Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 88
Filter
1.
bioRxiv ; 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38895230

ABSTRACT

Identifying cell types and states remains a time-consuming and error-prone challenge for spatial biology. While deep learning is increasingly used, it is difficult to generalize due to variability at the level of cells, neighborhoods, and niches in health and disease. To address this, we developed TACIT, an unsupervised algorithm for cell annotation using predefined signatures that operates without training data, using unbiased thresholding to distinguish positive cells from background, focusing on relevant markers to identify ambiguous cells in multiomic assays. Using five datasets (5,000,000-cells; 51-cell types) from three niches (brain, intestine, gland), TACIT outperformed existing unsupervised methods in accuracy and scalability. Integration of TACIT-identified cell with a novel Shiny app revealed new phenotypes in two inflammatory gland diseases. Finally, using combined spatial transcriptomics and proteomics, we discover under- and overrepresented immune cell types and states in regions of interest, suggesting multimodality is essential for translating spatial biology to clinical applications.

2.
Nat Commun ; 15(1): 5016, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38876998

ABSTRACT

Periodontitis affects billions of people worldwide. To address relationships of periodontal niche cell types and microbes in periodontitis, we generated an integrated single-cell RNA sequencing (scRNAseq) atlas of human periodontium (34-sample, 105918-cell), including sulcular and junctional keratinocytes (SK/JKs). SK/JKs displayed altered differentiation states and were enriched for effector cytokines in periodontitis. Single-cell metagenomics revealed 37 bacterial species with cell-specific tropism. Fluorescence in situ hybridization detected intracellular 16 S and mRNA signals of multiple species and correlated with SK/JK proinflammatory phenotypes in situ. Cell-cell communication analysis predicted keratinocyte-specific innate and adaptive immune interactions. Highly multiplexed immunofluorescence (33-antibody) revealed peri-epithelial immune foci, with innate cells often spatially constrained around JKs. Spatial phenotyping revealed immunosuppressed JK-microniches and SK-localized tertiary lymphoid structures in periodontitis. Here, we demonstrate impacts on and predicted interactomics of SK and JK cells in health and periodontitis, which requires further investigation to support precision periodontal interventions in states of chronic inflammation.


Subject(s)
Cell Communication , Keratinocytes , Periodontitis , Single-Cell Analysis , Humans , Keratinocytes/metabolism , Keratinocytes/immunology , Periodontitis/microbiology , Periodontitis/metabolism , Periodontitis/immunology , Periodontitis/pathology , Cytokines/metabolism , Periodontium/microbiology , Periodontium/metabolism , Periodontium/pathology , Immunity, Innate , In Situ Hybridization, Fluorescence , Male , Metagenomics/methods , Bacteria/metabolism , Bacteria/genetics , Female , Adult , Adaptive Immunity
3.
Article in English | MEDLINE | ID: mdl-38906441

ABSTRACT

BACKGROUND AND AIMS: Despite the poor prognosis associated with missed or delayed spontaneous bacterial peritonitis (SBP) diagnosis, <15% get timely paracentesis, which persists despite guidelines/education in the US. Measures to exclude SBP non-invasively where timely paracentesis cannot be performed could streamline this burden. METHODS: Using Veterans Health Administration Corporate Data Warehouse (VHA-CDW) we included cirrhosis patients between 2009-2019 who underwent timely paracentesis and collected relevant clinical information (demographics, cirrhosis severity, medications, vitals, and comorbidities). XGBoost-models were trained on 75% of the primary cohort, with 25% reserved for testing. The final model was further validated in two cohorts: Validation cohort #1: In VHA-CDW, those without prior SBP who received 2nd early paracentesis, and Validation cohort #2: Prospective data from 276 non-electively admitted University hospital patients. RESULTS: Negative predictive values (NPV) at 5,10 & 15% probability cutoffs were examined. Primary cohort: n=9,643 (mean age 63.1±8.7 years, 97.2% men, SBP:15.0%) received first early paracentesis. Testing-set NPVs for SBP were 96.5%, 93.0% and 91.6% at the 5%, 10% and 15% probability thresholds respectively. In Validation cohort #1: n=2844 (mean age 63.14±8.37 years, 97.1% male, SBP: 9.7%) with NPVs were 98.8%, 95.3% and 94.5%. In Validation cohort #2: n=276 (mean age 56.08±9.09, 59.6% male, SBP: 7.6%) with NPVs were 100%, 98.9% and 98.0% The final ML model showed the greatest net benefit on decision-curve analyses. CONCLUSIONS: A machine learning model generated using routinely collected variables excluded SBP with high negative predictive value. Applying this model could ease the need to provide paracentesis in resource-limited settings by excluding those unlikely to have SBP.

