CONCLUSIONS: In the present systematic review and meta-analysis, we found a bidirectional association between psoriasis and asthma with significantly increased risk. As a result, clinicians should make patients aware of the connection between the two, particularly adolescents or patients with moderate to severe psoriasis who need to be informed about the rising likelihood of developing asthma. TRIAL REGISTRATION: Registration number CRD42023390111 .


Subject(s)
Asthma , Psoriasis , Psoriasis/complications , Psoriasis/epidemiology , Humans , Asthma/epidemiology , Asthma/complications , Risk Factors
8.
Front Oncol ; 14: 1364627, 2024.
Article in English | MEDLINE | ID: mdl-38854732

ABSTRACT

Purpose: Bulky tumor remains as a challenge to surgery, chemotherapy and conventional radiation therapy. Hence, in efforts to overcome this challenge, we designed a novel therapeutic paradigm via strategy of Stereotactic Central/Core Ablative Radiation Therapy (SCART).), which is based on the principles of SBRT (stereotactic body radiation therapy and spatially fractionated radiation therapy (SFRT). We intend to safely deliver an ablative dose to the core of the tumor and with a low dose at tumor edge. The purpose of the phase 1 study was to determine dose-limiting toxicities (DLT)s and the Maximum Tolerated Dose (MTD) of SCART. Methods and materials: We defined a SCART-plan volume inside the tumor, which is proportional to the dimension of tumor. VMAT/Cyberknife technique was adopted. In the current clinical trial; Patients with biopsy proven recurrent or metastatic bulky cancers were enrolled. The five dose levels were 15 Gy X1, 15Gy X3, 18GyX3, 21GyX3 and 24GyX3, while keeping the whole tumor GTV's border dose at 5Gy each fraction. There was no restriction on concurrent systemic chemotherapy agents. Results: 21 patients were enrolled and underwent SCART. All 21 patients have eligible data for study follow-up. Radiotherapy was well tolerated with all treatment completed as scheduled. The dose was escalated for two patients to 24GyX3. No grade 3 or higher toxicity was observed in any of the enrolled patients. The average age of patients was 66 years (range: 14-85) and 13 (62%) patients were male. The median SCART dose was 18Gy (range: 15 - 24). Six out of the 18 patients with data for overall survival (OS) died, and the median time to death was 16.3 months (range: 1 - 25.6). The mean percent change for tumor shrinkage between first visit volumes and post-SCART volumes was 49.5% (SD: 40.89, p-value:0.009). Conclusion: SCART was safely escalated to 24 GyX 3 fractions, which is the maximum Tolerated Dose (MTD) for SCART. This regimen will be used in future phase II trials.

9.
Ren Fail ; 46(2): 2359638, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38832484

ABSTRACT

Emerging data have revealed that damage to tubular epithelial cell is a driving force in the progression of diabetic kidney disease (DKD). However, the specific mechanisms by which lipotoxicity contributes to the injury of these cells, thereby influencing the development of DKD, are yet to be fully understood. Here, we analyzed the GSE 30529 microarray datasets of human tubulointerstitial tissue samples from the Gene Expression Omnibus database (GEO). Concurrently, we conducted RNA-sequencing on palmitic acid (PA)-treated human renal proximal tubule epithelial cells (HK2 cells). After normalization, the differentially expressed genes (DEGs) were screened by R software and gene ontology (GO) enrichment analysis was conducted, and lysosomal-associated protein transmembrane 5 (LAPTM5) was finally selected. Our findings indicate that the expression of LAPTM5 was obviously increased in DKD patients, and the correlation between LAPTM5, and other clinical parameters of DKD was analyzed using the Spearman correlation analysis. The potential of LAPTM5 as a prognostic biomarker for DKD was further consolidated through receiver operating characteristic (ROC) analysis. To further verify the function of LAPTM5, we established mouse or in vitro systems mimicking DKD. The results showed that a consistent upregulation of LAPTM5, which was also found to be linked with inflammatory mediators within the context of DKD. Additionally, LAPTM5 silencing significantly downregulated mRNA expression of inflammatory factors in PA-treated HK2 cells. These results indicate that LAPTM5 is a potential biomarker and therapeutic treatment target for DKD. This discovery paves the way for future research and development of targeted interventions aimed at mitigating the progression of this prevalent condition.


