Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 190
1.
BMJ Open ; 14(6): e079521, 2024 Jun 05.
Article En | MEDLINE | ID: mdl-38839391

OBJECTIVES: This study aimed to explore the temporal relationship between blood glucose, lipids and body mass index (BMI), and their impacts on atherosclerosis (AS). DESIGN: A prospective cohort study was designed. SETTING AND PARTICIPANTS: A total of 2659 subjects from Harbin Cohort Study on Diet, Nutrition and Chronic Non-communicable Diseases, and aged from 20 to 74 years were included. PRIMARY AND SECONDARY OUTCOME MEASURES: Body weight, height, fasting blood glucose (FBG) and 2-hour postprandial glucose (2-h PG), blood lipids including total cholesterol (TC), triglyceride (TG), low-density lipoprotein cholesterol (LDL-c) and high-density lipoprotein cholesterol (HDL-c) were measured at baseline and follow-up. Brachial ankle pulse wave velocity (baPWV) was examined at follow-up as a marker of AS risk. Logistic regression analysis, cross-lagged path analysis and mediation analysis were performed to explore the temporal relationships between blood glucose, lipids and BMI, and their impacts on AS risk. RESULTS: Logistic regression analysis indicated that increased FBG, 2-h PG, TC, TG, LDL-c and BMI were positively associated with AS risk, while increased HDL-c was negatively associated with AS risk. The path coefficients from baseline blood parameters to the follow-up BMI were significantly greater than those from baseline BMI to the follow-up blood parameters. Mediation analysis suggested that increased FBG, 2-h PG, TC, TG and LDL-c could increase AS risk via increasing BMI, the effect intensity from strong to weak was LDL-c>TC>TG>FBG>2 h PG, while increased HDL-c could decrease AS risk via decreasing BMI. CONCLUSIONS: Changes in blood glucose and lipids could cause change in BMI, which mediated the impacts of blood glucose and lipids on AS risk. These results highlight the importance and provide support for the early and comprehensive strategies of AS prevention and control.


Atherosclerosis , Blood Glucose , Body Mass Index , Lipids , Humans , Middle Aged , Male , Prospective Studies , Blood Glucose/metabolism , Blood Glucose/analysis , Female , Atherosclerosis/blood , Atherosclerosis/etiology , Adult , Lipids/blood , Aged , Risk Factors , Pulse Wave Analysis , Young Adult , China/epidemiology , Ankle Brachial Index , Triglycerides/blood , Logistic Models
2.
Adv Mater ; : e2401960, 2024 Jun 06.
Article En | MEDLINE | ID: mdl-38843807

Pre-organizing molecular drug within a microenvironment is crucial for the development of efficient and controllable therapeutic systems. Here, we report the use of tetrahedral DNA framework (TDF) to pre-organize antiarrhythmic drugs (herein doxorubicin, Dox) in three dimensions for catheter ablation, a minimally invasive treatment for fast heartbeats, aiming to address potential complications linked to collateral tissue damage and the post-ablation AF recurrence resulting from incomplete ablation. Dox pre-organization within TDF transforms its random distribution into a confined, regular spatial arrangement governed by DNA. This, combined with the high affinity between Dox and DNA, significantly increases local Dox concentration. The exceptional capacity of TDF for cellular internalization leads to a 5.5-fold increase in intracellular Dox amount within cardiomyocytes, effectively promoting cellular apoptosis. In vivo investigations demonstrate that administering TDF-Dox reduce the recurrence rate of electrical conduction after radiofrequency catheter ablation (RFCA) to 37.5%, compared with the 77.8% recurrence rate in the free Dox-treated group. Notably, the employed Dox dosage exhibits negligible adverse effects in vivo. This study presents a promising treatment paradigm that strengthens the efficacy of catheter ablation and opens a new avenue for reconciling the paradox of ablation efficacy and collateral damage. This article is protected by copyright. All rights reserved.

