Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
J Mol Model ; 30(9): 304, 2024 Aug 09.
Article in English | MEDLINE | ID: mdl-39120824

ABSTRACT

CONTEXT: Energy-containing materials such as explosives have attracted considerable interest recently. In the field of high-energy materials, tetrazine and its derivatives can largely meet the requirements of high nitrogen content and oxygen balance. Nitrogen-rich energetic salts are important research subjects. Nitrogen-rich salt of 3,6-dinitramino-1,2,4,5-tetrazine is a high-energy nitrogen-rich material, but there are few related studies. This paper systematically studies the crystal structure and electronic, vibrational, and thermodynamic properties of (NH4)2(DNAT). The lattice parameters of (NH4)2(DNAT) are observed to align well with the experimental values. The properties of electrons are analyzed by band structure and density of states (DOS). The phonon dispersion curves indicate that the compound is dynamically stable. The vibrational modes of bonds and chemical groups are described in detail, and the peaks in the Raman and infrared spectra are assigned to different vibration modes. Based on the vibration characteristics, thermodynamic properties such as enthalpy (H), Helmholtz free energy (F), entropy (S), Gibbs free energy (G), constant volume heat capacity (CV), and Debye temperature (Θ) are analyzed. This article can pave the way for subsequent work or provide data support to other researchers, promoting further research. METHODS: In this study, we utilized the density functional theory (DFT) for our calculations. The exchange-correlation potential and van der Waals interactions were characterized based on the GGA-PBE + G function calculation. We obtained Brillouin zone integrals using Monkhorst-Pack k-point grids, with the k-point of the Brillouin zone set to a 2 × 2 × 2 grid. During the self-consistent field operation, we set the total energy convergence tolerance to 5 × 10-6 eV per atom. The cut-off energy for the calculation was established at 830 eV. Additionally, the states of H (1s1), C (2s2 2p2), N (2s2 2p3), and O (2s2 2p4) were treated as valence electrons in our study.

2.
J Mol Model ; 30(8): 276, 2024 Jul 19.
Article in English | MEDLINE | ID: mdl-39028369

ABSTRACT

CONTEXT AND RESULTS : In this paper, the crystal structure, electronic, optical, and mechanical properties of SrVO3 have been systematically studied by first-principles calculation. The results show that the calculated lattice parameters are in good agreement with the experimental values of X-ray diffraction. The density of states is described in detail in this paper. By analyzing the crystal structure and electronic properties of SrVO3, the magnetic properties of SrVO3 are obtained from the one unpaired electrons of V and the exchange interaction between two V ions. At the same time, a detailed analysis of the optical properties of SrVO3 was conducted, and it was found that it is transparent in the visible light range. Finally, the mechanical properties of SrVO3 are calculated, which can provide some references for future research. COMPUTATIONAL METHOD: In this paper, a first-principles method based on density functional theory (DFT) is reported for PBE-GGA analysis using the plane wave-pseudo potential method in a quantum concentrate packet, U value of 7 eV to V-d and a U value of 2 eV to O-p, Grimme correction by DFT-D method. The k points in the Brillouin region are set to 4 × 4 × 4. The energy convergence criterion for self-consistent field calculation is set at 5.0 × 10-6 eV/atom, and the cutoff energy is 1170 eV. In this paper, the force acting on each atom is not more than 0.01 eV/Å, the maximum stress is not more than 0.02GPa, and the maximum atomic displacement is 5 × 10-4 Å.

3.
J Mol Model ; 30(8): 277, 2024 Jul 20.
Article in English | MEDLINE | ID: mdl-39033090

ABSTRACT

CONTEXT: The key factor in designing heat-resistant energetic materials is their thermal sensitivity. Further research and prediction of thermal sensitivity remains a great challenge for us. This study is based on first-principles calculations and establishes a theoretical model, which comprehensively considers band gap, density of states, and Young's modulus to obtain a empirical parameter Ψ. A quantitative relationship was established between the new parameter and the thermal decomposition temperature. The value of Ψ is calculated for 10 energetic materials and is found to have a strong correlation with the experimental thermal decomposition temperature. This further proves the reliability of our model. Specifically, the larger the value of Ψ, the higher the thermal decomposition temperature, and the more stable the energetic material will be. Therefore, to some extent, we can use the new parameter Ψ calculated by the model to predict thermal sensitivity. METHODS: Based on first-principles, this paper used the Cambridge Serial Total Energy Package (CASTEP) module of Materials Studio (MS) for calculations. The Perdew-Burke-Ernzerhof (PBE) functionals in Generalized Gradient Approximation (GGA) method as well as the Grimme dispersion correction was used in this paper.