Subject(s)
Computational Biology , Diabetic Nephropathies , Membrane Proteins , Diabetic Nephropathies/metabolism , Diabetic Nephropathies/genetics , Diabetic Nephropathies/etiology , Diabetic Nephropathies/pathology , Humans , Animals , Mice , Membrane Proteins/metabolism , Membrane Proteins/genetics , Kidney Tubules, Proximal/metabolism , Kidney Tubules, Proximal/pathology , Cell Line , Palmitic Acid/metabolism , Epithelial Cells/metabolism , Epithelial Cells/drug effects , Male , Mice, Inbred C57BL , Up-Regulation , Biomarkers/metabolism
10.
Environ Pollut ; 355: 124102, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38710362

ABSTRACT

Lead (Pb) and cadmium (Cd) have been identified as the primary contaminants in soil, posing potential health threats. This study aimed to examine the effects of applying a nitrogen fertilizer and a fungal agent Trichoderma harzianum J2 (nitrogen alone, fungi alone, and combined use) on the phytoremediation of soils co-contaminated with Pb and Cd. The growth of Leucaena leucocephala was monitored in the seedling, differentiation, and maturity stages to fully comprehend the remediation mechanisms. In the maturity stage, the biomass of L. leucocephala significantly increased by 18% and 29% under nitrogen-alone (NCK+) and fungal agent-alone treatments (J2), respectively, compared with the control in contaminated soil (CK+). The remediation factors of Pb and Cd with NCK+ treatment significantly increased by 50% and 125%, respectively, while those with J2 treatment increased by 73% and 145%, respectively. The partial least squares path model suggested that the nitrogen-related soil properties were prominent factors affecting phytoextraction compared with biotic factors (microbial diversity and plant growth). This model explained 2.56 of the variation in Cd concentration under J2 treatment, and 2.97 and 2.82 of the variation in Pb concentration under NCK+ and J2 treatments, respectively. The redundancy analysis showed that the samples under NCK+ and J2 treatments were clustered similarly in all growth stages. Also, Chytridiomycota, Mucoromucota, and Ciliophora were the key bioindicators for coping with heavy metals. Overall, a similar remediation mechanism allowed T. harzianum J2 to replace the nitrogen fertilizer to avoid secondary pollution. In addition, their combined use further increased the remediation efficiency.


Subject(s)
Biodegradation, Environmental , Cadmium , Fertilizers , Metals, Heavy , Nitrogen , Soil Pollutants , Fertilizers/analysis , Soil Pollutants/metabolism , Nitrogen/metabolism , Cadmium/metabolism , Metals, Heavy/metabolism , Lead/metabolism , Soil/chemistry , Hypocreales/metabolism
11.
Chem Soc Rev ; 53(11): 5862-5903, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38716589

ABSTRACT

Biological nanoparticles, or bionanoparticles, are small molecules manufactured in living systems with complex production and assembly machinery. The products of the assembly systems can be further engineered to generate functionalities for specific purposes. These bionanoparticles have demonstrated advantages such as immune system evasion, minimal toxicity, biocompatibility, and biological clearance. Hence, bionanoparticles are considered the new paradigm in nanoscience research for fabricating safe and effective nanoformulations for therapeutic purposes. Harnessing the power of the immune system to recognize and eradicate malignancies is a viable strategy to achieve better therapeutic outcomes with long-term protection from disease recurrence. However, cancerous tissues have evolved to become invisible to immune recognition and to transform the tumor microenvironment into an immunosuppressive dwelling, thwarting the immune defense systems and creating a hospitable atmosphere for cancer growth and progression. Thus, it is pertinent that efforts in fabricating nanoformulations for immunomodulation are mindful of the tumor-induced immune aberrations that could render cancer nanotherapy inoperable. This review systematically categorizes the immunosuppression mechanisms, the regulatory immunosuppressive cellular players, and critical suppressive molecules currently targeted as breakthrough therapies in the clinic. Finally, this review will summarize the engineering strategies for affording immune moderating functions to bionanoparticles that tip the tumor microenvironment (TME) balance toward cancer elimination, a field still in the nascent stage.