3.
Nat Mater ; 2024 May 20.
Article En | MEDLINE | ID: mdl-38769206

Structurally ordered L10-PtM (M = Fe, Co, Ni and so on) intermetallic nanocrystals, benefiting from the chemically ordered structure and higher stability, are one of the best electrocatalysts used for fuel cells. However, their practical development is greatly plagued by the challenge that the high-temperature (>600 °C) annealing treatment necessary for realizing the ordered structure usually leads to severe particle sintering, morphology change and low ordering degree, which makes it very difficult for the gram-scale preparation of desirable PtM intermetallic nanocrystals with high Pt content for practical fuel cell applications. Here we report a new concept involving the low-melting-point-metal (M' = Sn, Ga, In)-induced bond strength weakening strategy to reduce Ea and promote the ordering process of PtM (M = Ni, Co, Fe, Cu and Zn) alloy catalysts for a higher ordering degree. We demonstrate that the introduction of M' can reduce the ordering temperature to extremely low temperatures (≤450 °C) and thus enable the preparation of high-Pt-content (≥40 wt%) L10-Pt-M-M' intermetallic nanocrystals as well as ten-gram-scale production. X-ray spectroscopy studies, in situ electron microscopy and theoretical calculations reveal the fundamental mechanism of the Sn-facilitated ordering process at low temperatures, which involves weakened bond strength and consequently reduced Ea via Sn doping, the formation and fast diffusion of low-coordinated surface free atoms, and subsequent L10 nucleation. The developed L10-Ga-PtNi/C catalysts display outstanding performance in H2-air fuel cells under both light- and heavy-duty vehicle conditions. Under the latter condition, the 40% L10-Pt50Ni35Ga15/C catalyst delivers a high current density of 1.67 A cm-2 at 0.7 V and retains 80% of the current density after extended 90,000 cycles, which exceeds the United States Department of Energy performance metrics and represents among the best cathodic electrocatalysts for practical proton-exchange membrane fuel cells.

4.
Mol Biotechnol ; 2024 May 21.
Article En | MEDLINE | ID: mdl-38771421

Our study mainly analyzed the mechanism of C/EBP homologous protein (CHOP) and its interacting protein Nupr1 on endoplasmic reticulum stress (ERS) induced lens epithelial cells (LEC) apoptosis. Cell proliferation was detected by CCK-8. Apoptosis was detected by flow cytometry and TUNEL. Nupr1 expression was detected by RT-qPCR. The expressions of CHOP, Nupr1, apoptosis-related protein, and ERS-related protein were detected by Western blot. DCFH-DA probe was used to detect cell ROS. The SOD, GSH-PX, and MDA contents were detected by the kit. Co-IP was used to detect the interaction between CHOP and Nupr1. The morphology of the lens was detected by HE staining. The result shows that Tunicamycin (TU) can induce endoplasmic reticulum stress and apoptosis in LEC in a concentration-dependent manner. TU induction leads to the occurrence of CHOP nuclear translocation. Overexpression of CHOP can further enhance the inhibitory effect of TU on LEC proliferation and the promotion of apoptosis, while knockdown of CHOP has the opposite effect. CHOP and Nupr1 are interacting proteins, and knockdown of Nupr1 or addition of Nupr1 inhibitor ZZW-115 can reverse the effects of TU and overexpression of CHOP, respectively. It has been observed in animal experiments that treatment with oe-CHOP can further aggravate the pathological lesions of the rat lens, while ZZW-115 can reverse the effect of oe-CHOP to a certain extent and improve the lesions of the rat lens. Overall, CHOP interacts with Nupr1 to regulate apoptosis caused by ERS and mediate cataract progression in rats, and this study provides a new potential therapeutic target for the treatment of cataract.