4.
J Mol Model ; 30(7): 229, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38918212

ABSTRACT

CONTEXT: The addition of central metal atoms to hydrogen clathrate structures is thought to provide a certain amount of "internal chemical pressure" to offset some of the external physical pressure required for compound stability. The size and valence of the central atoms significantly affect the minimum pressure required for the stabilization of hydrogen-rich compounds and their superconducting transition temperature. In recent years, many studies have calculated the minimum stable pressure and superconducting transition temperature of compounds with H24, H29, and H32 hydrogen clathrates, with centrally occupied metal atoms. In order to investigate the stability and physical properties of compounds with H cages in which the central atoms change in the same third group B, herein, based on first-principles calculations, we systematically investigated the lattice parameters, crystal volume, band structures, density of states, Mulliken analysis, charge density, charge density difference, and electronic localization function in I m 3 ¯ m -MH6 and P63/mmc-MH9 systems with different centered rare earth atoms M (M = Sc, Y, La) under a series of pressures. We find that for MH9, the pressure mainly changes the crystal lattice parameters along the c-axis, and the contributions of the different H atoms in MH9 to the Fermi level are H3 > H1 > H2. The density of states at the Fermi level of MH6 is mainly provided by H 1 s. Moreover, the size of the central atom M is particularly important for the stability of the crystal. By observing a series of properties of the structures with H24 and H29 cages wrapping the same family of central atoms under a series of pressures, our theoretical study is helpful for further understanding the formation mechanism of high-temperature superconductors and provides a reference for future research and design of high-temperature superconductors. METHODS: The first principles based on the density functional theory and density functional perturbation theory were employed to execute all calculations by using the CASTEP code in this work.

5.
J Phys Chem A ; 128(21): 4189-4198, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38748760

ABSTRACT

In order to investigate the impact of an external electric field on the sensitivity of ß-HMX explosives, we employ first-principles calculations to determine the molecular structure, dipole moment, and electronic properties of both ß-HMX crystals and individual ß-HMX molecules under varying electric fields. When the external electric field is increasing along the [100], [010], and [001] crystallographic directions of ß-HMX, the calculation results indicate that an increase in the bond length (N1-N3/N1'-N3') of the triggering bond, an increase in the main Qnitro (N3, N3') value, an increase in the minimum surface electrostatic potential, and a decrease in band gap all contribute to a reduction in its stability. Among these directions, the [010] direction exhibits the highest sensitivity, which can be attributed to the significantly smaller effective mass along the [010] direction compared with the [001] and [100] directions. Moreover, the application of an external electric field along the Y direction of the coordinate system on individual ß-HMX molecules reveals that the strong polarization effect induced by the electric field enhances the decomposition of the N1-N3 bonds. In addition, due to the periodic potential energy of ß-HXM crystal, the polarization effect of ß-HMX crystal caused by an external electric field is much smaller than that of a single ß-HXM molecule.

6.
J Mol Model ; 30(4): 116, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38561503

ABSTRACT

INTRODUCTION: The electronic and optical properties of ß-Ga2O3 have been investigated by CASTEP using first principles. It is found that ß-Ga2O3 has an indirect band gap and the conduction band base is located at the Γ point. The stability of ß-Ga2O3 is demonstrated by the calculation of elastic constants, and the ductility of ß-Ga2O3 is demonstrated by the ratio of Poisson's ratio to shear modulus. The optical property analysis shows that ß-Ga2O3 has a high absorption capacity in the ultraviolet region, but a low absorption capacity in visible and infrared light. CONTEXT: The structure, optical, and electronic properties of ß-Ga2O3 are calculated and analyzed based on first-principles calculation. The optimized structures of ß-Ga2O3 are in good agreement with previously studied. In this paper, the elastic, electronic, and optical properties of ß-Ga2O3 are calculated. METHODS: The CASTEP code was employed to execute these calculations in the present work, where the exchange-correlation interactions were treated in the generalized gradient approximation (GGA) using the Perdew-Burke-Ernzerhof (PBE) functional in the geometry optimizations and electronic and elastic properties.