4.
Environ Res ; 258: 119456, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38906445

ABSTRACT

Anaerobic biological treatment technology, especially denitrification and anaerobic ammonia oxidation (anammox) technology as mainstream process, played dominant role in the field of biological wastewater treatment. However, the above process was prone to sludge floating during high load operation and thereby affecting the efficient and stable operation of the system. Excessive production of extracellular polymeric substance (EPS) was considered to be the main reason for anaerobic granular sludge flotation, but the summaries in this area were not comprehensive enough. In this review, the potential mechanisms of denitrification and anammox sludge floatation were discussed from the perspective of granular sludge structural characteristics, nutrient transfer, and microbial flora change respectively, and the corresponding control strategies were also summarized. Finally, this paper indicated that future research on sludge flotation should focus on reducing the negative effects of EPS in sludge particles.

5.
Biol Res Nurs ; : 10998004241257847, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38819871

ABSTRACT

Background: Hematopoietic Stem Cell Transplant (HCT) is a potentially curative treatment for hematologic malignancies, including multiple myeloma. Biomarker investigation can guide identification of HCT recipients at-risk for poor outcomes. MicroRNAs (miRNAs) are a class of non-coding RNAs involved in the modulation and regulation of pathological processes and are emerging as prognostic and predictive biomarkers for multiple health conditions. This pilot study aimed to examine miRNA profiles associated with HCT-related risk factors and outcomes in patients undergoing autologous HCT. Methods: Patients eligible for autologous HCT were recruited and blood samples and HCT-related variables were collected. Differential expression analysis of miRNA was conducted on 24 patient samples to compare changes in miRNA profile in HCT eligible patients before and after transplant. Results: Unsupervised clustering of differentially expressed (p < .05) miRNAs pre- and post- HCT identified clusters of up- and down-regulated miRNAs. Four miRNAs (miR-125a-5p, miR-99b-5p, miR-382-5p, miR-145-5p) involved in hematopoiesis (differentiation of progenitor cells, granulocyte function, thrombopoiesis, and tumor suppression) were significantly downregulated post-HCT. Correlation analyses identified select miRNAs associated with risk factors (such as frailty, fatigue, cognitive decline) and quality of life pre- and post-HCT. Select miRNAs were correlated with platelet engraftment. Conclusion: Future studies should examine miRNA signatures in larger cohorts in association with HCT outcomes; and expand investigations in patients receiving allogeneic transplants. This will lead to identification of biomarkers for risk stratification of HCT recipients.

6.
Bioinformatics ; 40(5)2024 May 02.
Article in English | MEDLINE | ID: mdl-38662583

ABSTRACT

MOTIVATION: The rapid expansion of Bioinformatics research has led to a proliferation of computational tools for scientific analysis pipelines. However, constructing these pipelines is a demanding task, requiring extensive domain knowledge and careful consideration. As the Bioinformatics landscape evolves, researchers, both novice and expert, may feel overwhelmed in unfamiliar fields, potentially leading to the selection of unsuitable tools during workflow development. RESULTS: In this article, we introduce the Bioinformatics Tool Recommendation system (BTR), a deep learning model designed to recommend suitable tools for a given workflow-in-progress. BTR leverages recent advances in graph neural network technology, representing the workflow as a graph to capture essential context. Natural language processing techniques enhance tool recommendations by analyzing associated tool descriptions. Experiments demonstrate that BTR outperforms the existing Galaxy tool recommendation system, showcasing its potential to streamline scientific workflow construction. AVAILABILITY AND IMPLEMENTATION: The Python source code is available at https://github.com/ryangreenj/bioinformatics_tool_recommendation.


Subject(s)
Computational Biology , Software , Workflow , Computational Biology/methods , Deep Learning , Natural Language Processing
7.
Circulation ; 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38660786