5.
Immun Inflamm Dis ; 12(4): e1228, 2024 Apr.
Article En | MEDLINE | ID: mdl-38578037

BACKGROUND: High neutrophil/lymphocyte ratio (NLR) is associated with poor prognosis in ischemic stroke. However, the role of NLR in cerebral small vessel disease (CSVD) is controversial. Herein, we evaluated the value of NLR in identifying CSVD and its relationship with the common imaging markers of CSVD. METHODS: A total of 667 patients were enrolled in this study, including 368 in the CSVD group and 299 in the non-CSVD group. Clinical, laboratory, and imaging data were collected. The relationship of NLR with CSVD and common imaging markers of CSVD were analyzed with univariate and multivariate logistic regression analysis. The predictive value of NLR was assessed with the receiver operating characteristic curve. RESULTS: NLR (odds ratio [OR] = 1.929, 95% confidence interval [CI] = 1.599-2.327, p < .001) was an independent risk factor for CSVD. NLR was also independently associated with moderate to severe white matter hyperintensity (WMH) (OR = 2.136, 95% CI = 1.768-2.580, p < .001), moderate to severe periventricular WMH (OR = 2.138, 95% CI = 1.771-2.579, p < .001), and moderate to severe deep WMH (OR = 1.654, 95% CI = 1.438-1.902, p < .001), moderately to severely enlarged perivascular spaces (EPVS) (OR = 1.248, 95% CI = 1.110-1.402, p < .001), moderately to severely EPVS in the basal ganglia (OR = 1.136, 95% CI = 1.012-1.275, p = .030), and moderately to severely EPVS in the centrum semiovale (OR = 1.140, 95% CI = 1.027-1.266, p = .014). However, NLR was not statistically significantly associated with lacune. The optimal cutoff point of NLR in predicting CSVD was 2.47, with sensitivity and specificity of 84.2% and 66.9%, respectively (p < .01). The diagnostic effect was maximized when NLR was combined with other risk factors. CONCLUSIONS: NLR is an independent risk factor for CSVD and is independently associated with common imaging markers of CSVD. NLR may serve as a valid and convenient biomarker for assessing CSVD.


Cerebral Small Vessel Diseases , Neutrophils , Humans , Magnetic Resonance Imaging , Cerebral Small Vessel Diseases/diagnostic imaging , Cerebral Small Vessel Diseases/complications , Basal Ganglia , Risk Factors
6.
Nat Commun ; 15(1): 2676, 2024 Mar 27.
Article En | MEDLINE | ID: mdl-38538581

Autophagy modulates the degradation and recycling of intracellular materials and contributes to male gametophyte development and male fertility in plants. However, whether autophagy participates in seed development remains largely unknown. Here, we demonstrate that autophagy is crucial for timely programmed cell death (PCD) in the integumentary tapetum, the counterpart of anther tapetum, influencing embryo pattern formation and seed viability. Inhibition of autophagy resulted in delayed PCD of the integumentary tapetum and defects in embryo patterning. Cell-type-specific restoration of autophagic activities revealed that the integumentary tapetum plays a non-autonomous role in embryo patterning. Furthermore, high-throughput, comprehensive lipidomic analyzes uncovered an unexpected seed-developmental-stage-dependent role of autophagy in seed lipid metabolism: it contributes to triacylglycerol degradation before fertilization and to triacylglycerol biosynthesis after fertilization. This study highlights the critical role of autophagy in regulating timely integumentary tapetum PCD and reveals its significance in seed lipid metabolism and viability.


Apoptosis , Pollen , Pollen/metabolism , Apoptosis/physiology , Skin , Autophagy/genetics , Triglycerides/metabolism , Gene Expression Regulation, Plant , Flowers
7.
ACS Nano ; 18(11): 7769-7795, 2024 Mar 19.
Article En | MEDLINE | ID: mdl-38420949

Tumor-associated macrophages (TAMs) play pivotal roles in tumor development. As primary contents of tumor environment (TME), TAMs secrete inflammation-related substances to regulate tumoral occurrence and development. There are two kinds of TAMs: the tumoricidal M1-like TAMs and protumoral M2-like TAMs. Reprogramming TAMs from immunosuppressive M2 to immunocompetent M1 phenotype is considered a feasible way to improve immunotherapeutic efficiency. Notably, nanomaterials show great potential for biomedical fields due to their controllable structures and properties. There are many types of nanomaterials that exhibit great regulatory activities for TAMs' reprogramming. In this review, the recent progress of nanomaterials-involved TAMs' reprogramming is comprehensively discussed. The various nanomaterials for TAMs' reprogramming and the reprogramming strategies are summarized and introduced. Additionally, the challenges and perspectives of TAMs' reprogramming for efficient therapy are discussed, aiming to provide inspiration for TAMs' regulator design and promote the development of TAMs-mediated immunotherapy.


Nanostructures , Neoplasms , Humans , Tumor-Associated Macrophages , Immunotherapy , Immunosuppressive Agents , Inflammation , Nanostructures/therapeutic use , Tumor Microenvironment , Neoplasms/therapy
8.
Adv Mater ; 36(23): e2312530, 2024 Jun.
Article En | MEDLINE | ID: mdl-38376369