Subject(s)
Immunomodulation , Nanoparticles , Neoplasms , Tumor Microenvironment , Humans , Nanoparticles/chemistry , Neoplasms/drug therapy , Neoplasms/therapy , Neoplasms/immunology , Tumor Microenvironment/drug effects , Immunomodulation/drug effects , Animals
12.
Front Microbiol ; 15: 1401436, 2024.
Article in English | MEDLINE | ID: mdl-38751721

ABSTRACT

Broad bean paste is a popular condiment in Asian countries. Leaves of Vitex negundo Linn. were used extensively in China during the koji-making of broad bean paste. Spreading V. negundo leaves on raw broad beans during fermentation was able to facilitate the rapid growth of fungi to form mature koji. We isolated two strains of fungi from mature koji, and four strains of bacteria from the rotten broad beans resulting from a failed attempt. According to microbial activity assays, two polymethoxylated flavones, 5-hydroxy-3,6,7,8,3',4'-hexamethoxy flavone (HJ-1) and 5,4'-dihydroxy-3,6,7,8,3'-pentamethoxy flavone (HJ-2) were isolated from V. negundo leaves, and the fungal growth promotion and inhibition of bacterial growth of these two compounds were found to improve the production of broad bean koji. This study reveals the compounds present in V. negundo leaves with bioactivity against important microbes in koji manufacture, and provides a theoretical basis for the application of V. negundo in broad bean paste production.

13.
Med Phys ; 2024 May 16.
Article in English | MEDLINE | ID: mdl-38753987

ABSTRACT

BACKGROUND: Currently, an advanced imaging method may be necessary for magnetic resonance imaging (MRI) to diagnosis and quantify liver fibrosis (LF). PURPOSE: To evaluate the feasibility of the multicompartmental restriction spectrum imaging (RSI) model to characterize LF in a mouse model. METHODS: Thirty mice with carbon tetrachloride (CCl4)-induced LF and eight control mice were investigated using multi-b-value (ranging from 0 to 2000 s/mm2) diffusion-weighted imaging (DWI) on a 3T scanner. DWI data were processed using RSI model (2-5 compartments) with the Bayesian Information Criterion (BIC) determining the optimal model. Conventional ADC value and signal fraction of each compartment in the optimal RSI model were compared across groups. Receiver operating characteristics (ROC) curve analysis was performed to determine the diagnosis performances of different parameters, while Spearman correlation analysis was employed to investigate the correlation between different tissue compartments and the stage of LF. RESULTS: According to BIC results, a 4-compartment RSI model (RSI4) with optimal ADCs of 0.471 × 10-3, 1.653 × 10-3, 9.487 × 10-3, and > 30 × 10-3, was the optimal model to characterize LF. Significant differences in signal contribution fraction of the C1 and C3 compartments were observed between LF and control groups (P = 0.018 and 0.003, respectively). ROC analysis showed that RSI4-C3 was the most effective single diffusion parameter for characterizing LF (AUC = 0.876, P = 0.003). Furthermore, the combination of ADC values and RSI4-C3 value increased the diagnosis performance significantly (AUC = 0.894, P = 0.002). CONCLUSION: The 4-compartment RSI model has the potential to distinguish LF from the control group based on diffusion parameters. RSI4-C3 showed the highest diagnostic performance among all the parameters. The combination of ADC and RSI4-C3 values further improved the discrimination performance.

14.
Nanomaterials (Basel) ; 14(10)2024 May 16.
Article in English | MEDLINE | ID: mdl-38786824

ABSTRACT

Two-dimensional (2D) van der Waals layered materials have been explored in depth. They can be vertically stacked into a 2D heterostructure and represent a fundamental way to explore new physical properties and fabricate high-performance nanodevices. However, the controllable and scaled growth of non-layered quasi-2D materials and their heterostructures is still a great challenge. Here, we report a selective two-step growth method for high-quality single crystalline CrTe/WSe2 and CrTe/MoS2 heterostructures by adopting a universal CVD strategy with the assistance of molten salt and mass control. Quasi-2D metallic CrTe was grown on pre-deposited 2D transition metal dichalcogenides (TMDC) under relatively low temperatures. A 2D CrTe/TMDC heterostructure was established to explore the interface's structure using scanning transmission electron microscopy (STEM), and also demonstrate ferromagnetism in a metal-semiconductor CrTe/TMDC heterostructure.

