Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 5.313
1.
Neural Netw ; 178: 106409, 2024 May 24.
Article En | MEDLINE | ID: mdl-38823069

Multi-center disease diagnosis aims to build a global model for all involved medical centers. Due to privacy concerns, it is infeasible to collect data from multiple centers for training (i.e., centralized learning). Federated Learning (FL) is a decentralized framework that enables multiple clients (e.g., medical centers) to collaboratively train a global model while retaining patient data locally for privacy. However, in practice, the data across medical centers are not independently and identically distributed (Non-IID), causing two challenging issues: (1) catastrophic forgetting at clients, i.e., the local model at clients will forget the knowledge received from the global model after local training, causing reduced performance; and (2) invalid aggregation at the server, i.e., the global model at the server may not be favorable to some clients after model aggregation, resulting in a slow convergence rate. To mitigate these issues, an innovative Federated learning using Model Projection (FedMoP) is proposed, which guarantees: (1) the loss of local model on global data does not increase after local training without accessing the global data so that the performance will not be degenerated; and (2) the loss of global model on local data does not increase after aggregation without accessing local data so that convergence rate can be improved. Extensive experimental results show that our FedMoP outperforms state-of-the-art FL methods in terms of accuracy, convergence rate and communication cost. In particular, our FedMoP also achieves comparable or even higher accuracy than centralized learning. Thus, our FedMoP can ensure privacy protection while outperforming centralized learning in accuracy and communication cost.

2.
Carbohydr Polym ; 339: 122247, 2024 Sep 01.
Article En | MEDLINE | ID: mdl-38823915

The escalating demand for environmentally sustainable and cost-effective adhesives in the wood processing and manufacturing sector has prompted exploration into innovative solutions. This study introduces a novel gel adhesive composed of chemically unmodified high-amylose starch (G70, with 68 % amylose content) with a minimal proportion of urea-formaldehyde (UF) (UF/starch = 1:10, w/w). This G70/UF gel demonstrates remarkable adhesive capabilities for wooden boards under both dry conditions (with a shear stress of 4.13 ± 0.12 MPa) and wet conditions (with a shear strength of 0.93 ± 0.07 MPa after 2 h of water soaking). The study unveils that the elevated amylose content in the starch, coupled with a meticulously controlled isothermal process during bonding, is crucial for these enhancements. Specifically, the robust cohesion of amylose chains expedites phase separation between starch and UF, while the isothermal process facilitates the migration and enrichment of UF molecules at the gel-board and gel-air interfaces. Lacking these mechanisms, conventional amylopectin-rich starch/UF gels (27 % amylose content) show minimal improvement. Moreover, the G70/UF gel showcases exceptional fire retardancy. In all, the G70/UF gel presents a promising alternative for plywood production, reducing reliance on unhealthy UF resin while offering satisfactory bonding resistance in diverse conditions and superior flame retardancy.

4.
Nature ; 2024 Jun 05.
Article En | MEDLINE | ID: mdl-38839964

Membranes are widely used for separation processes in applications such as water desalination, batteries and dialysis, and are crucial in key sectors of our economy and society1. The majority of technologically exploited membranes are based on solid polymers and function as passive barriers, whose transport characteristics are governed by their chemical composition and nanostructure. Although such membranes are ubiquitous, it has proved challenging to maximize selectivity and permeability independently, leading to trade-offs between these pertinent characteristics2. Self-assembled biological membranes, in which barrier and transport functions are decoupled3,4, provide the inspiration to address this problem5,6. Here we introduce a self-assembly strategy that uses the interface of an aqueous two-phase system to template and stabilize molecularly thin (approximately 35 nm) biomimetic block copolymer bilayers of scalable area that can exceed 10 cm2 without defects. These membranes are self-healing, and their barrier function against the passage of ions (specific resistance of approximately 1 MΩ cm2) approaches that of phospholipid membranes. The fluidity of these membranes enables straightforward functionalization with molecular carriers that shuttle potassium ions down a concentration gradient with exquisite selectivity over sodium ions. This ion selectivity enables the generation of electric power from equimolar solutions of NaCl and KCl in devices that mimic the electric organ of electric rays.