In recent years, tremendous effort is devoted to developing platforms, such as implantable drug delivery systems (IDDSs), with temporally and spatially controlled drug release capabilities and improved adherence. IDDSs have multiple advantages: i) the timing and location of drug delivery can be controlled by patients using specific stimuli (light, sound, electricity, magnetism, etc.). Some intelligent "closed-loop" IDDS can even realize self-management without human participation. ii) IDDSs enable continuous and stable delivery of drugs over a long period (months to years) and iii) to administer drugs directly to the lesion, thereby helping reduce dosage and side effects. iv) IDDSs enable personalized drug delivery according to patient needs. The high demand for such systems has prompted scientists to make efforts to develop intelligent IDDS. In this review, several common stimulus-responsive mechanisms including endogenous (e.g., pH, reactive oxygen species, proteins, etc.) and exogenous stimuli (e.g., light, sound, electricity, magnetism, etc.), are given in detail. Besides, several types of IDDS reported in recent years are reviewed, including various stimulus-responsive systems based on the above mechanisms, radio frequency-controlled IDDS, "closed-loop" IDDS, self-powered IDDS, etc. Finally, the advantages and disadvantages of various IDDS, bottleneck problems, and possible solutions are analyzed to provide directions for subsequent research.


Drug Delivery Systems , Humans , Animals , Drug Implants/chemistry , Drug Liberation
9.
Sci Total Environ ; 912: 169158, 2024 Feb 20.
Article En | MEDLINE | ID: mdl-38092217

Anthropogenic emissions are recognized as significant contributors to atmospheric soluble iron (Fe) in recent years, which may affect marine primary productivity, especially in Fe-limited areas. However, the contribution of different emission sources to Fe in marine aerosol has been primarily estimated by modeling approaches. Quantifying anthropogenic Fe based on field measurements remains a great challenge. In this study, online multi-element measurements and Positive Matrix Factorization (PMF) were combined for the first time to quantify sources of atmospheric Fe and soluble Fe in the Northwest Pacific during a cruise in spring 2015. Fe concentration in 624 atmospheric PM2.5 samples measured online was 74.58 ± 90.87 ng/m3. The PMF results showed anthropogenic activities, including industrial coal combustion, biomass burning, and maritime transport, were important in this region, contributing 31.4 % of atmospheric Fe on average. In addition, anthropogenic Fe concentration resolved by PMF was comparable to the simulation results of the CMAQ (Community Multiscale Air Quality) and GEOS-Chem (Goddard Earth Observing System-Chemical transport) models, with better correlation to CMAQ (r = 0.76) than GEOS-Chem (r = 0.26). This study developed a new method to estimate atmospheric soluble Fe, which integrates Fe source apportionment results and Fe solubility from different sources. Soluble Fe concentration was estimated as 3.93 ± 5.14 ng/m3, of which 87.0 % was attributed to anthropogenic emissions. Notably, ship emission alone contributed 27.5 % of soluble Fe, though its contribution to total Fe was only 2.2 %. Finally, the total deposition fluxes of atmospheric Fe (37.11 ± 38.43 µg/m2/day) and soluble Fe (1.85 ± 2.13 µg/m2/day) were estimated. This study developed a new methodology for quantifying contribution of anthropogenic emissions to Fe in marine aerosol, which could greatly help the assessment of impacts of human activities on marine environment.

10.
Sleep ; 47(4)2024 Apr 12.
Article En | MEDLINE | ID: mdl-37638817

STUDY OBJECTIVES: Mounting evidence indicated the correlation between sleep and cerebral small vessel disease (CSVD). However, little is known about the exact causality between poor sleep and white matter injury, a typical signature of CSVD, as well as the underlying mechanisms. METHODS: Spontaneously hypertensive rats (SHR) and control Wistar Kyoto rats were subjected to sleep fragmentation (SF) for 16 weeks. The effects of chronic sleep disruption on the deep white matter and cognitive performance were observed. RESULTS: SHR were validated as a rat model for CSVD. Fragmented sleep induced strain-dependent white matter abnormalities, characterized by reduced myelin integrity, impaired oligodendrocytes precursor cells (OPC) maturation and pro-inflammatory microglial polarization. Partially reversible phenotypes of OPC and microglia were observed in parallel following sleep recovery. CONCLUSIONS: Long-term SF-induced pathological effects on the deep white matter in a rat model of CSVD. The pro-inflammatory microglial activation and the block of OPC maturation may be involved in the mechanisms linking sleep to white matter injury.


