Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 954
Filter
1.
Antioxidants (Basel) ; 13(6)2024 May 25.
Article in English | MEDLINE | ID: mdl-38929083

ABSTRACT

This study was conducted to investigate the effects of dietary phosphatidylserine (PS) supplementation on the growth performance, stress response, non-specific immunity and antioxidant capacity of juvenile blunt snout bream (Megalobrama ambylcephala) cultured under a high stocking density. A 2 × 2 two-factorial design was adopted, including two stocking densities (10 and 20 fish/m3) and two dietary PS levels (0 and 50 mg/kg). After the 12-week feeding trial, the high stocking density significantly decreased the final weight; weight gain rate; specific growth rate; feed intake; nitrogen retention efficiency; plasma complement 3 (C3) level; albumin/globulin (ALB/GLB, A/G) ratio; activity of myeloperoxidase, lysozyme (LZM) and glutathione peroxidase (GPX); gpx transcription; and abundance of sirtuin3 (Sirt3) and nuclear factor erythroid-2-related factor 2 (Nrf2). However, it significantly increased the plasma levels of cortisol, glucose (GLU), lactic acid (LD), total protein and GLB; hepatic malondialdehyde (MDA) content; and sirt1 transcription. PS supplementation significantly increased the plasma ALB and C4 levels; the A/G ratio; the activity of LZM, CAT and GPX; the transcription of sirt1, nrf2, manganese-containing superoxide dismutase and catalase; and the Nrf2 abundance. However, it significantly decreased the plasma levels of cortisol, GLU and GLB, as well as the hepatic MDA content. In addition, there was a significant interaction between the stocking density and PS supplementation regarding the effects on the plasma LD, ALB, GLB and C3 levels; A/G ratio; hepatic CAT activity; and protein abundance of Sod2. In conclusion, PS supplementation can counteract the high stocking density-induced stress response, redox imbalance and immunosuppression in blunt snout bream.

2.
Cell Metab ; 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38851189

ABSTRACT

Impaired self-renewal of Kupffer cells (KCs) leads to inflammation in metabolic dysfunction-associated steatohepatitis (MASH). Here, we identify neutrophil cytosolic factor 1 (NCF1) as a critical regulator of iron homeostasis in KCs. NCF1 is upregulated in liver macrophages and dendritic cells in humans with metabolic dysfunction-associated steatotic liver disease and in MASH mice. Macrophage NCF1, but not dendritic cell NCF1, triggers KC iron overload, ferroptosis, and monocyte-derived macrophage infiltration, thus aggravating MASH progression. Mechanistically, elevated oxidized phospholipids induced by macrophage NCF1 promote Toll-like receptor (TLR4)-dependent hepatocyte hepcidin production, leading to increased KC iron deposition and subsequent KC ferroptosis. Importantly, the human low-functional polymorphic variant NCF190H alleviates KC ferroptosis and MASH in mice. In conclusion, macrophage NCF1 impairs iron homeostasis in KCs by oxidizing phospholipids, triggering hepatocyte hepcidin release and KC ferroptosis in MASH, highlighting NCF1 as a therapeutic target for improving KC fate and limiting MASH progression.

3.
Heliyon ; 10(11): e32139, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38868014

ABSTRACT

SARS-CoV-2 evolves gradually to cause COVID-19 epidemic. One of driving forces of SARS-CoV-2 evolution might be activation of apolipoprotein B mRNA editing catalytic subunit-like protein 3 (APOBEC3) by inflammatory factors. Here, we aimed to elucidate the effect of the APOBEC3-related viral mutations on the infectivity and immune evasion of SARS-CoV-2. The APOBEC3-related C > U mutations ranked as the second most common mutation types in the SARS-CoV-2 genome. mRNA expression of APOBEC3A (A3A), APOBEC3B (A3B), and APOBEC3G (A3G) in peripheral blood cells increased with disease severity. A3B, a critical member of the APOBEC3 family, was significantly upregulated in both severe and moderate COVID-19 patients and positively associated with neutrophil proportion and COVID-19 severity. We identified USP18 protein, a key molecule centralizing the protein-protein interaction network of key APOBEC3 proteins. Furthermore, mRNA expression of USP18 was significantly correlated to ACE2 and TMPRSS2 expression in the tissue of upper airways. Knockdown of USP18 mRNA significantly decreased A3B expression. Ectopic expression of A3B gene increased SARS-CoV-2 infectivity. C > U mutations at S371F, S373L, and S375F significantly conferred with the immune escape of SARS-CoV-2. Thus, APOBEC3, whose expression are upregulated by inflammatory factors, might promote SARS-CoV-2 evolution and spread via upregulating USP18 level and facilitating the immune escape. A3B and USP18 might be therapeutic targets for interfering with SARS-CoV-2 evolution.