15.
Nat Commun ; 15(1): 4415, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38789444

ABSTRACT

Organic room-temperature phosphorescence materials have attracted extensive attention, but their development is limited by the stability and processibility. Herein, based on the on-line derivatization strategy, we report the urea-formaldehyde room-temperature phosphorescence materials which are constructed by polycondensation of aromatic diamines with urea and formaldehyde. Excitingly, urea-formaldehyde room-temperature phosphorescence materials achieve phosphor lifetime up to 3326 ms. There may be two ways to enhance phosphorescence performance, one is that the polycondensation of aromatic diamine with urea and formaldehyde promotes spin-orbit coupling, and another is that the imidazole derivatives derived from the condensation of aromatic o-diamine with formaldehyde maintains low levels of energy level difference and spin-orbit coupling, thus achieving ultra-long afterglow. Surprisingly, urea-formaldehyde room-temperature phosphorescence materials exhibit tunable phosphorescence emission in electrostatic field. Accordingly, 1,4-phenylenediamine, urea, and formaldehyde are copolymerized and self-assembled into phosphorescence microspheres with different electrostatic potential strengths. By mixing 1 wt% 1,4-phenylenediamine polycondensation microspheres with 1,4-phenylenediamine free microspheres, phosphor lifetime of the composite could be regulated from 27 ms to 123 ms. Moreover, vulcanization process enables precise shaping of urea-formaldehyde room-temperature phosphorescence materials. This work not only demonstrates that urea-formaldehyde room-temperature phosphorescence materials are promising candidates for organic phosphors, but also exhibits the phenomenon of electrostatically regulated phosphorescence.

16.
JAMA Netw Open ; 7(5): e2412687, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38776081

ABSTRACT

Importance: Large language models (LLMs) may facilitate the labor-intensive process of systematic reviews. However, the exact methods and reliability remain uncertain. Objective: To explore the feasibility and reliability of using LLMs to assess risk of bias (ROB) in randomized clinical trials (RCTs). Design, Setting, and Participants: A survey study was conducted between August 10, 2023, and October 30, 2023. Thirty RCTs were selected from published systematic reviews. Main Outcomes and Measures: A structured prompt was developed to guide ChatGPT (LLM 1) and Claude (LLM 2) in assessing the ROB in these RCTs using a modified version of the Cochrane ROB tool developed by the CLARITY group at McMaster University. Each RCT was assessed twice by both models, and the results were documented. The results were compared with an assessment by 3 experts, which was considered a criterion standard. Correct assessment rates, sensitivity, specificity, and F1 scores were calculated to reflect accuracy, both overall and for each domain of the Cochrane ROB tool; consistent assessment rates and Cohen κ were calculated to gauge consistency; and assessment time was calculated to measure efficiency. Performance between the 2 models was compared using risk differences. Results: Both models demonstrated high correct assessment rates. LLM 1 reached a mean correct assessment rate of 84.5% (95% CI, 81.5%-87.3%), and LLM 2 reached a significantly higher rate of 89.5% (95% CI, 87.0%-91.8%). The risk difference between the 2 models was 0.05 (95% CI, 0.01-0.09). In most domains, domain-specific correct rates were around 80% to 90%; however, sensitivity below 0.80 was observed in domains 1 (random sequence generation), 2 (allocation concealment), and 6 (other concerns). Domains 4 (missing outcome data), 5 (selective outcome reporting), and 6 had F1 scores below 0.50. The consistent rates between the 2 assessments were 84.0% for LLM 1 and 87.3% for LLM 2. LLM 1's κ exceeded 0.80 in 7 and LLM 2's in 8 domains. The mean (SD) time needed for assessment was 77 (16) seconds for LLM 1 and 53 (12) seconds for LLM 2. Conclusions: In this survey study of applying LLMs for ROB assessment, LLM 1 and LLM 2 demonstrated substantial accuracy and consistency in evaluating RCTs, suggesting their potential as supportive tools in systematic review processes.