Cerebral Small Vessel Diseases , White Matter , Rats , Animals , Sleep Deprivation , Rats, Inbred SHR , Sleep , Rats, Inbred WKY , Cerebral Small Vessel Diseases/complications , Cerebral Small Vessel Diseases/pathology
11.
Neurosci Bull ; 40(4): 500-516, 2024 Apr.
Article En | MEDLINE | ID: mdl-37755674

Parkinson's disease (PD) is a complicated neurodegenerative disease, characterized by the accumulation of α-synuclein (α-syn) in Lewy bodies and neurites, and massive loss of midbrain dopamine neurons. Increasing evidence suggests that gut microbiota and microbial metabolites are involved in the development of PD. Among these, short-chain fatty acids (SCFAs), the most abundant microbial metabolites, have been proven to play a key role in brain-gut communication. In this review, we analyze the role of SCFAs in the pathology of PD from multiple dimensions and summarize the alterations of SCFAs in PD patients as well as their correlation with motor and non-motor symptoms. Future research should focus on further elucidating the role of SCFAs in neuroinflammation, as well as developing novel strategies employing SCFAs and their derivatives to treat PD.


Neurodegenerative Diseases , Parkinson Disease , Humans , Parkinson Disease/metabolism , Neurodegenerative Diseases/pathology , Brain/pathology , Mesencephalon/metabolism , Fatty Acids, Volatile/metabolism
12.
iScience ; 26(11): 108130, 2023 Nov 17.
Article En | MEDLINE | ID: mdl-37876795

Parkinson's disease (PD) is characterized by the irreversible loss of dopaminergic neurons and the accumulation of α-synuclein in Lewy bodies. The oligomeric α-synuclein (O-αS) is the most toxic form of α-synuclein species, and it has been reported to be a robust inflammatory mediator. Mutations in Leucine-Rich Repeat Kinase 2 (LRRK2) are also genetically linked to PD and neuroinflammation. However, how O-αS and LRRK2 interact in glial cells remains unclear. Here, we reported that LRRK2 G2019S mutation, which is one of the most frequent causes of familial PD, enhanced the effects of O-αS on astrocytes both in vivo and in vitro. Meanwhile, inhibition of LRRK2 kinase activity could relieve the inflammatory effects of both LRRK2 G2019S and O-αS. We also demonstrated that nuclear factor κB (NF-κB) pathway might be involved in the neuroinflammatory responses. These findings revealed that inhibition of LRRK2 kinase activity may be a viable strategy for suppressing neuroinflammation in PD.

13.
Front Aging Neurosci ; 15: 1238588, 2023.
Article En | MEDLINE | ID: mdl-37842121

Objective: The aim of this study was to explore the influential mechanism of the relationship between sleep quality and activities of daily living (ADL) in patients with Parkinson's disease (PD), we hypothesized disease severity as a mediator and assumed the mediating process was regulated by cognition. Methods: 194 individuals with PD (95 women and 99 men) were enrolled in study. The Pittsburgh Sleep Quality Index (PSQI) was used to assess sleep quality of PD patients. Patients' ADL, disease severity and cognition were measured by the Unified Parkinson's Disease Rating Scale-II (UPDRSII), Hoehn-Yahr (H-Y) Scale, and Mini-Mental State Examination (MMSE). We investigated the mediating role of disease severity and the moderating effect of cognition on the association between sleep quality and ADL in PD patients. Results: The score of UPDRSII was positively correlated with the score of PSQI and H-Y stage, while the score of MMSE was negatively correlated with the score of H-Y stage and UPDRSII. Sleep quality predicts disease severity, and disease severity predicts ADL. Disease severity mediated the relationship between sleep quality and ADL, and the mediating effect was 0.179. Cognition alone did not affect ADL, but the interaction between disease severity and cognition was significantly affected ADL, confirming the moderating effect of cognition in PD patients. Conclusion: Disease severity mediated the association between sleep quality and ADL, good cognition significantly reduced disease severity's mediating influence on the relationship between sleep quality and ADL. Our study indicated a close relationship between ADL and sleep and cognition in PD, and also provided new insights into the overall management of PD and a better quality of life of PD patients.