5.
Inorg Chem ; 2024 Jun 06.
Article En | MEDLINE | ID: mdl-38842044

In this research, a range of Pt/CeO2 catalysts featuring varying Pt-O-Ce bond contents were developed by modulating the oxygen vacancies of the CeO2 support for toluene abatement. The Pt/CeO2-HA catalyst generated a maximum quantity of Pt-O-Ce bonds (possessed the strongest metal-support interaction), as evidenced by the visible Raman results, which demonstrated outstanding toluene catalytic performance. Additionally, the UV Raman results revealed that the strong metal-support interaction stimulated a substantial increase in oxygen vacancies, which could facilitate the activation of gaseous oxygen to generate abundant reactive oxygen species accumulated on the Pt/CeO2-HA catalyst surface, a conclusion supported by the H2-TPR, XPS, and toluene-TPSR results. Furthermore, the results from quasi-in situ XPS, in situ DRIFTS, and DFT indicated that the Pt/CeO2-HA catalyst with a strong metal-support interaction led to improved mobility of reactive oxygen species and lower oxygen activation energies, which could transfer a large number of activated reactive oxygen species to the reaction interface to participate in the toluene oxidation, resulting in the relatively superior catalytic performance. The approach of tuning the metal-support interaction of catalysts offers a promising avenue to develop highly active catalysts for toluene degradation.

6.
J Asian Nat Prod Res ; : 1-17, 2024 Jun 03.
Article En | MEDLINE | ID: mdl-38829012

Spirotryprostatins are representative members of medicinally interesting bioactive molecules of the spirooxindole natural products. In this communication, we present a novel enantioselective total synthesis of the spirooxindole alkaloid dihydrospirotryprostatin B. The synthesis takes advantage of copper-catalyzed tandem reaction of o-iodoanilide chiral sulfinamide derivatives with alkynone to rapidly construct the key quaternary carbon stereocenter of the natural product dihydrospirotryprostatin B.

7.
Front Psychiatry ; 15: 1353103, 2024.
Article En | MEDLINE | ID: mdl-38827448

Background: Insular subdivisions show distinct patterns of resting state functional connectivity with specific brain regions, each with different functional significance in chronic cigarette smokers. This study aimed to explore the altered dynamic functional connectivity (dFC) of distinct insular subdivisions in smokers. Methods: Resting-state BOLD data of 31 smokers with nicotine dependence and 27 age-matched non-smokers were collected. Three bilateral insular regions of interest (dorsal, ventral, and posterior) were set as seeds for analyses. Sliding windows method was used to acquire the dFC metrics of different insular seeds. Support vector machine based on abnormal insular dFC was applied to classify smokers from non-smokers. Results: We found that smokers showed lower dFC variance between the left ventral anterior insula and both the right superior parietal cortex and the left inferior parietal cortex, as well as greater dFC variance the right ventral anterior insula with the right middle cingulum cortex relative to non-smokers. Moreover, compared to non-smokers, it is found that smokers demonstrated altered dFC variance of the right dorsal insula and the right middle temporal gyrus. Correlation analysis showed the higher dFC between the right dorsal insula and the right middle temporal gyrus was associated with longer years of smoking. The altered insular subdivision dFC can classify smokers from non-smokers with an accuracy of 89.66%, a sensitivity of 96.30% and a specify of 83.87%. Conclusions: Our findings highlighted the abnormal patterns of fluctuating connectivity of insular subdivision circuits in smokers and suggested that these abnormalities may play a significant role in the mechanisms underlying nicotine addiction and could potentially serve as a neural biomarker for addiction treatment.