Subject(s)
Bias , Randomized Controlled Trials as Topic , Humans , Reproducibility of Results , Language , Risk Assessment/methods
18.
J Magn Reson Imaging ; 2024 May 09.
Article in English | MEDLINE | ID: mdl-38722216

ABSTRACT

BACKGROUND: Analysis of left atrial (LA) strain and left atrioventricular coupling index (LACI) have prognostic value in cardiovascular diseases. However, the prognostic value of LA strain and LACI in patients with suspected myocarditis and preserved left ventricular ejection fraction (LVEF) is unclear. PURPOSE: To investigate the prognostic value of LA strain and LACI in patients with suspected myocarditis and preserved LVEF in comparison with conventional MRI outcome predictors. STUDY TYPE: Retrospective. POPULATION: One hundred sixty-five patients with clinically suspected myocarditis and preserved LVEF with available follow-up data. FIELD STRENGTH/SEQUENCE: Steady-state free precession cine and phase-sensitive inversion recovery segmented gradient echo late gadolinium enhancement sequences at 3.0 T. ASSESSMENT: Left ventricular (LV) and LA strain were evaluated using feature tracking. LACI was calculated as the ratio of LA and LV volumes at LV end-diastole. Patients were followed-up with the primary endpoint being major adverse cardiovascular events (MACE). STATISTICAL TESTS: Independent-samples t-test and Mann-Whitney U test to compare patients with and without MACE, receiver operating characteristic (ROC) curve analysis to define high/low risk groups, Kaplan-Meier survival analysis and Cox proportional hazards regression to assess prognosis. A P value of <0.05 was considered statistically significant. RESULTS: The associations of LV strain parameters (including global radial, circumferential, and longitudinal strain) and LACI with MACE were not significant (P = 0.511, 0.108, 0.148, and 0.847, respectively). An optimal LA conduit strain (Ԑe) cutoff value of 10.4% was identified to best classify patients into low- and high-risk groups. Only Ԑe was significantly associated with MACE in both univariable (hazards ratio [HR] 0.936, 95% confidence interval [CI] 0.884-0.991) and multivariable Cox survival analyses (HR 0.937, 95% CI 0.884-0.994). DATA CONCLUSION: LA conduit strain has prognostic value in patients with suspected myocarditis and preserved LVEF, incremental to conventional MRI outcome predictors, whereas LACI was not associated with MACE occurrence. EVIDENCE LEVEL: 3 TECHNICAL EFFICACY: Stage 2.

20.
Int J Biol Macromol ; 271(Pt 2): 132548, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38782323

ABSTRACT

A new approach of fabricating α-linolenic acid emulsions with enhanced oxidative stability in vitro digestion was established, using covalent octenyl succinic anhydride starch (OSAS)-soy protein (SP)-epigallocatechin-3-gallate (EGCG) complexes as emulsifiers. The physicochemical characteristics and surface morphology of emulsions were mainly characterized by rheological measurements, laser scanning microscope (CLSM) and cryo-scanning electron microscopy (Cryo-SEM). Results indicated that emulsions had dense interfacial layers and strong network structures. As a result, the stability and antioxidant ability of emulsions were improved significantly. In addition, the oxidative stability of emulsions in vitro gastrointestinal digestion was explored. Results showed that emulsions could maintain better oxidative stability owing to antioxidant activity of covalent OSAS-SP-EGCG complexes under gastrointestinal conditions. In particular, lipid hydroperoxide and malondialdehyde contents of emulsions prepared by 1:4 complexes were lower than 0.35 mmol/L and 20.5 nmol/mL, respectively, approximately half those of emulsions stabilized by OSAS (0.65 mmol/L and 39.5 nmol/mL). It was indicated that covalent OSAS-SP-EGCG complexes could effectively inhibit α-linolenic acid oxidation in emulsions during vitro gastrointestinal digestion. This work will provide a theoretical basis for the development of α-linolenic acid emulsions, which will help to broaden application of α-linolenic acid in food industry.


Subject(s)
Antioxidants , Digestion , Emulsions , Oxidation-Reduction , Starch , alpha-Linolenic Acid , Starch/chemistry , Starch/analogs & derivatives , Emulsions/chemistry , alpha-Linolenic Acid/chemistry , Antioxidants/chemistry , Antioxidants/pharmacology , Soybean Proteins/chemistry , Gastrointestinal Tract/metabolism , Catechin/chemistry , Catechin/analogs & derivatives , Rheology
SELECTION OF CITATIONS
SEARCH DETAIL
...