14.
EJNMMI Res ; 13(1): 94, 2023 Oct 30.
Article En | MEDLINE | ID: mdl-37902852

BACKGROUND: Owing to the advances in diagnosis and therapy, survival or remission rates for lymphoma have improved prominently. Apart from the lymphoma- and chemotherapy-related somatic symptom burden, increasing attention has been drawn to the health-related quality of life. The application of 18F-fluorodeoxyglucose positron emission tomography-computed tomography (18F-FDG PET/CT) has been routinely recommended for the staging and response assessment of FDG-avid lymphoma. However, up till now, only a few researches have investigated the brain metabolic impairments in patients with pre-treatment lymphoma. The determination of the lymphoma-related metabolic brain pattern would facilitate exploring the tailored therapeutic regimen to alleviate not only the physiological, but also the psychological symptoms. In this retrospective study, we aimed to establish the diffuse large B-cell lymphoma-related pattern (DLBCLRP) of metabolic brain network and investigate the correlations between DLBCLRP and several indexes of the staging and response assessment. RESULTS: The established DLBCLRP was characterized by the increased metabolic activity in bilateral cerebellum, brainstem, thalamus, striatum, hippocampus, amygdala, parahippocampal gyrus and right middle temporal gyrus and by the decreased metabolic activity in bilateral occipital lobe, parietal lobe, anterior cingulate gyrus, midcingulate cortex and medial frontal gyrus. Significant difference in the baseline expression of DLBCLRP was found among complete metabolic response (CMR), partial metabolic response (PMR) and progressive metabolic disease (PMD) groups (P < 0.01). DLBCLRP expressions were also significantly or tended to be positively correlated with international prognostic index (IPI) (rs = 0.306, P < 0.05), lg(total metabolic tumor volume, TMTV) (r = 0.298, P < 0.05) and lg(total lesion glycolysis, TLG) (r = 0.233, P = 0.064). Though no significant correlation of DLBCLRP expression was found with Ann Arbor staging or tumor SUVmax (P > 0.05), the post-treatment declines of DLBCLRP expression were significantly positively correlated with Ann Arbor staging (rs = 0.284, P < 0.05) and IPI (rs = 0.297, P < 0.05). CONCLUSIONS: The proposed DLBCLRP would lay the foundation for further investigating the cerebral dysfunction related to DLBCL itself and/or treatments. Besides, the expression of DLBCLRP was associated with the tumor burden of lymphoma, implying a potential biomarker for prognosis.

15.
Mitochondrion ; 73: 10-18, 2023 11.
Article En | MEDLINE | ID: mdl-37708949

Mutations in the Leucine-rich repeat protein kinase 2 (LRRK2) gene are the most frequent cause of familial Parkinson's disease (PD). Although LRRK2 has been extensively studied, the pathogenic mechanism of the LRRK2 G2385R mutation, which is most common in Asian populations, especially in the Chinese Han population, remains unclear. In this study, we demonstrated that the LRRK2 G2385R mutation in HEK293T cells led to a reduction in cellular PGC-1α protein expression and inhibition of mitochondrial biogenesis through the PGC-1α-TFAM pathway. This resulted in a decrease in mitochondrial genome expression, which in turn impaired the normal electron transfer process of the oxidative phosphorylation respiratory chain, leading to mitochondrial dysfunction and onset of apoptosis. The mitochondrial dysfunction and apoptosis caused by the LRRK2 G2385R mutation were significantly alleviated by antioxidant Idebenone, which provides a theoretical basis for the subsequent development of precise treatment specifically for PD patients with LRRK2 G2385R mutation. Further validation of our findings in neurons and animal models are necessary.


Leucine-Rich Repeat Serine-Threonine Protein Kinase-2 , Parkinson Disease , Humans , DNA-Binding Proteins/genetics , HEK293 Cells , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/genetics , Mitochondrial Proteins/genetics , Mutation , Organelle Biogenesis , Parkinson Disease/genetics , Transcription Factors/genetics , Mitochondria
16.
Front Plant Sci ; 14: 1201179, 2023.
Article En | MEDLINE | ID: mdl-37746025