ABSTRACT

BACKGROUND: Dysregulated metabolism of bioactive sphingolipids, including ceramides and sphingosine-1-phosphate, has been implicated in cardiovascular disease, although the specific species, disease contexts, and cellular roles are not completely understood. Sphingolipids are produced by the serine palmitoyltransferase enzyme, canonically composed of 2 subunits, SPTLC1 (serine palmitoyltransferase long chain base subunit 1) and SPTLC2 (serine palmitoyltransferase long chain base subunit 2). Noncanonical sphingolipids are produced by a more recently described subunit, SPTLC3 (serine palmitoyltransferase long chain base subunit 3). METHODS: The noncanonical (d16) and canonical (d18) sphingolipidome profiles in cardiac tissues of patients with end-stage ischemic cardiomyopathy and in mice with ischemic cardiomyopathy were analyzed by targeted lipidomics. Regulation of SPTLC3 by HIF1α under ischemic conditions was determined with chromatin immunoprecipitation. Transcriptomics, lipidomics, metabolomics, echocardiography, mitochondrial electron transport chain, mitochondrial membrane fluidity, and mitochondrial membrane potential were assessed in the cSPTLC3KO transgenic mice we generated. Furthermore, morphological and functional studies were performed on cSPTLC3KO mice subjected to permanent nonreperfused myocardial infarction. RESULTS: Herein, we report that SPTLC3 is induced in both human and mouse models of ischemic cardiomyopathy and leads to production of atypical sphingolipids bearing 16-carbon sphingoid bases, resulting in broad changes in cell sphingolipid composition. This induction is in part attributable to transcriptional regulation by HIF1α under ischemic conditions. Furthermore, cardiomyocyte-specific depletion of SPTLC3 in mice attenuates oxidative stress, fibrosis, and hypertrophy in chronic ischemia, and mice demonstrate improved cardiac function and increased survival along with increased ketone and glucose substrate metabolism utilization. Depletion of SPTLC3 mechanistically alters the membrane environment and subunit composition of mitochondrial complex I of the electron transport chain, decreasing its activity. CONCLUSIONS: Our findings suggest a novel essential role for SPTLC3 in electron transport chain function and a contribution to ischemic injury by regulating complex I activity.

8.
J Biol Chem ; 300(6): 107322, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38677511

ABSTRACT

Obesity-induced metabolic dysfunction-associated steatohepatitis (MASH) leads to hepatocellular carcinoma (HCC). Astrocyte-elevated gene-1/Metadherin (AEG-1/MTDH) plays a key role in promoting MASH and HCC. AEG-1 is palmitoylated at residue cysteine 75 (Cys75) and a knock-in mouse representing mutated Cys75 to serine (AEG-1-C75S) showed activation of MASH- and HCC-promoting gene signature when compared to wild-type littermates (AEG-1-WT). The liver consists of three zones, periportal, mid-lobular, and pericentral, and zone-specific dysregulated gene expression impairs metabolic homeostasis in the liver, contributing to MASH and HCC. Here, to elucidate how palmitoylation influences AEG-1-mediated gene regulation in regard to hepatic zonation, we performed spatial transcriptomics (ST) in the livers of AEG-1-WT and AEG-1-C75S littermates. ST identified six different clusters in livers and using zone- and cell-type-specific markers we attributed specific zones and cell types to specific clusters. Ingenuity Pathway Analysis (IPA) of differentially expressed genes in each cluster unraveled activation of pro-inflammatory and MASH- and HCC-promoting pathways, mainly in periportal and pericentral hepatocytes, in AEG-1-C75S liver compared to AEG-1-WT. Interestingly, in AEG-1-C75S liver, the mid-lobular zone exhibited widespread inhibition of xenobiotic metabolism pathways and inhibition of PXR/RXR and LXR/RXR activation, versus AEG-1-WT. In conclusion, AEG-1-C75S mutant exhibited zone-specific differential gene expression, which might contribute to metabolic dysfunction and dysregulated drug metabolism leading to MASH and HCC.


Subject(s)
Lipoylation , Liver , Membrane Proteins , RNA-Binding Proteins , Animals , Mice , Membrane Proteins/metabolism , Membrane Proteins/genetics , Liver/metabolism , RNA-Binding Proteins/metabolism , RNA-Binding Proteins/genetics , Transcriptome , Gene Expression Regulation , Carcinoma, Hepatocellular/metabolism , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/pathology , Fatty Liver/metabolism , Fatty Liver/genetics , Fatty Liver/pathology , Liver Neoplasms/metabolism , Liver Neoplasms/genetics , Liver Neoplasms/pathology , Cell Adhesion Molecules/metabolism , Cell Adhesion Molecules/genetics , Male
9.
Gynecol Oncol Rep ; 52: 101360, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38549702

ABSTRACT

Objective: Endometrial cancer (EC) incidence and mortality are increasing with striking racial disparities. Race and obesity are known risk factors for EC, however, their relationship and impact on tumor biology in higher grade endometrioid EC are unclear. The objective of this pilot study was to identify gene- and pathway-level changes in tumors from Black patients compared to White, both in general and in the context of dichotomized BMI. Methods: A single institution retrospective convenience sample was obtained for grade 2 or 3 endometrioid EC, equally distributed amongst Black and White patients. Tumor samples were analyzed with the Tempus Laboratories xT NGS-based genome profiling test. DESeq2 was applied to identify differentially expressed genes, and then subjected to ingenuity pathway analysis (IPA). Continuous variables were analyzed using unpaired t-tests, and categorical using Chi-squared and Fisher exact tests. Results: 39 representative cases were identified and analyzed from 2006 to 2021. Baseline clinicopathologic characteristics were similar. 157 genes were differentially expressed in tumors from Black patients compared to White regardless of BMI. IPA identified 81 significantly different pathways between Black and White patients with a BMI < 40 kg/m2, and 117 with a BMI ≥ 40 kg/m2. Of these, eleven pathways were consistently and significantly activated or deactivated regardless of BMI. Conclusion: Differences in gene expression and pathway activation in EC exist between race and BMI, which highlights the need for further research to better understand the implications of these differences on endometrioid EC progression, outcomes, and treatment in this historically underserved patient population.