8.
Mil Med Res ; 11(1): 35, 2024 Jun 04.
Article En | MEDLINE | ID: mdl-38835066

Neuroendocrine neoplasms (NENs) are highly heterogeneous and potentially malignant tumors arising from secretory cells of the neuroendocrine system. Gastroenteropancreatic neuroendocrine neoplasms (GEP-NENs) are the most common subtype of NENs. Historically, GEP-NENs have been regarded as infrequent and slow-growing malignancies; however, recent data have demonstrated that the worldwide prevalence and incidence of GEP-NENs have increased exponentially over the last three decades. In addition, an increasing number of studies have proven that GEP-NENs result in a limited life expectancy. These findings suggested that the natural biology of GEP-NENs is more aggressive than commonly assumed. Therefore, there is an urgent need for advanced researches focusing on the diagnosis and management of patients with GEP-NENs. In this review, we have summarized the limitations and recent advancements in our comprehension of the epidemiology, clinical presentations, pathology, molecular biology, diagnosis, and treatment of GEP-NETs to identify factors contributing to delays in diagnosis and timely treatment of these patients.


Neuroendocrine Tumors , Pancreatic Neoplasms , Stomach Neoplasms , Humans , Neuroendocrine Tumors/therapy , Neuroendocrine Tumors/epidemiology , Neuroendocrine Tumors/diagnosis , Pancreatic Neoplasms/therapy , Pancreatic Neoplasms/epidemiology , Pancreatic Neoplasms/diagnosis , Stomach Neoplasms/epidemiology , Stomach Neoplasms/therapy , Stomach Neoplasms/diagnosis , Intestinal Neoplasms/therapy , Intestinal Neoplasms/epidemiology , Intestinal Neoplasms/diagnosis
9.
Front Oncol ; 14: 1375737, 2024.
Article En | MEDLINE | ID: mdl-38835381

Background: Acute promyelocytic leukemia (APL) is rarely caused by the PLZF::RARα fusion gene. While APL patients with PLZF::RARα fusion commonly exhibit diverse hematologic symptoms, the presentation of myeloid sarcoma (MS) as an initial manifestation is infrequent. Case presentation: A 61-year-old patient was referred to our hospital with 6-month history of low back pain and difficulty walking. Before this admission, spine magnetic resonance imaging (MRI) conducted at another hospital revealed multiple abnormal signals in the left iliac bone and vertebral bodies spanning the thoracic (T11-T12), lumbar (L1-L4), and sacral (S1/S3) regions. This led to a provisional diagnosis of bone tumors with an unknown cause. On admission, complete blood count (CBC) test and peripheral blood smear revealed a slightly increased counts of monocytes. Immunohistochemical staining of both spinal and bone marrow (BM) biopsy revealed positive expression for CD117, myeloperoxidase (MPO), and lysozyme. BM aspirate showed a significant elevation in the percentage of promyelocytes (21%), which were morphologically characterized by round nuclei and hypergranular cytoplasm. Multiparameter flow cytometry of BM aspirate revealed that blasts were positive for CD13, CD33, CD117, and MPO. Through the integrated application of chromosome analysis, fluorescence in situ hybridization (FISH), reverse transcriptase polymerase chain reaction (RT-PCR), and Sanger sequencing, it was determined that the patient possessed a normal karyotype and a rare cryptic PLZF::RARα fusion gene, confirming the diagnosis of APL. Conclusion: In the present study, we report the clinical features and outcome of a rare APL patient characterized by a cryptic PLZF::RARα fusion and spinal myeloid sarcoma (MS) as the initial presenting symptom. Our study not only offers valuable insights into the heterogeneity of APL clinical manifestations but also emphasizes the crucial need to promptly consider the potential link between APL and MS for ensuring a timely diagnosis and personalized treatments.