Maize is the most widely planted food crop in China, and maize inbred lines, as the basis of maize genetic breeding and seed breeding, have a significant impact on China's seed security and food safety. Satellite remote sensing technology has been widely used for growth monitoring and yield estimation of various crops, but it is still doubtful whether the existing remote sensing monitoring means can distinguish the growth difference between maize inbred lines and hybrids and accurately estimate the yield of maize inbred lines. This paper explores a method for estimating the yield of maize inbred lines based on the assimilation of crop models and remote sensing data, initially solves the problem. At first, this paper analyzed the WOFOST(World Food Studies)model parameter sensitivity and used the MCMC(Markov Chain Monte Carlo) method to calibrate the sensitive parameters to obtain the parameter set of maize inbred lines differing from common hybrid maize; then the vegetation indices were selected to establish an empirical model with the measured LAI(Leaf Area Index) at three key development stages to obtain the remotely sensed estimated LAI; finally, the yield of maize inbred lines in the study area was estimated and mapped pixel by pixel using the EnKF(Ensemble Kalman Filter) data assimilation algorithm. Also, this paper compares a method of assimilation by setting a single parameter. Instead of the WOFOST parameter optimization process, a parameter representing the growth weakness of the inbred lines was set in WOFOST to distinguish the inbred lines from the hybrids. The results showed that the yield estimated by the two methods compared with the field measured yield data had R2: 0.56 and 0.18, and RMSE: 684.90 Kg/Ha and 949.95 Kg/Ha, respectively, which proved that the crop growth model of maize inbred lines established in this study combined with the data assimilation method could initially achieve the growth monitoring and yield estimation of maize inbred lines.

17.
Pharm Biol ; 61(1): 1274-1285, 2023 Dec.
Article En | MEDLINE | ID: mdl-37599625

CONTEXT: Clerodendranthus spicatus Thunb. (Labiatae) (CS), a perennial traditional Chinese medicinal herb that can reduce serum uric acid (sUA) levels and ameliorate renal function is widely used to treat hyperuricaemic nephropathy (HN). OBJECTIVE: To investigate the molecular mechanism of action of CS in HN treatment using in vivo and in vitro experiments. MATERIALS AND METHODS: Sprague-Dawley rats were randomly divided into control, HN, CS and positive control allopurinol groups. The HN group was intraperitoneally injected with 750 mg/kg oxonic acid potassium (OA), whereas the CS group was injected with OA along with a gavage of CS (low dose 3.125 g/kg, high dose 6.25 g/kg) for five weeks. For in vitro studies, uric acid-treated HK2 cells were used to verify the therapeutic mechanism of CS in HN. RESULTS: HN rats exhibit pathological phenotypes of elevated sUA levels and renal injury. CS significantly improved these symptoms and sUA (p < 0.05) and blood urea nitrogen (p < 0.01) levels, and dramatically improved renal tubular injury in HN rats. The IC50 value of UA (uric acid) in HK2 cells was 826.32 ± 3.55 µg/mL; however, 120 ng/mL CS had no significant cytotoxicity on HK2 cells. In vivo and in vitro studies showed that CS inhibited NF-κB phosphorylation and inhibited α-smooth muscle actin (α-SMA) and vimentin expression while increasing E-cadherin expression, suggesting that CS inhibited the fibrotic process in renal cells, thus protecting renal function. DISCUSSION AND CONCLUSIONS: These findings provide a fundamental understanding of the application of CS in HN treatment to better guide clinical interventions.


Hyperuricemia , NF-kappa B , Animals , Rats , Rats, Sprague-Dawley , Hyperuricemia/drug therapy , Uric Acid , Epithelial-Mesenchymal Transition , Kidney/physiology
18.
Environ Sci Technol ; 57(35): 13067-13078, 2023 09 05.
Article En | MEDLINE | ID: mdl-37603309

Aerosol black carbon (BC) is a short-lived climate pollutant. The poorly constrained provenance of tropical marine aerosol BC hinders the mechanistic understanding of extreme climate events and oceanic carbon cycling. Here, we collected PM2.5 samples during research cruise NORC2016-10 through South China Sea (SCS) and Northeast Indian Ocean (NEIO) and measured the dual-carbon isotope compositions (δ13C-Δ14C) of BC using hydrogen pyrolysis technique. Aerosol BC exhibits six different δ13C-Δ14C isotopic spaces (i.e., isotope provinces). Liquid fossil fuel combustion, from shipping emissions and adjacent land, is the predominant source of BC over isotope provinces "SCS close to Chinese Mainland" (53.5%), "Malacca Strait" (53.4%), and "Open NEIO" (40.7%). C3 biomass burning is the major contributor to BC over isotope provinces "NEIO close to Southeast Asia" (55.8%), "Open NEIO" (41.3%), and "Open SCS" (40.0%). Coal combustion and C4 biomass burning show higher contributions to BC over "Sunda Strait" and "Open SCS" than the others. Overall, NEIO near the Bay of Bengal, Malacca Strait, and north SCS are three hot spots of fossil fuel-derived BC; the first two areas are also hot spots of biomass-derived BC. The comparable δ13C-Δ14C between BC in aerosol and dissolved BC in surface seawater may suggest atmospheric BC deposition as a potential source of oceanic dissolved BC.