7.
Chem Sci ; 15(16): 6106-6114, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38665543

ABSTRACT

The electrochemical performance of lithium-ion batteries (LIBs) is plagued by sluggish interfacial kinetics. Fortunately, the Li+ solvation structure bridges the bulk electrolyte and interfacial chemistry, providing a pathway for promoting electrochemical kinetics in LIBs. Herein, we improve the interfacial kinetics by tuning the Li+ coordination chemistry based on solvent molecular engineering. Specifically, 4-fluorobenzyl cyanide (FBCN), featuring steric hindrance and a weak Lewis basic center, is designed to construct a bulky coordination structure with Li+, weakening ion-dipole interaction (Li+-solvents) but promoting coulombic attraction (Li+-anions) at a normal Li salt concentration. This sterically-controlled solvation chemistry reduces the interfacial barrier and thus contributes to improved rate performance, as demonstrated practically in LiFePO4//graphite pouch cells. This study provides fresh insights into solvent steric control and coordination chemistry engineering, opening a new avenue for enhancing electrochemical kinetics in LIBs.

8.
ACS Appl Mater Interfaces ; 16(19): 24453-24463, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38687388

ABSTRACT

Despite the excellent performance of Nb3O7(OH) in dye-sensitized solar cells and catalysis, its charge separation, transport, and structural properties remain poorly understood. Herein, the Nb3O7(OH) nanorods were prepared, and their structural characteristics, optoelectronic properties, and carrier mobility were also analyzed and investigated through a series of complex characterizations. Theoretical prediction suggested that the exciton binding energy of Nb3O7(OH) could be as high as 100.49 meV. The temperature-dependent photoluminescence (PL) of Nb3O7(OH) nanorods revealed two activation energies, and a higher proportion of long-lived components observed in the photoluminescence decay indicated effective electron trapping. That is, two energy states were present, hindering photogenerated charge recombination and promoting photocatalytic action. Current-voltage characteristics of the Nb3O7(OH) nanorod film were analyzed, revealing an ultrahigh carrier mobility of ∼310 cm2/V·s, ensuring fast and efficient electron transfer. Furthermore, Nb3O7(OH) nanorods were employed to reduce CO2, resulting in the effective production of CO and CH4. Overall, considering the presence of hydroxyl pairs on the surface of Nb3O7(OH), which facilitate the formation of the frustrated Lewis acid-base pairs and the activation of CO2, together with its effective electron trapping and charge transport, give Nb3O7(OH) nanorods a promising potential for CO2 reduction.

9.
J Mol Model ; 30(5): 135, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38627284

ABSTRACT

CONTEXT: Based on first principles, the structure, elasticity, mechanics, electronics, and optical properties of cubic K2Pb2O3 were studied. The structural parameters calculated by this method are close to the previous theoretical results. The elastic constant, bulk modulus, shear modulus, Young's modulus, Poisson's ratio, and mechanical stability are studied, and it is shown that cubic K2Pb2O3 is mechanically stable, isotropic, and brittleness. The electrical conductivity and chemical bonding of cubic K2Pb2O3 were analyzed based on the calculated band structure, density of states (DOS), and bond populations. The dispersion of optical functions, including the dielectric function, refractive index, extinction coefficient, reflectivity, absorption coefficient, and loss function, is displayed and analyzed. METHODS: All computations have been carried out based on density functional theory (DFT) as implemented in the CASTEP code. The norm conservation pseudopotential method is used to exchange correlation functionals within the generalized gradient approximation (GGA).