10.
Appl Opt ; 63(12): 3260-3264, 2024 Apr 20.
Article En | MEDLINE | ID: mdl-38856475

The Laue-type multilayer monochromator (LMM) is a promising optical element with a small size and high efficiency in a synchrotron radiation facility. By the dynamical diffraction theory, using DC magnetron sputtering technology, an LMM with a total thickness of 47 µm and a periodic thickness of 4.7 nm W S i 2/S i multilayer at 26 keV is designed and fabricated. During the preparation, the total number of layers is up to 20000, and every 300th layer of Si is replaced by WSi2 as the marker, so the multilayer is divided into 67 areas. The cross section of the multilayer is measured by a scanning electron microscope (SEM), and the marker region thickness error is 0.28% (RMS). The diffraction test experiment of the LMM is carried out at the Shanghai synchrotron radiation facility (SSRF). The 1st-order peak angle is 5.05 mrad, and the efficiency is 75.0%, which is close to the theoretical calculation result of 5.1 mrad and 79.1%. The Darwin width of the LMM is 0.17 mrad which is equal to the theoretical calculation. Based on the Bragg's diffraction equation, the energy resolution (Δ E/E) is 3.3%.

11.
World J Emerg Med ; 15(3): 214-219, 2024.
Article En | MEDLINE | ID: mdl-38855374

BACKGROUND: Chlorfenapyr is used to kill insects that are resistant to organophosphorus insecticides. Chlorfenapyr poisoning has a high mortality rate and is difficult to treat. This article aims to review the mechanisms, clinical presentations, and treatment strategies for chlorfenapyr poisoning. DATA RESOURCES: We conducted a review of the literature using PubMed, Web of Science, and SpringerLink from their beginnings to the end of October 2023. The inclusion criteria were systematic reviews, clinical guidelines, retrospective studies, and case reports on chlorfenapyr poisoning that focused on its mechanisms, clinical presentations, and treatment strategies. The references in the included studies were also examined to identify additional sources. RESULTS: We included 57 studies in this review. Chlorfenapyr can be degraded into tralopyril, which is more toxic and reduces energy production by inhibiting the conversion of adenosine diphosphate to adenosine triphosphate. High fever and altered mental status are characteristic clinical presentations of chlorfenapyr poisoning. Once it occurs, respiratory failure occurs immediately, ultimately leading to cardiac arrest and death. Chlorfenapyr poisoning is difficult to treat, and there is no specific antidote. CONCLUSION: Chlorfenapyr is a new pyrrole pesticide. Although it has been identified as a moderately toxic pesticide by the World Health Organization (WHO), the mortality rate of poisoned patients is extremely high. There is no specific antidote for chlorfenapyr poisoning. Therefore, based on the literature review, future efforts to explore rapid and effective detoxification methods, reconstitute intracellular oxidative phosphorylation couplings, identify early biomarkers of chlorfenapyr poisoning, and block the conversion of chlorfenapyr to tralopyril may be helpful for emergency physicians in the diagnosis and treatment of this disease.

12.
Biomaterials ; 311: 122649, 2024 Jun 05.
Article En | MEDLINE | ID: mdl-38850718

Innovative solutions are required for the intervention of implant associated infections (IAIs), especially for bone defect patients with chronic inflammatory diseases like diabetes mellitus (DM). The complex immune microenvironment of infections renders implants with direct antibacterial ability inadequate for the prolonged against of bacterial infections. Herein, a synergistic treatment strategy was presented that combined sonodynamic therapy (SDT) with adaptive immune modulation to treat IAIs in diabetes patients. A multifunctional coating was created on the surface of titanium (Ti) implants, consisting of manganese dioxide nanoflakes (MnO2 NFs) with cascade catalytic enzyme activity and a responsive degradable hydrogel containing a sonosensitizer. The reactive oxygen species (ROS) generated by glucose-hydrogen peroxide (H2O2) cascade catalysis and ultrasound (US) activation sonosensitizer helped kill bacteria and release bacterial antigens. Meanwhile, Mn2+ facilitated dendritic cells (DCs) maturation, enhancing antigen presentation to activate both cellular and humoral adaptive immunity against bacterial infections. This approach effectively eliminated bacteria in established diabetic IAIs model and activated systemic antibacterial immunity, providing long-term antibacterial protection. This study presents a non-antibiotic immunotherapeutic strategy for fighting IAIs in chronic diseases.