4.
Biochim Biophys Acta Mol Cell Res ; 1871(7): 119782, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38871225

ABSTRACT

Circadian Locomotor Output Cycles Kaput (CLOCK) is one of the circadian clock genes and is considered to be a fundamental regulatory gene in the circadian rhythm, responsible for mediating several biological processes. Therefore, abnormal expression of CLOCK affects its role in the circadian clock and its more general function as a direct regulator of gene expression. This dysfunction can lead to severe pathological effects, including cancer. To better understand the role of CLOCK in cancer, we compiled this review to describe the biological function of CLOCK, and especially highlighted its function in cancer development, progression, tumor microenvironment, cancer cell metabolism, and drug resistance.

5.
Environ Pollut ; 351: 124081, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38697251

ABSTRACT

Microcystin-leucine arginine (MC-LR) is a common cyantotoxin produced by hazardous cyanobacterial blooms, and eutrophication is increasing the contamination level of MC-LR in drinking water supplies and aquatic foods. MC-LR has been linked to colorectal cancer (CRC) progression associated with tumor microenvironment, however, the underlying mechanism is not clearly understood. In present study, by using GEO, KEGG, GESA and ImmPort database, MC-LR related differentially expressed genes (DEGs) and pathway- and gene set-enrichment analysis were performed. Of the three identified DEGs (CXCL1, GUCA2A and GDF15), CXCL1 was shown a positive association with tumor infiltration, and was validated to have a dominantly higher upregulation in MC-LR-treated tumor-associated macrophages (TAMs) rather than in MC-LR-treated CRC cells. Both CRC cell/macrophage co-culture and xenograft mouse models indicated that MC-LR stimulated TAMs to secrete CXCL1 resulting in promoted proliferation, migration, and invasion capability of CRC cells. Furtherly, IP-MS assay found that interaction between TAMs-derived CXCL1 and CRC cell-derived IGHG1 may enhance CRC cell proliferation and migration after MC-LR treatment, and this effect can be attenuated by silencing IGHG1 in CRC cell. In addition, molecular docking analysis, co-immunoprecipitation and immunofluorescence further proved the interactions between CXCL1 and IGHG1. In conclusion, CXCL1 secreted by TAMs can trigger IGHG1 expression in CRC cells, which provides a new clue in elucidating the mechanism of MC-LR-mediated CRC progression.


Subject(s)
Chemokine CXCL1 , Colorectal Neoplasms , Signal Transduction , Tumor-Associated Macrophages , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/genetics , Humans , Animals , Chemokine CXCL1/genetics , Chemokine CXCL1/metabolism , Mice , Tumor-Associated Macrophages/metabolism , Microcystins/toxicity , Marine Toxins , Cell Line, Tumor , Disease Progression , Cell Proliferation/drug effects , Tumor Microenvironment
6.
Article in English | MEDLINE | ID: mdl-38797005