10.
Molecules ; 29(5)2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38474601

ABSTRACT

Three new phenols (1-3), one new cyclohexanol (4), two known phenols (5-6), and six known flavonoids (7-12) were isolated from the n-butanol of the 75% ethanol extract of all plants of Chimaphila japonica Miq. Among them, compound 5 was named and described in its entirety for the first time, and compounds 9 and 10 were reported in C. japonica for the first time. The structures of all compounds were confirmed using a comprehensive analysis of 1D and 2D NMR and HRESIMS data. Biological results show that compounds 4, 7, and 11 exhibited potent diuretic activity. The modes of interaction between the selected compounds and the target diuretic-related WNK1 kinase were investigated in a preliminary molecular docking study. These results provided insight into the chemodiversity and potential diuretic activities of metabolites in C. japonica.


Subject(s)
Antioxidants , Flavonoids , Molecular Docking Simulation , Flavonoids/chemistry , Antioxidants/chemistry , Phenols/chemistry , Plant Extracts/chemistry
11.
Food Funct ; 15(5): 2587-2603, 2024 Mar 04.
Article in English | MEDLINE | ID: mdl-38353975

ABSTRACT

Deer sinew as a by-product has high collagen and nutritional value. This study focuses on its hydrolysate being used as a calcium carrier to develop functional foods. The chelation mechanism was analyzed by SEM, EDS, UV-vis, FTIR, and fluorescence spectroscopy and zeta potential analysis after using peptide-sequenced deer sinew peptides for chelation with calcium ions. The results showed that the chelation of deer sinew peptides with calcium ions occurs mainly at the O and N atoms of carboxyl, amino and amide bonds. In vitro and in vivo studies revealed that deer sinew peptide-calcium chelate (DSPs-Ca) promoted the proliferation of MC3T3-E1 cells without toxic side effects and increased the alkaline phosphatase activity. The DSPs-Ca group improved the bone microstructure induced by low calcium, as well as up-regulated the expression of genes responsible for calcium uptake in the kidneys, as evidenced by serum markers, bone sections, bone parameters, and gene expression analyses in low-calcium-fed mice. From the above, it can be concluded that DSPs-Ca is expected to be a calcium supplement food for promoting bone health.


Subject(s)
Calcium , Deer , Mice , Animals , Calcium/metabolism , Deer/metabolism , Cell Proliferation , Calcium, Dietary/metabolism , Peptides/pharmacology , Peptides/metabolism , Ions/metabolism , Ions/pharmacology , Osteoblasts
12.
Mol Ther Nucleic Acids ; 35(1): 102126, 2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38352859

ABSTRACT

Activating cyclic GMP-AMP synthase-stimulator of interferon genes (cGAS-STING) holds great potential for cancer immunotherapy by eliciting type-I interferon (IFN-I) responses. Yet, current approaches to cGAS-STING activation rely on STING agonists, which suffer from difficult formulation, poor pharmacokinetics, and marginal clinical therapeutic efficacy. Here, we report nature-inspired oligonucleotide, Svg3, as a cGAS agonist for cGAS-STING activation in tumor combination immunotherapy. The hairpin-shaped Svg3 strongly binds to cGAS and enhances phase separation to form Svg3-cGAS liquid-like droplets. This results in cGAS-specific immunoactivation and robust IFN-I responses. Remarkably, Svg3 outperforms several state-of-the-art STING agonists in murine and human cells/tissues. Nanoparticle-delivered Svg3 reduces tumor immunosuppression and potentiates immune checkpoint blockade therapeutic efficacy of multiple syngeneic tumor models in wild-type mice, but in neither cGas-/- nor Sting-/- mice. Overall, these results demonstrate the great potential of Svg3 as a cGAS agonistic oligonucleotide for cancer combination immunotherapy.