13.
Int Immunopharmacol ; 136: 112338, 2024 Jun 06.
Article En | MEDLINE | ID: mdl-38850787

Cardiac fibrosis is a typical feature of cardiac pathological remodeling, which is associated with adverse clinical outcomes and has no effective therapy. Nicotine is an important risk factor for cardiac fibrosis, yet its underlying molecular mechanism remains poorly understood. This study aimed to identify its potential molecular mechanism in nicotine-induced cardiac fibrosis. Our results showed nicotine exposure led to the proliferation and transformation of cardiac fibroblasts (CFs) into myofibroblasts (MFs) by impairing autophagy flux. Through the use of drug affinity responsive target stability (DARTS) assay, cellular thermal shift assay (CETSA), and surface plasmon resonance (SPR) technology, it was discovered that nicotine directly increased the stability and protein levels of lactate dehydrogenase A (LDHA) by binding to it. Nicotine treatment impaired autophagy flux by regulating the AMPK/mTOR signaling pathway, impeding the nuclear translocation of transcription factor EB (TFEB), and reducing the activity of cathepsin B (CTSB). In vivo, nicotine treatment exacerbated cardiac fibrosis induced in spontaneously hypertensive rats (SHR) and worsened cardiac function. Interestingly, the absence of LDHA reversed these effects both in vitro and in vivo. Our study identified LDHA as a novel nicotine-binding protein that plays a crucial role in mediating cardiac fibrosis by blocking autophagy flux. The findings suggest that LDHA could potentially serve as a promising target for the treatment of cardiac fibrosis.

14.
J Nutr Biochem ; 131: 109672, 2024 May 31.
Article En | MEDLINE | ID: mdl-38823542

Hypothyroidism and subclinical hypothyroidism were both characterized by elevated levels of thyroid stimulating hormone (TSH). Previous studies had found that high iodine or hyperlipidemia alone was associated with increased TSH level. However, their combined effects on TSH have not been elucidated. In this study, combination of high iodine and hyperlipidemia was established through the combined exposure of high-water iodine and high fat diet in Wistar rats. The results showed that combined exposure of high iodine and high fat can induce higher TSH level. The mRNA and protein levels of sodium iodide transporters (NIS) and type 1 deiodinase (D1) in thyroid tissues, which were crucial genes in the synthesis of thyroid hormones, decreased remarkably in combined exposure group. Mechanistically, down-regulated long non-coding RNA (lncRNA) metastasis associated in lung denocarcinoma transcript 1 (MALAT1) may regulate the expression of NIS by increasing miR-339-5p, and regulating D1 by increasing miR-224-5p. Then, the above findings were explored in subjects exposed to high water iodine and hyperlipidemia. The results indicated that in population combined with high iodine and hyperlipidemia, TSH level increased to higher level and lncRNA MALAT1-miR-339-5p-NIS axis was obviously activated. Collectively, this study found that combined exposure of high iodine and hyperlipidemia induced a higher level of TSH, and lncRNA MALAT1-miR-339-5p-NIS axis may play important role.

15.
Carbohydr Polym ; 337: 122176, 2024 Aug 01.
Article En | MEDLINE | ID: mdl-38710562

One of the promising applications of rod-like chitin nanocrystals (ChNCs) is the use as particle emulsifier to develop Pickering emulsions. We reported a ChNC-stabilized oil-in-water emulsion system, and developed a Pickering emulsion-templated method to prepare polylactide (PLA) hollow microspheres here. The results showed that both non-modified ChNCs and acetylated ChNCs could well emulsify the dichloromethane (DCM) solution of PLA-in-aqueous mannitol solution systems, forming very stable emulsions. At the same oil-to-water ratios and ChNC loadings, the emulsion stability was improved with increasing acetylation levels of ChNCs, accompanied by reduced size of droplets. Through the solvent evaporation, the PLA hollow microspheres were templated successfully, and the surface structure was also strongly dependent on the acetylation level of ChNCs. At a low level of acetylation, the single-hole or multi-hole surface structure formed, which was attributed to the out-diffusion of DCM caused by the solvent extraction and evaporation. These surface defects decreased with increased acetylation levels of ChNCs. Moreover, the aqueous suspension with as-obtained PLA microspheres revealed shear-thinning property and good biocompatibility, thereby had promising application as injectable fillers. This work can provide useful information around tuning surface structures of the Pickering emulsion-templated polymer hollow microspheres by regulating acetylation level of ChNCs.