ABSTRACT

Chironomidae, non-biting midges, a diverse and abundant insect group in global aquatic ecosystems, represent an exceptional model for investigating genetic adaptability mechanisms in aquatic insects due to their extensive species diversity and resilience to various environmental conditions. The cuticle in insects acts as the primary defense against ecological pressures. Cuticular Proteins (CPs) determine cuticle characteristics, facilitating adaptation to diverse challenges. However, systematic annotation of CP genes has only been conducted for one Chironomidae species, Propsilocerus akamusi, by our team. In this study, we expanded this annotation by identifying CP genes in eight additional Chironomidae species, covering all Chironomidae species with available genome data. We identified a total of 889 CP genes, neatly categorized into nine CP families: 215 CPR RR1 genes, 272 CPR RR2 genes, 23 CPR RR3 genes, 21 CPF genes, 16 CPLCA genes, 19 CPLCG genes, 28 CPLCP genes, 77 CPAP genes, and 37 Tweedle genes. Subsequently, we conducted a comprehensive phylogenetic analysis of CPs within the Chironomidae family. This expanded annotation of CP genes across diverse Chironomidae species significantly contributes to our understanding of their remarkable adaptability.


Subject(s)
Chironomidae , Evolution, Molecular , Insect Proteins , Phylogeny , Animals , Chironomidae/genetics , Chironomidae/classification , Insect Proteins/genetics , Genome, Insect , Molecular Sequence Annotation , Adaptation, Physiological
7.
Front Genet ; 15: 1388015, 2024.
Article in English | MEDLINE | ID: mdl-38737125

ABSTRACT

LncRNAs are an essential type of non-coding RNAs, which have been reported to be involved in various human pathological conditions. Increasing evidence suggests that drugs can regulate lncRNAs expression, which makes it possible to develop lncRNAs as therapeutic targets. Thus, developing in-silico methods to predict lncRNA-drug associations (LDAs) is a critical step for developing lncRNA-based therapies. In this study, we predict LDAs by using graph convolutional networks (GCN) and graph attention networks (GAT) based on lncRNA and drug similarity networks. Results show that our proposed method achieves good performance (average AUCs > 0.92) on five datasets. In addition, case studies and KEGG functional enrichment analysis further prove that the model can effectively identify novel LDAs. On the whole, this study provides a deep learning-based framework for predicting novel LDAs, which will accelerate the lncRNA-targeted drug development process.

8.
J Colloid Interface Sci ; 670: 223-233, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-38761575

ABSTRACT

Macrophages can kill bacteria and viruses by releasing free radicals, which provides a possible approach to construct antifouling coatings with dynamic surfaces that release free radicals if the breaking of dynamic covalent bonds is precisely regulated. Herein, inspired by the defensive behavior of macrophages of releasing free radicals to kill bacteria and viruses, a marine antifouling coating composed of polyurethane incorporating dimethylglyoxime (PUx-DMG) is prepared by precise regulation of dynamic oxime-urethane covalent bonds. The obtained alkyl radical (R·) derived from the cleavage of the oxime-urethane bonds manages to effectively suppress the attachment of marine biofouling. Moreover, the intrinsic dynamic surface makes it difficult for biofouling to adhere and ultimately achieves sustainable antifouling property. Notably, the PU50-DMG coating not only presents efficient antibacterial and antialgae properties, but also prevents macroorganisms from settling in the sea for up to 4 months. This provides a pioneer broad-spectrum strategy to explore the marine antifouling coatings.


Subject(s)
Anti-Bacterial Agents , Biofouling , Macrophages , Surface Properties , Biofouling/prevention & control , Macrophages/drug effects , Macrophages/metabolism , Animals , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Polyurethanes/chemistry , Polyurethanes/pharmacology , Mice , Oximes/chemistry , Oximes/pharmacology , RAW 264.7 Cells , Particle Size , Microbial Sensitivity Tests , Molecular Structure
9.
Am J Transl Res ; 16(4): 1188-1198, 2024.
Article in English | MEDLINE | ID: mdl-38715813