13.
Aging Cell ; 23(5): e14108, 2024 May.
Article in English | MEDLINE | ID: mdl-38408164

ABSTRACT

Histones serve as a major carrier of epigenetic information in the form of post-translational modifications which are vital for controlling gene expression, maintaining cell identity, and ensuring proper cellular function. Loss of histones in the aging genome can drastically impact the epigenetic landscape of the cell leading to altered chromatin structure and changes in gene expression profiles. In this study, we investigated the impact of age-related changes on histone levels and histone acetylation in the retinal pigment epithelium (RPE) and retina of mice. We observed a global reduction of histones H1, H2A, H2B, H3, and H4 in aged RPE/choroid but not in the neural retina. Transcriptomic analyses revealed significant downregulation of histones in aged RPE/choroid including crucial elements of the histone locus body (HLB) complex involved in histone pre-mRNA processing. Knockdown of HINFP, a key HLB component, in human RPE cells induced histone loss, senescence, and the upregulation of senescence-associated secretory phenotype (SASP) markers. Replicative senescence and chronological aging in human RPE cells similarly resulted in progressive histone loss and acquisition of the SASP. Immunostaining of human retina sections revealed histone loss in RPE with age. Acetyl-histone profiling in aged mouse RPE/choroid revealed a specific molecular signature with loss of global acetyl-histone levels, including H3K14ac, H3K56ac, and H4K16ac marks. These findings strongly demonstrate histone loss as a unique feature of RPE aging and provide critical insights into the potential mechanisms linking histone dynamics, cellular senescence, and aging.


Subject(s)
Aging , Histones , Retinal Pigment Epithelium , Retinal Pigment Epithelium/metabolism , Histones/metabolism , Animals , Acetylation , Mice , Aging/metabolism , Humans , Cellular Senescence , Mice, Inbred C57BL
14.
Am J Transplant ; 24(6): 967-982, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38364959

ABSTRACT

Islets experience enormous stress during the isolation process, leading to suboptimal endocrine function after total pancreatectomy with islet autotransplantation (TPIAT). Our investigation focused on inducing isolation stress in islets ex vivo, where proinflammatory cytokines and hypoxia prompted the release of stress exosomes (exoS) sized between 50 and 200 nm. Mass spectrometry analysis revealed 3 distinct subgroups of immunogenic proteins within these exoS: damage-associated molecular patterns (DAMPs), chaperones, and autoantigens. The involvement of endosomal-sorting complex required for transport proteins including ras-associated binding proteins7A, ras-associated binding protein GGTA, vacuolar protein sorting associated protein 45, vacuolar protein sorting associated protein 26B, and the tetraspanins CD9 and CD63, in exoS biogenesis was confirmed through immunoblotting. Next, we isolated similar exoS from the islet infusion bags of TPIAT recipients (N = 20). The exosomes from infusion bags exhibited higher DAMP (heat shock protein family A [Hsp70] member 1B and histone H2B) levels, particularly in the insulin-dependent TPIAT group. Additionally, elevated DAMP protein levels in islet infusion bag exosomes correlated with increased insulin requirements (P = .010) and higher hemoglobin A1c levels 1-year posttransplant. A deeper exploration into exoS functionality revealed their potential to activate monocytes via the toll-like receptor 3/7: DAMP axis. This stimulation resulted in the induction of inflammatory phenotypes marked by increased levels of CD68, CD80, inducible nitric oxide synthase, and cyclooxygenase-2. This activation mechanism may impact the successful engraftment of transplanted islets.


Subject(s)
Exosomes , Graft Survival , Inflammation , Islets of Langerhans Transplantation , Islets of Langerhans , Transplantation, Autologous , Exosomes/metabolism , Humans , Islets of Langerhans/metabolism , Male , Graft Survival/immunology , Female , Inflammation/metabolism , Middle Aged , Adult , Prognosis , Hypoxia/metabolism , Follow-Up Studies , Graft Rejection/etiology , Graft Rejection/metabolism , Graft Rejection/immunology , Graft Rejection/pathology , Stress, Physiological , Biomarkers/metabolism , Diabetes Mellitus, Type 1/surgery , Diabetes Mellitus, Type 1/metabolism
15.
Cell Biosci ; 14(1): 14, 2024 Jan 25.
Article in English | MEDLINE | ID: mdl-38273376