16.
Biomater Sci ; 2024 May 15.
Article En | MEDLINE | ID: mdl-38747322

Considering the shortcomings of known medical hemostatic materials such as bone wax for bleeding bone management, it is essential to develop alternative bone materials capable of efficient hemostasis and bone regeneration and adaptable to clinical surgical needs. Thus, in the current work, a calcium sulfate hemihydrate and starch-based composite paste was developed and optimized. Firstly, it was found that the use of hydroxypropyl distarch phosphate (HDP) coupled with pregelatinization could generate an injectable, malleable and self-hardening paste with impressive anti-collapse ability in a dynamic aqueous environment, suggesting its potential applicability in both open and minimally invasive clinical practice. The as-hardened matrix exhibited a compressive strength of up to 61.68 ± 5.13 MPa compared to calcium sulfate cement with a compressive strength of 15.16 ± 2.42 MPa, making it a promising candidate for the temporary mechanical stabilization of bone defects. Secondly, the as-prepared paste revealed superior hemostasis and bone regenerative capabilities compared to calcium sulfate cement and bone wax, with greatly enhanced bleeding management and bone healing outcomes when subjected to testing in in vitro and in vivo models. In summary, our results confirmed that calcium sulfate bone cement reinforced with the selected starch can act as a reliable platform for bleeding bone treatment, overcoming the limitations of traditional bone hemostatic agents.

17.
Alzheimers Dement ; 2024 May 15.
Article En | MEDLINE | ID: mdl-38747519

INTRODUCTION: This study addresses the urgent need for non-invasive early-onset Alzheimer's disease (EOAD) prediction. Using optical coherence tomography angiography (OCTA), we present a choriocapillaris model sensitive to EOAD, correlating with serum biomarkers. METHODS: Eighty-four EOAD patients and 73 controls were assigned to swept-source OCTA (SS-OCTA) or the spectral domain OCTA (SD-OCTA) cohorts. Our hypothesis on choriocapillaris predictive potential in EOAD was tested and validated in these two cohorts. RESULTS: Both cohorts revealed diminished choriocapillaris signals, demonstrating the highest discriminatory capability (area under the receiver operating characteristic curve: SS-OCTA 0.913, SD-OCTA 0.991; P < 0.001). A sparser SS-OCTA choriocapillaris correlated with increased serum amyloid beta (Aß)42, Aß42/40, and phosphorylated tau (p-tau)181 levels (all P < 0.05). Apolipoprotein E status did not affect choriocapillaris measurement. DISCUSSION: The choriocapillaris, observed in both cohorts, proves sensitive to EOAD diagnosis, and correlates with serum Aß and p-tau181 levels, suggesting its potential as a diagnostic tool for identifying and tracking microvascular changes in EOAD. HIGHLIGHTS: Optical coherence tomography angiography may be applied for non-invasive screening of Alzheimer's disease (AD). Choriocapillaris demonstrates high sensitivity and specificity for early-onset AD diagnosis. Microvascular dynamics abnormalities are associated with AD.