ABSTRACT

OBJECTIVE: To develop a predictive model based on preoperative quadriceps ultrasound measurements to determine frailty status in elderly patients undergoing abdominal surgery. METHODS: The clinical data of 148 elderly patients who underwent abdominal surgery from July 2018 to June 2022 were retrospectively analyzed. The patients were assessed for frailty using the Fried Frailty Phenotype Assessment Scale after operation and divided into a no-frailty group (n=89) and a frailty group (n=59). The differences in the patient's clinical data, perioperative indexes, and imaging indexes were compared. The risk factors affecting the frailty status of elderly patients undergoing abdominal surgery were analyzed by logistic regression. The efficacy of the prediction model was evaluated by receiver operating characteristic (ROC) curve, with model validity confirmed through calibration curves and decision curve analysis (DCA). RESULTS: The proportion of patients with age ≥80 and BMI ≥23 kg/m2 in the frailty group was significantly higher than that in the no-frailty group (both P<0.01). The operation duration and postoperative hospital stay in the frail group were significantly longer the non-frail group, and the complication rate within postoperative 7 days was significantly higher than that in the non-frail group (all P<0.05). The cross-sectional area of rectus femoris muscle, vastus medialis muscle thickness, vastus intermedius muscle thickness, rectus femoris muscle thickness, and lateral femoris muscle thickness were significantly less in the frail group than those of the no-frail group (all P<0.001). Multifactorial logistic regression analysis showed that BMI, surgical duration, vastus medialis muscle thickness, vastus intermedius muscle thickness, rectus femoris muscle thickness, and lateral femoral muscle thickness were independent risk factors affecting frailty status in elderly patients undergoing abdominal surgery (all P<0.05). The predictive model demonstrated high accuracy with an AUC of 0.926. CONCLUSION: BMI and thickness of all quadriceps muscle components were significant factors affecting the frailty status of elderly patients undergoing abdominal surgery. In addition, the developed model, with excellent accuracy, offers a potential tool for preoperative risk assessment in this patient population.

10.
Digit Health ; 10: 20552076241255654, 2024.
Article in English | MEDLINE | ID: mdl-38766359

ABSTRACT

Objective: This study aimed to develop an individual WeChat Mini Program to provide pharmaceutical care to better manage cancer pain patients and to evaluate its feasibility and the differences in analgesic efficacy, medication adherence and safety versus conventional pharmacy interventions. Methods: In this parallel randomized clinical trial, 42 cancer pain patients were equally allocated into the experimental group and the control group. The experimental group received individualized pharmaceutical care based on the "Yao Nin You Wo" WeChat Mini Program, while the control group received conventional care during the 4-week period. Main outcomes contained pain scores, medication adherence, incidences and relief rates of breakthrough pain, and incidences of adverse events. Relief rates of pain were also calculated according to pain scores. Results: At the beginning of intervention, none of the pain scores and medication adherence showed relevant differences between the two groups (all P > .05). After intervention, the experimental group had significantly lower pain scores compared to the control group (P = .003). Breakthrough pain of both groups was alleviate; not only the incidence of breakthrough pain considerably was lower at 4 weeks than at baseline, but the relief rate of breakthrough in the experimental group was higher than that in the control group. Compared with the control group, the medication adherence rate of the experimental group was significantly improved (P = .02). Types of adverse events that happened in experimental and groups were similar, but the total incidence of adverse events in the experimental group was lower than that in the control group. Conclusions: WeChat Mini Program is a useful and facilitative tool with the potential to improve cancer pain self-management ability in discharged patients. In addition, pharmacists could play a key role through the Mini Program to connect with patients successfully by providing personalized pharmaceutical services.

11.
Zookeys ; 1200: 275-302, 2024.
Article in English | MEDLINE | ID: mdl-38766412

ABSTRACT

Six new species of Cryptochironomus Kieffer, 1918, C.absum Liu, sp. nov., C.beardi Liu, sp. nov., C.dentatus Liu, sp. nov., C.ferringtoni Liu, sp. nov., C.parallelus Liu, sp. nov. and C.taylorensis Liu, sp. nov., are described and illustrated based on adult males. The specimens were collected from various water systems in the United States and preserved by Dr. Leonard Charles Ferrington Jr. An updated key to adult males of all known Cryptochironomus species in the Nearctic region is also provided.