10.
J Mol Model ; 30(5): 140, 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38639769

ABSTRACT

CONTEXT: In order to study the relationship between the sensitivity and pressure of energetic materials, six kinds of energetic materials were selected as the research object. The crystal structure, electronic, and phonon properties under hydrostatic pressure of 0 ~ 45 GPa were calculated by first principles. The calculation results show that the lattice parameters and band gap values of these six energetic materials decrease with the increase of pressure. The peak of the density of states decreases and moves to the low energy direction, and the electrons become more active. Meanwhile, the effect of pressure on the sensitivity of the energetic materials is analyzed based on the multi-phonon up-pumping theory. The number of doorway modes and integral of projected phonon density of states under high pressure is calculated. The results show that both of them increase with the increase of pressure. And the smaller the value of the band gap, the larger the number of doorway modes and integral of projected phonon density of states, and the more sensitive the energetic material is. METHODS: All calculations are performed using the Materials Studio software based on density functional theory. The Perdew-Burke-Ernzerhof (PBE) functional of the generalized gradient approximation (GGA) is used to calculate the exchange correlation function, and the Grimme dispersion correction method is used to deal with the weak intermolecular interaction. The structure of the compound was optimized by BFGS algorithm. The linear response is used to calculate the phonon properties of energetic materials. The plane wave cutoff energy was set to 830 eV. The K-point grids of TATB, FOX-7, TNX, RDX, TNT, and HMX were chosen as 2 × 2 × 2, 2 × 2 × 1, 2 × 1 × 1, 1 × 1 × 1, 1 × 2 × 1, and 2 × 1 × 2.

11.
J Mol Model ; 30(5): 150, 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38664264

ABSTRACT

METHODS: This study used molecular dynamics (MD) to simulate three materials (HMX, FOX-7, and TATB) under the NVT ensemble. Six temperatures (100 K, 200 K, 300 K, 400 K, 500 K, and 600 K) were simulated. In addition, the trigger bond lengths, energy bands, and density of states of three materials were obtained at different temperatures and compared with the calculated results at 0 K. CONTEXT: The results indicate that the trigger bond lengths of the three materials are very close to the experimental values. Overall, the maximum and average bond lengths of the trigger bonds increase with increasing temperature. The band gap value decreases with increasing temperature. The changes in trigger bond length and band gap value are consistent with the experimental fact that sensitivity increases with increasing temperature. And Eg > 1 eV is consistently found within the temperature range of 0-600 K, indicating that all three materials are non-metallic compounds.

12.
J Phys Chem A ; 128(17): 3468-3474, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38635347

ABSTRACT

Predicting the melting temperature of materials has always been a topic of great concern. This article proposes an alternative model for determining the melting temperature of materials based on the main idea of the Lindemann melting criterion combined with the first-principles calculations of density functional theory. To verify the accuracy of the melting model, this article selected typical ionic crystals of MgO and 10 alkali metal halides as the validation objects. The calculation results indicate that the melting temperature of the MgO crystals and I-VII compounds is in good agreement with the experimental results.

13.
Phys Chem Chem Phys ; 26(9): 7695-7705, 2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38372167

ABSTRACT

The determination of impact sensitivity of energetic materials traditionally relies on expensive and safety-challenged experimental means. This has instigated a shift towards scientific computations to gain insights into and predict the impact response of energetic materials. In this study, we refine the phonon-vibron coupling coefficients ζ in energetic materials subjected to impact loading, building upon the foundation of the phonon up-pumping model. Considering the full range of interactions between high-order phonon overtones and molecular vibrational frequencies, this is a pivotal element for accurately determining phonon-vibron coupling coefficients ζ. This new coupling coefficient ζ relies exclusively on phonon and molecular vibrational frequencies within the range of 0-700 cm-1. Following a regression analysis involving ζ and impact sensitivity (H50) of 45 molecular nitroexplosives, we reassessed the numerical values of damping factors, establishing a = 2.5 and b = 35. This coefficient is found to be a secondary factor in determining sensitivity, secondary to the rate of decomposition propagation and thermodynamic factor (heat of explosion). Furthermore, the relationship between phonon-vibron coupling coefficients ζ and impact sensitivity was studied in 16 energetic crystalline materials and eight nitrogen-rich energetic salts. It was observed that as the phonon-vibron coupling coefficient increases, the tendency for reduced impact sensitivity H50 still exists.

SELECTION OF CITATIONS
SEARCH DETAIL