18.
Front Plant Sci ; 15: 1387575, 2024.
Article En | MEDLINE | ID: mdl-38736453

Plants have evolved interconnected regulatory pathways which enable them to respond and adapt to their environments. In plants, stress memory enhances stress tolerance through the molecular retention of prior stressful experiences, fostering rapid and robust responses to subsequent challenges. Mounting evidence suggests a close link between the formation of stress memories and effective future stress responses. However, the mechanism by which environmental stressors trigger stress memory formation is poorly understood. Here, we review the current state of knowledge regarding the RNA-based regulation on stress memory formation in plants and discuss research challenges and future directions. Specifically, we focus on the involvement of microRNAs (miRNAs), small interfering RNAs (siRNAs), long non-coding RNAs (lncRNAs), and alternative splicing (AS) in stress memory formation. miRNAs regulate target genes via post-transcriptional silencing, while siRNAs trigger stress memory formation through RNA-directed DNA methylation (RdDM). lncRNAs guide protein complexes for epigenetic regulation, and AS of pre-mRNAs is crucial to plant stress memory. Unraveling the mechanisms underpinning RNA-mediated stress memory formation not only advances our knowledge of plant biology but also aids in the development of improved stress tolerance in crops, enhancing crop performance and global food security.

19.
ACS Appl Mater Interfaces ; 16(19): 25498-25510, 2024 May 15.
Article En | MEDLINE | ID: mdl-38701230

Clean, energy-free methods of cooling are an effective way to respond to the global energy crisis. To date, cooling materials using passive daytime radiative cooling (RC) technology have been applied in the fields of energy-efficient buildings, solar photovoltaic cooling, and insulating textiles. However, RC materials frequently suffer from comprehensive damage to their microstructure, resulting in the loss of their initial cooling effect in complex outdoor environments. Here, a superhydrophobic daytime passive RC porous film with environmental tolerance (SRCP film) was fabricated, which integrated strong solar reflectivity (approximately 90%), mid-infrared emissivity (approximately 0.97), and superhydrophobicity (water contact angle (WCA) of 160° and sliding angle of 3°). This study revealed that SRCP film had an average reflectivity of 14.3% higher than SiO2 particles in the 0.3-2.5 µm wavelength region, achieving a cooling effect of 13.2 °C in ambient conditions with a solar irradiance of 946 W·m-2 and a relative humidity of 74% due to the synergistic effect of effective solar reflection and thermal infrared emission. In addition, empirical results showed that the attained films possessed outstanding environmental tolerance, maintaining high WCA (156°), stable cooling effect (8.3 °C), and low SiO2 loss (less than 5.1%) after 30 consecutive days of UV irradiation and 14 days of corrosion with acidic and alkaline solutions. More importantly, this work could be flexibly prepared by various methods without the use of any fluorine-containing reagents, which greatly widens the practical application scope.

20.
World J Diabetes ; 15(5): 1011-1020, 2024 May 15.
Article En | MEDLINE | ID: mdl-38766432

BACKGROUND: Since adverse events during treatment affect adherence and subsequent glycemic control, understanding the safety profile of oral anti-diabetic drugs is imperative for type 2 diabetes mellitus (T2DM) therapy. AIM: To evaluate the risk of infection in patients with T2DM treated with dipeptidyl-peptidase 4 (DPP-4) inhibitors. METHODS: Electronic databases were searched. The selection criteria included randomized controlled trials focused on cardiovascular outcomes. In these studies, the effects of DPP-4 inhibitors were directly compared to those of either other active anti-diabetic treatments or placebo. Six trials involving 53616 patients were deemed eligible. We calculated aggregate relative risks employing both random-effects and fixed-effects approaches, contingent upon the context. RESULTS: The application of DPP-4 inhibitors showed no significant link to the overall infection risk [0.98 (0.95, 1.02)] or the risk of serious infections [0.96 (0.85, 1.08)], additionally, no significant associations were found with opportunistic infections [0.69 (0.46, 1.04)], site-specific infections [respiratory infection 0.99 (0.96, 1.03), urinary tract infections 1.02 (0.95, 1.10), abdominal and gastrointestinal infections 1.02 (0.83, 1.25), skin structure and soft tissue infections 0.81 (0.60, 1.09), bone infections 0.96 (0.68, 1.36), and bloodstream infections 0.97 (0.80, 1.18)]. CONCLUSION: This meta-analysis of data from cardiovascular outcome trials revealed no heightened infection risk in patients undergoing DPP-4 inhibitor therapy compared to control cohorts.

...