12.
Sci Total Environ ; 934: 173199, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38750749

ABSTRACT

Frequent droughts have caused severe disaster losses in China. Such events can be minimized by enhancing the country's resilience and reducing its vulnerability, where this can ensure socioeconomic stability and sustainable development. Evaluating the vulnerability and resilience to drought is thus crucial for effectively managing the risk of disasters and promoting sustainable socioeconomic development. In this study, we constructed a comprehensive framework to assess the spatiotemporal characteristics of China's vulnerability and resilience to drought at the provincial scale from an input-output perspective by using the Super-efficiency Data Envelopment Analysis (DEA) model and the Super-efficiency Slacks-Based Measure DEA (SBM-DEA) model. This study focused on drought drivers, the disaster-forming environment, drought bearers, disaster intensity, and recovery. The results showed that the vulnerability to drought of 42 % of China's provinces decreased from 2010 to 2022, that of only 29 % of the provinces increased, while the status of a majority of provinces improved in general. The center of gravity of the vulnerability to drought moved toward the southwest over time and a spatial clustering of vulnerability was observed, with High-High clusters moving from the north to the south. Moreover, the resilience to drought declined in 36 % of provinces and increased in only 20 %, reflecting poor resilience overall. The center of gravity of China's overall resilience to drought moved northward, with a relatively stable spatial pattern and prominent clusters of Low-Low resilience indicating a pressing need for improvement. Areas with high vulnerability and low resilience were concentrated in inland western and eastern regions, and this highlights the importance of drought prevention and mitigation in provinces like Xinjiang, Inner Mongolia, Jiangxi, and Fujian. The findings here provide valuable insights for mitigating the risk of drought and promoting sustainable socioeconomic development.

13.
Int J Surg ; 2024 May 29.
Article in English | MEDLINE | ID: mdl-38814280

ABSTRACT

BACKGROUND: The in-depth understanding of the fine anatomy of the liver has promoted the development of modern liver surgery. With the rapid popularity of laparoscopic hepatectomy, the membrane structure of the liver and its ability to dissect the intra- and extra-hepatic vascular system more conveniently and accurately has been gradually emphasized. OBJECTIVE: Exploring the value of extrahepatic sheath dissection of the hepatic pedicle in minimally invasive anatomical hepatectomy with cystic plate approach. This study aims to assess the benefits of integrating the cystic plate approach with real-time guided laparoscopic anatomical hepatectomy, in comparison with conventional laparoscopic anatomical hepatectomy. MATERIALS AND METHODS: Based on the theory of cystic plate and hepatic portal plate, we have pioneered the fluorescence real-time guided cystic plate approach in hepatectomy. The article focuses on the anatomical knowledge and technical difficulties of anatomical hepatectomy with fluoroscopic laparoscopic cystic plate approach and explores the safety and practicality of the cystic plate approach in laparoscopic anatomical hepatectomy. Additionally, a retrospective cohort study was also conducted to compare the operation time, intraoperative blood loss, and postoperative complications between the cystic plate approach and the conventional approach during fluoroscopic laparoscopic hepatectomy. RESULTS: A total of 38 patients who met the inclusion criteria underwent laparoscopic hepatectomy between January 2019 and November 2022. No significant disadvantages were found in terms of operation time and intraoperative blood loss during the surgeries. Furthermore, the postoperative indications, including liver function indexes on the first postoperative day, WBC, and the postoperative hospital stay, were also not affected, thus proving the safety of the cystic approach. Importantly, through the cystic plate approach, the target liver pedicle was fully freed, and then the segments to be resected were precisely marked by positive or negative staining, followed by hepatectomy under real-time fluoroscopic guidance. This approach is extremely advantageous in anatomical liver segment resections, especially in right posterior lobe or hemi-hepatectomy, without increasing intraoperative bleeding or postoperative complication rates. CONCLUSION: This technique allows for easy and safe freeing of the target liver pedicle using membrane structures, and also allows for precise anatomical hepatectomy in combination with real-time fluoroscopic laparoscopic navigation.