ABSTRACT

BACKGROUND AND AIMS: Primary sclerosing cholangitis (PSC) is a chronic liver disease characterized by progressive biliary inflammation and bile duct injury. Berberine (BBR) is a bioactive isoquinoline alkaloid found in various herbs and has multiple beneficial effects on metabolic and inflammatory diseases, including liver diseases. This study aimed to examine the therapeutic effect of BBR on cholestatic liver injury in a PSC mouse model (Mdr2-/- mice) and elucidate the underlying mechanisms. METHODS: Mdr2-/-mice (12-14 weeks old, both sexes) received either BBR (50 mg/kg) or control solution daily for eight weeks via oral gavage. Histological and serum biochemical analyses were used to assess fibrotic liver injury severity. Total RNAseq and pathway analyses were used to identify the potential signaling pathways modulated by BBR in the liver. The expression levels of key genes involved in regulating hepatic fibrosis, bile duct proliferation, inflammation, and bile acid metabolism were validated by qRT-PCR or Western blot analysis. The bile acid composition and levels in the serum, liver, small intestine, and feces and tissue distribution of BBR were measured by LC-MS/MS. Intestinal inflammation and injury were assessed by gene expression profiling and histological analysis. The impact on the gut microbiome was assessed using 16S rRNA gene sequencing. RESULTS: BBR treatment significantly ameliorated cholestatic liver injury, evidenced by decreased serum levels of AST, ALT, and ALP, and reduced bile duct proliferation and hepatic fibrosis, as shown by H&E, Picro-Sirius Red, and CK19 IHC staining. RNAseq and qRT-PCR analyses indicated a substantial inhibition of fibrotic and inflammatory gene expression. BBR also mitigated ER stress by downregulating Chop, Atf4 and Xbp-1 expression. In addition, BBR modulated bile acid metabolism by altering key gene expressions in the liver and small intestine, resulting in restored bile acid homeostasis characterized by reduced total bile acids in serum, liver, and small intestine and increased fecal excretion. Furthermore, BBR significantly improved intestinal barrier function and reduced bacterial translocation by modulating the gut microbiota. CONCLUSION: BBR effectively attenuates cholestatic liver injury, suggesting its potential as a therapeutic agent for PSC and other cholestatic liver diseases.

16.
Transl Psychiatry ; 14(1): 59, 2024 Jan 25.
Article in English | MEDLINE | ID: mdl-38272911

ABSTRACT

The neurobiological origins of social behaviors are incompletely understood. Here we utilized synthetic biology approaches to reprogram the function of ZFP189, a transcription factor whose expression and function in rodent prefrontal cortex was previously demonstrated to be protective against stress-induced social deficits. We created novel synthetic ZFP189 transcription factors including ZFP189VPR, which activates the transcription of target genes and therefore exerts opposite functional control from the endogenous, transcriptionally repressive ZFP189WT. Following viral delivery of these synthetic ZFP189 transcription factors to mouse prefrontal cortex, we observe that ZFP189-mediated transcriptional control promotes mature dendritic spine morphology on transduced pyramidal neurons. Interestingly, inversion of ZFP189-mediated transcription in this brain area, achieved by viral delivery of synthetic ZFP189VPR, precipitates social behavioral deficits in terms of social interaction, motivation, and the cognition necessary for the maintenance of social hierarchy, without other observable behavioral deficits. RNA sequencing of virally manipulated prefrontal cortex tissues reveals that ZFP189 transcription factors of opposing regulatory function (ZFP189WT versus ZFP189VPR) have opposite influence on the expression of genetic transposable elements as well as genes that participate in adaptive immune functions. Collectively, this work reveals that ZFP189 function in the prefrontal cortex coordinates structural and transcriptional neuroadaptations necessary for complex social behaviors while regulating transposable element-rich regions of DNA and the expression of immune-related genes. Given the evidence for a co-evolution of social behavior and the brain immune response, we posit that ZFP189 may have evolved to augment brain transposon-associated immune function as a way of enhancing an animal's capacity for functioning in social groups.


Subject(s)
DNA Transposable Elements , Transcription Factors , Mice , Animals , Transcription Factors/genetics , Prefrontal Cortex/metabolism , Social Behavior , Zinc Fingers/genetics , Rodentia/genetics , Rodentia/metabolism , Immunity
17.
J Gen Physiol ; 156(2)2024 Feb 05.
Article in English | MEDLINE | ID: mdl-38226948