Fossil Fuels , Indian Ocean , Aerosols , Carbon Isotopes , China
19.
Ecotoxicol Environ Saf ; 263: 115277, 2023 Sep 15.
Article En | MEDLINE | ID: mdl-37499390

Numerous antibiotic resistance genes (ARGs) and virulence factors (VFs) found in animal manure pose significant risks to human health. However, the effects of graphene sodium selenite (GSSe), a novel chemical nano-Selenium, and biological nano-Selenium (BNSSe), a new bioaugmentation nano-Se, on bacterial Se metabolism, chemotaxis, ARGs, and VFs in animal manure remain unknown. In this study, we investigated the effects of GSSe and BNSSe on ARGs and VFs expression in broiler manure using high-throughput sequencing. Results showed that BNSSe reduced Se pressure during anaerobic fermentation by inhibiting bacterial selenocompound metabolism pathways, thereby lowering manure Selenium pollution. Additionally, the expression levels of ARGs and VFs were lower in the BNSSe group compared to the Sodium Selenite and GSSe groups, as BNSSe inhibited bacterial chemotaxis pathways. Co-occurrence network analysis identified ARGs and VFs within the following phyla Bacteroidetes (genera Butyricimonas, Odoribacter, Paraprevotella, and Rikenella), Firmicutes (genera Lactobacillus, Candidatus_Borkfalkia, Merdimonas, Oscillibacter, Intestinimonas, and Megamonas), and Proteobacteria (genera Desulfovibrio). The expression and abundance of ARGs and VFs genes were found to be associated with ARGs-VFs coexistence. Moreover, BNSSe disruption of bacterial selenocompound metabolism and chemotaxis pathways resulted in less frequent transfer of ARGs and VFs. These findings indicate that BNSSe can reduce ARGs and VFs expression in animal manure by suppressing bacterial selenocompound metabolism and chemotaxis pathways.


Selenium , Humans , Animals , Selenium/pharmacology , Manure/analysis , Genes, Bacterial , Anti-Bacterial Agents/pharmacology , Chemotaxis/genetics , Sodium Selenite/pharmacology , Chickens/genetics , Bacteria , Drug Resistance, Microbial/genetics , Bacteroidetes , Firmicutes
20.
Adv Sci (Weinh) ; 10(25): e2206663, 2023 09.
Article En | MEDLINE | ID: mdl-37404090

Endocrine therapy is the frontline treatment for estrogen receptor (ER) positive breast cancer patients. However, the primary and acquired resistance to endocrine therapy drugs remain as a major challenge in the clinic. Here, this work identifies an estrogen-induced lncRNA, LINC02568, which is highly expressed in ER-positive breast cancer and functional important in cell growth in vitro and tumorigenesis in vivo as well as endocrine therapy drug resistance. Mechanically, this work demonstrates that LINC02568 regulates estrogen/ERα-induced gene transcriptional activation in trans by stabilizing ESR1 mRNA through sponging miR-1233-5p in the cytoplasm. Meanwhile, LINC02568 contributes to tumor-specific pH homeostasis by regulating carbonic anhydrase CA12 in cis in the nucleus. The dual functions of LINC02568 together contribute to breast cancer cell growth and tumorigenesis as well as endocrine therapy drug resistance. Antisense oligonucleotides (ASO) targeting LINC02568 significantly inhibits ER-positive breast cancer cell growth in vitro and tumorigenesis in vivo. Furthermore, combination treatment with ASO targeting LINC02568 and endocrine therapy drugs or CA12 inhibitor U-104 exhibits synergistic effects on tumor growth. Taken together, the findings reveal the dual mechanisms of LINC02568 in regulating ERα signaling and pH homeostasis in ER-positive breast cancer, and indicated that targeting LINC02568 might represent a potential therapeutic avenue in the clinic.


Breast Neoplasms , RNA, Long Noncoding , Humans , Female , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Estrogen Receptor alpha/genetics , Receptors, Estrogen/therapeutic use , RNA, Long Noncoding/genetics , Cell Line, Tumor , Estrogens/therapeutic use , Drug Resistance, Neoplasm/genetics , Carcinogenesis
...