14.
Environ Sci Pollut Res Int ; 31(24): 34953-34961, 2024 May.
Article in English | MEDLINE | ID: mdl-38714620

ABSTRACT

The safety of human health and agricultural production depends on the quality of farmland soil. Risk assessment of heavy metal pollution sources could effectively reduce the hazard of soil pollution from various sources. This study has identified and quantitatively analyzed pollution sources with geostatistical analysis and the APCS-MLR model. The potential ecological risk index was combined with the APCS-MLR model which has quantitatively calculated the source contribution. The results revealed that As, Cr, Cd, Pb, Zn, and Cu were enriched in soil. Geostatistical analysis and the APCS-MLR model have apportioned four pollution sources. The Mn and Ni were attributed to natural sources; As and Cr were from agricultural activities; Cu and Zn were originated from natural sources; Cd and Pb were derived from atmospheric deposition. Atmospheric deposition and agricultural activities were the largest contributors to ecological risk of heavy metals in soil, which accounted for 56.21% and 36.01% respectively. Atmospheric deposition and agricultural activities are classified as priority sources of pollution. The combination of source analysis receptor model and risk assessment is an effective method to quantify source contribution. This study has quantified the ecological risks of soil heavy metals from different sources, which will provide a reliable method for the identification of primary harmfulness sources of pollution for future studies.


Subject(s)
Environmental Monitoring , Metals, Heavy , Soil Pollutants , Metals, Heavy/analysis , Risk Assessment , Environmental Monitoring/methods , Soil Pollutants/analysis , Soil/chemistry , Agriculture , Environmental Pollution
15.
Heliyon ; 10(9): e29915, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38756596

ABSTRACT

The control precision of the working device has always been a challenging aspect in unmanned excavator research due to the adoption of a triangular drive mode and a complex hydraulic system in the working mechanism. The article focuses on the research of autonomous control for the downward motion of a robotic arm in an unmanned excavator equipped with a regeneration valve. The study aims to achieve precise tracking of fast movement trajectories during operator manipulation, utilizing Model Predictive Control (MPC). Furthermore, the exceptional disturbance rejection capability of the MPC algorithm is demonstrated through interference application. A comprehensive model considering mechanical, hydraulic, and electrical factors is established for the excavator boom. The MPC algorithm is applied to achieve precise control over the boom descent process, providing a foundation for motion control in unmanned excavators. This article presents a theoretical analysis to elucidate the robustness principle of MPC in the descent control of uncertain dynamic arms. By incorporating real parameters, we successfully track predetermined planned paths at different speeds and validate them on a 20-ton hydraulic excavator. The results demonstrate that the MPC control algorithm accurately manipulates the boom descent motion while exhibiting excellent disturbance rejection performance. Compared to PID control algorithms, MPC offers wider target adaptability range and better disturbance rejection performance, making it suitable for rapid application in controlling working devices of unmanned excavators.

16.
Sci Rep ; 14(1): 11591, 2024 05 21.
Article in English | MEDLINE | ID: mdl-38773220

ABSTRACT

Podocytes are specialized terminally differentiated cells in the glomerulus that are the primary target cells in many glomerular diseases. However, the current podocyte cell lines suffer from prolonged in vitro differentiation and limited survival time, which impede research progress. Therefore, it is necessary to establish a cell line that exhibits superior performance and characteristics. We propose a simple protocol to obtain an immortalized mouse podocyte cell (MPC) line from suckling mouse kidneys. Primary podocytes were cultured in vitro and infected with the SV40 tsA58 gene to obtain immortalized MPCs. The podocytes were characterized using Western blotting and quantitative real-time PCR. Podocyte injury was examined using the Cell Counting Kit-8 assay and flow cytometry. First, we successfully isolated an MPC line and identified 39 °C as the optimal differentiation temperature. Compared to undifferentiated MPCs, the expression of WT1 and synaptopodin was upregulated in differentiated MPCs. Second, the MPCs ceased proliferating at a nonpermissive temperature after day 4, and podocyte-specific proteins were expressed normally after at least 15 passages. Finally, podocyte injury models were induced to simulate podocyte injury in vitro. In summary, we provide a simple and popularized protocol to establish a conditionally immortalized MPC, which is a powerful tool for the study of podocytes.