ABSTRACT

During chronic stress, persistent activation of cAMP-dependent protein kinase (PKA) occurs, which can contribute to protective or maladaptive changes in the heart. We sought to understand the effect of persistent PKA activation on NaV1.5 channel distribution and function in cardiomyocytes using adult rat ventricular myocytes as the main model. PKA activation with 8CPT-cAMP and okadaic acid (phosphatase inhibitor) caused an increase in Na+ current amplitude without altering the total NaV1.5 protein level, suggesting a redistribution of NaV1.5 to the myocytes' surface. Biotinylation experiments in HEK293 cells showed that inhibiting protein trafficking from intracellular compartments to the plasma membrane prevented the PKA-induced increase in cell surface NaV1.5. Additionally, PKA activation induced a time-dependent increase in microtubule plus-end binding protein 1 (EB1) and clustering of EB1 at myocytes' peripheral surface and intercalated discs (ICDs). This was accompanied by a decrease in stable interfibrillar microtubules but an increase in dynamic microtubules along the myocyte surface. Imaging and coimmunoprecipitation experiments revealed that NaV1.5 interacted with EB1 and ß-tubulin, and both interactions were enhanced by PKA activation. We propose that persistent PKA activation promotes NaV1.5 trafficking to the peripheral surface of myocytes and ICDs by providing dynamic microtubule tracks and enhanced guidance by EB1. Our proposal is consistent with an increase in the correlative distribution of NaV1.5, EB1, and ß-tubulin at these subcellular domains in PKA-activated myocytes. Our study suggests that persistent PKA activation, at least during the initial phase, can protect impulse propagation in a chronically stressed heart by increasing NaV1.5 at ICDs.


Subject(s)
Myocytes, Cardiac , NAV1.5 Voltage-Gated Sodium Channel , Protein Kinases , Tubulin , Animals , Humans , Rats , Cell Membrane , Cluster Analysis , HEK293 Cells , Protein Kinases/metabolism , NAV1.5 Voltage-Gated Sodium Channel/metabolism
18.
Cancer Res Commun ; 4(2): 388-403, 2024 02 13.
Article in English | MEDLINE | ID: mdl-38265267

ABSTRACT

Two important factors that contribute to resistance to immune checkpoint inhibitors (ICI) are an immune-suppressive microenvironment and limited antigen presentation by tumor cells. In this study, we examine whether inhibition of the methyltransferase enhancer of zeste 2 (EZH2) can increase ICI response in lung squamous cell carcinomas (LSCC). Our in vitro experiments using two-dimensional human cancer cell lines as well as three-dimensional murine and patient-derived organoids treated with two inhibitors of the EZH2 plus IFNγ showed that EZH2 inhibition leads to expression of both MHC class I and II (MHCI/II) expression at both the mRNA and protein levels. Chromatin immunoprecipitation sequencing confirmed loss of EZH2-mediated histone marks and gain of activating histone marks at key loci. Furthermore, we demonstrate strong tumor control in models of both autochthonous and syngeneic LSCC treated with anti-PD1 immunotherapy with EZH2 inhibition. Single-cell RNA sequencing and immune cell profiling demonstrated phenotypic changes toward more tumor suppressive phenotypes in EZH2 inhibitor-treated tumors. These results indicate that EZH2 inhibitors could increase ICI responses in patients undergoing treatment for LSCC. SIGNIFICANCE: The data described here show that inhibition of the epigenetic enzyme EZH2 allows derepression of multiple immunogenicity factors in LSCC, and that EZH2 inhibition alters myeloid cells in vivo. These data support clinical translation of this combination therapy for treatment of this deadly tumor type.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Carcinoma, Squamous Cell , Lung Neoplasms , Humans , Mice , Animals , Carcinoma, Squamous Cell/drug therapy , Cell Line , Enzyme Inhibitors , Lung Neoplasms/drug therapy , Lung/pathology , Tumor Microenvironment , Enhancer of Zeste Homolog 2 Protein/genetics
19.
J Cachexia Sarcopenia Muscle ; 15(1): 149-158, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38123146

ABSTRACT

BACKGROUND: Pancreatic ductal adenocarcinoma (PDAC) is highly associated with cachexia and weight loss, which is driven by the tumour's effect on the body. Data are lacking on differences in these metrics based on PDAC anatomic location. We hypothesize that the primary tumour's anatomic region influences the prevalence and severity of unintentional weight loss. METHODS: Treatment naïve patients with PDAC who underwent pancreatectomy at a single institution between 2012 and 2020 were identified retrospectively. Patients with pancreatic head or distal tumours were matched by sex, age, N and T stage. Serologic and anthropometric variables were obtained at the time of diagnosis. Skeletal muscle index (SMI), muscle radiation attenuation (MRA) and adiposity were measured. The primary outcome was presence of significant weight loss [>5% body weight (BW) loss in past 6 months]. Signed rank tests, Cochran Mantel Haenszel tests and Kaplan-Meier survival analysis are presented. RNA-seq of tumours was performed to explore enriched pathways related to cachexia and weight loss. RESULTS: Pancreatic head tumours (n = 24) were associated with higher prevalence (70.8% vs. 41.7%, P = 0.081) and degree of weight loss (7.9% vs. 2.5%, P = 0.014) compared to distal tumours (n = 24). BMI (P = 0.642), SMI (P = 0.738) and MRA (P = 0.478) were similar between groups. Combining BW loss, SMI and MRA into a composite score, patients with pancreatic head cancers met more criteria associated with poor prognosis (P = 0.142). Serum albumin (3.9 vs. 4.4 g/dL, P = 0.002) was lower and bilirubin (4.5 vs. 0.4 mg/dL, P < 0.001) were higher with pancreatic head tumours. Survival differed by tumour location (P = 0.014) with numerically higher median overall survival with distal tumours (11.1 vs. 21.8 months; P = 0.066). Transcriptomic analysis revealed inactivation of appetite stimulation, weight regulation and nutrient digestion/metabolism pathways in pancreatic head tumours. CONCLUSIONS: Resectable pancreatic head PDAC is associated with higher prevalence of significant weight loss and more poor prognosis features. Pancreaticobiliary obstruction and hypoalbuminemia in patients with head tumours suggests compounding effects of nutrient malabsorption and systemic inflammation on molecular drivers of cachexia, possibly contributing to shorter survival. Therefore, PDAC-associated cachexia is a heterogenous syndrome, which may be influenced by the primary tumour location. Select patients with resectable pancreatic head tumours may benefit from nutritional rehabilitation to improve outcomes.


Subject(s)
Carcinoma, Pancreatic Ductal , Head and Neck Neoplasms , Pancreatic Neoplasms , Humans , Cachexia/genetics , Cachexia/complications , Retrospective Studies , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/metabolism , Carcinoma, Pancreatic Ductal/genetics , Carcinoma, Pancreatic Ductal/metabolism , Gene Expression Profiling , Head and Neck Neoplasms/complications
20.
J Ethnopharmacol ; 319(Pt 3): 117284, 2024 Jan 30.
Article in English | MEDLINE | ID: mdl-37844741

ABSTRACT

ETHNOPHARMACOLOGY RELEVANCE: Sanghuangporus vaninii (S. vaninii), as a traditional large medicinal fungus, has a history of more than 2000 years in Chinese history and has been widely used to treat female diseases such as vaginal discharge, amenorrhea, and uterine bleeding, and recent pharmacological studies have also found that it has antioxidant, anti-inflammatory, and anti-tumor physiological activity, which has received more and more attention. AIM OF THE STUDY: The objective was to evaluate cytotoxicity and the acute, subacute toxicity, and in vitro antioxidant activity of S. vaninii crude polysaccharide (SVP). MATERIALS AND METHODS: The monosaccharide composition of SVP was determined by HPLC (high-performance liquid chromatography). The cytotoxicity of different concentrations of SVP on three types of cells (HT-22, Kupffer macrophages, HEK293) was assessed using CCk-8. The acute toxicity in vivo was evaluated for 14 days after the administration of SVP (2500,5000, or 10,000 mg/mL). For the evaluation of subacute toxicity, mice were daily treated for 28 days with SVP (2500,5000, or 10,000 mg/mL). In addition, DPPH, hydroxyl radical, and superoxide anion radical were used to evaluate the in vitro antioxidant activity of SVP. RESULTS: SVP was not toxic in all three cell lines tested. In vitro antioxidant tests on the extracts showed that SVP possessed a strong antioxidant capacity in vitro. In the acute study, the no-observed-adverse-effect level (NOAEL) in male and female rats was 10,000 mg/kg body weight. There were also no deaths or severe toxicity associated with SVP in subacute studies. However, SVP treatment had a decreasing effect on body weight in mice of both sexes (2500, 5000, and 10000 mg/kg). At doses (5000 and 10,000 mg/kg), SVP had a reduced effect on food intake in both male and female mice. In addition, there were significant effects on organ coefficients of the liver, lung, and kidney. Hematological analysis showed significantly lower LYM (%) values in mice of both sexes, with significantly lower MCH (pg) values obtained in males (5000 mg/kg and 10000 mg/kg) and higher GRAN (%) values in females. In addition, the RDW-SD (fL) values were significantly lower in the male mice given the highest dose. Biochemical tests showed that there were no significant changes in ALT, AST, TP, and Cr levels after SVP treatment. In histopathological analysis, mild liver toxicity was observed in both female mice treated with 10,000 mg/kg SVP. CONCLUSION: The extract of SVP showed a predominance of polysaccharide compounds, with non-toxic action in vivo. Our approach revealed SVP on the chemical composition and suggests a high margin of safety in the popular use of medicinal fungi. In conclusion, our results suggest that SVP is safe, and can be used as health care products and food.


Subject(s)
Antioxidants , Plant Extracts , Rats , Mice , Humans , Male , Female , Animals , Antioxidants/toxicity , Plant Extracts/toxicity , HEK293 Cells , Toxicity Tests, Acute , Body Weight
SELECTION OF CITATIONS
SEARCH DETAIL
...