Subject(s)
Cell Differentiation , Podocytes , Animals , Podocytes/metabolism , Podocytes/cytology , Mice , WT1 Proteins/metabolism , WT1 Proteins/genetics , Microfilament Proteins/metabolism , Microfilament Proteins/genetics , Cell Line , Cell Culture Techniques/methods , Cell Line, Transformed , Cell Proliferation
17.
Bioresour Technol ; 400: 130654, 2024 May.
Article in English | MEDLINE | ID: mdl-38575095

ABSTRACT

Aquaculture wastewater management is critical for environmental sustainability. This study investigates the synergistic interactions between light and dark biofilms with a Rotating Algal Biofilm (RAB) system for effective aquaculture wastewater treatment. The RAB system, optimized with a 5-day harvest time and 12-hour hydraulic retention time, demonstrated superior biomass productivity (3.3 g m-2 d-1) and total ammoniacal nitrogen removal (82.3 %). Comparative analysis of light and dark biofilms revealed their complementary roles, with the light side exhibiting higher carbon assimilation and nutrient removal efficiencies, while the dark side contributed significantly to denitrification and phosphorus removal. Microbial community analysis highlighted the dominance of key bacterial genera such as Haliangium, Methyloversatilis and Comamonadaceae, along with the algal genus Chlorella, indicating their crucial roles in nutrient cycling. This study provides insights into the operational dynamics of RAB system for sustainable aquaculture wastewater treatment.


Subject(s)
Aquaculture , Biofilms , Wastewater , Aquaculture/methods , Wastewater/microbiology , Nitrogen , Phosphorus , Water Purification/methods , Light , Biomass , Waste Disposal, Fluid/methods , Bacteria/metabolism , Denitrification
19.
Front Immunol ; 15: 1374787, 2024.
Article in English | MEDLINE | ID: mdl-38601150

ABSTRACT

Background: Acute pancreatitis (AP) is a severe digestive system disorder with a significant risk of progressing to sepsis, a major cause of mortality. Unraveling the immunological pathways in AP is essential for developing effective treatments, particularly understanding the role of specific immune cell traits in this progression. Methods: Employing a bidirectional two-sample Mendelian Randomization (MR) approach, this study first examined the causal relationship between AP and 731 immune cell traits to identify those significantly associated with AP. Subsequently, we explored the causal associations between 731 immune cell traits and sepsis. The analysis utilized extensive genome-wide association studies (GWAS) summary datasets, with a focus on identifying common immune cell traits with statistically significant causal associations between AP and sepsis. Results: Our investigation identified 44 immune cell traits unidirectionally associated with AP and 36 traits unidirectionally associated with sepsis. Among these, CD127 on CD28+ CD45RA- CD8+ T cells emerged as a common mediator, accounting for 5.296% of the increased risk of sepsis in AP patients. This finding highlights the significant role of specific memory CD8+ T cells in the pathophysiology of AP and its progression to sepsis. Conclusion: This study elucidates the critical role of specific immune cell traits, particularly CD127hi memory CD8+ T cells, in the progression of AP to sepsis. Our findings provide a foundation for future research into targeted immune-modulatory therapies, potentially improving patient outcomes in AP-related sepsis and offering new insights into the complex immunological dynamics of this condition.


Subject(s)
Pancreatitis , Sepsis , Humans , Pancreatitis/genetics , CD8-Positive T-Lymphocytes , Acute Disease , Genome-Wide Association Study , Mendelian Randomization Analysis , Sepsis/genetics
20.
Biodivers Data J ; 12: e121952, 2024.
Article in English | MEDLINE | ID: mdl-38617833

ABSTRACT

Background: Tibetan Plateau is one of the most typical areas of biodiversity in the world because of its unique environmental and regional units, which breed unique biological communities and concentrate on many unique and rare wild animals and plants. Research on Chironomidae in the Tibetan Plateau is relatively weak. At present, the identification of Chironomidae species mainly depends on male adults, while identification of larvae and pupae is relatively difficult and there is less research on them. New information: During the investigations of insect diversity in the Tibetan Plateau, larval and pupal stages of Orthocladiusnitidoscutellatus Lundström, 1915 and Psectrocladiusnevalis Akhrorov, 1977 were described and illustrated. Matching and identification of larval and pupal stages were based on DNA barcodes. Neighbour-joining trees were reconstructed, based on known Orthocladius and Psectrocladius COI DNA barcodes, respectively.

SELECTION OF CITATIONS
SEARCH DETAIL
...