Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 1.239
2.
Heliyon ; 10(7): e28005, 2024 Apr 15.
Article En | MEDLINE | ID: mdl-38689995

ARPC1B encodes the protein known as actin-related protein 2/3 complex subunit 1 B (ARPC1B), which controls actin polymerization in the human body. Although ARPC1B has been linked to several human malignancies, its function in these cancers remains unclear. TCGA, GTEx, CCLE, Xena, CellMiner, TISIDB, and molecular signature databases were used to analyze ARPC1B expression in cancers. Visualization of data was primarily achieved using R language, version 4.0. Nineteen tumors exhibited high levels of ARPC1B expression, which were associated with different tumor stages and significantly affected the prognosis of various cancers. The level of ARPC1B expression substantially connected the narrative of ARPC1B expression with several TMB cancers and showed significant changes in MSI. Additionally, tolerance to numerous anticancer medications has been linked to high ARPC1B gene expression. Using Gene Set Variation Analysis/Gene Set Enrichment Analysisanalysis and concentrating on Rectum adenocarcinoma (READ), we thoroughly examined the molecular processes of the ARPC1B gene in pan-cancer. Using WGCNA, we examined the co-expression network of READ and ARPC1B. Meanwhile, ten specimens were selected for immunohistochemical examination, which showed high expression of ARPC1B in READ. Human pan-cancer samples show higher ARPC1B expression than healthy tissues. In many malignancies, particularly READ, ARPC1B overexpression is associated with immune cell infiltration and a poor prognosis. These results imply that the molecular biomarker ARPC1B may be used to assess the prognosis and immune infiltration of patients with READ.

3.
Article En | MEDLINE | ID: mdl-38690615

Ubiquitin-conjugation enzyme E2C (UBE2C) is a crucial component of the ubiquitin-proteasome system that is involved in numerous cancers. In this study, we find that UBE2C expression is significantly increased in mouse embryos, a critical stage during skeletal muscle development. We further investigate the function of UBE2C in myogenesis. Knockdown of UBE2C inhibits C2C12 cell differentiation and decreases the expressions of MyoG and MyHC, while overexpression of UBE2C promotes C2C12 cell differentiation. Additionally, knockdown of UBE2C, specifically in the tibialis anterior muscle (TA), severely impedes muscle regeneration in vivo. Mechanistically, we show that UBE2C knockdown reduces the level of phosphorylated protein kinase B (p-Akt) and promotes the degradation of Akt. These findings suggest that UBE2C plays a critical role in myoblast differentiation and muscle regeneration and that UBE2C regulates myogenesis through the Akt signaling pathway.

4.
JCO Precis Oncol ; 8: e2300693, 2024 May.
Article En | MEDLINE | ID: mdl-38754056

PURPOSE: To report the results of OPAL (ClinicalTrials.gov identifier: NCT03574779) cohort A, a single-arm substudy of niraparib plus dostarlimab and bevacizumab for the treatment of advanced, platinum-resistant ovarian cancer (PROC). METHODS: Participants with PROC who received 1-2 previous lines of therapy were treated with niraparib (200 or 300 mg once daily), dostarlimab (500 mg once every 3 weeks for four 21-day cycles, followed by 1,000 mg once every 6 weeks), and bevacizumab (15 mg/kg once every 3 weeks). The primary end point was investigator-assessed objective response rate (ORR) per RECIST v1.1. Safety was also assessed. Exploratory biomarker end points included evaluation of changes in the tumor molecular profile and microenvironment using baseline and on-treatment tumor samples. RESULTS: Of 41 enrolled participants (median age, 66.0 years [range, 37-83 years]), 9.8% had tumors that were BRCA-mutated, 19.5% were homologous recombination (HR)-deficient, and 17.1% were HR repair (HRR)-mutated. As of the cutoff date, all participants discontinued treatment. The ORR was 17.1% (80% CI, 9.8 to 27.0), including one complete response (2.4%); the disease control rate was 73.2% (80% CI, 62.3 to 82.2). Two participants withdrew before first postbaseline scan because of adverse events (AEs). Grade ≥3 treatment-emergent AEs were reported in 92.7% of participants, with the most common being hypertension (26.8%). Response was not correlated with BRCA, HRR, HR deficiency (HRD), or PD-L1 status. Changes suggesting immune activation were observed in on-treatment samples after triplet therapy. CONCLUSION: Results demonstrated modest activity of niraparib, dostarlimab, and bevacizumab in participants with PROC, many of whom had prognostic factors for poor treatment response. Most participants with response were bevacizumab-naïve. No association was found with HRD, BRCA, or PD-L1 status. AEs were consistent with previous monotherapy reports, except that hypertension was reported more frequently.


Antineoplastic Combined Chemotherapy Protocols , Bevacizumab , Drug Resistance, Neoplasm , Indazoles , Ovarian Neoplasms , Piperidines , Humans , Female , Middle Aged , Ovarian Neoplasms/drug therapy , Aged , Bevacizumab/therapeutic use , Adult , Indazoles/therapeutic use , Aged, 80 and over , Piperidines/therapeutic use , Piperidines/adverse effects , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Antibodies, Monoclonal, Humanized/therapeutic use , Cohort Studies
5.
PLoS One ; 19(5): e0300586, 2024.
Article En | MEDLINE | ID: mdl-38748718

In civil engineering, stability analysis of slope is one of the main content of design. By using the finite element limit analysis software OptumG2, a landslide geological model is established to simulate the failure process of the landslide in Huadu District, Guangzhou City, China. The analysis focused on the deformation and failure characteristics, as well as the mechanical mechanism of landslide; the landslide mode of homogeneous soil is circular sliding. Additionally, investigating the influencing factors affecting slope stability is crucial in engineering implementation; in which the five influencing factors are considered as follow: slope height, slope gradient, soil cohesion, soil internal friction angle, and soil unit weight, respectively. A stability calculation model for a soil slope is established under 25 working conditions based on strength reduction method and orthogonal experimental design, in which the relationship between the safety factor and slope height, slope gradient, soil cohesion, soil internal friction angle, and soil unit weight is obtained. As the slope height increases from 5m to 45m, the safety factor of soil slope gradually decreases from 2.21 to 0.94; As the slope gradient increases from 20° to 60°, the safety factor of soil slope decreases approximately linearly from 1.80 to 0.95; As the cohesion of soil increases from 10kpa to 30kpa, the safety factor of soil slope increases approximately linearly from 1.04 to 1.60; As the internal friction angle of soil increases from 10° to 30°, the safety factor of soil slope increases approximately linearly from 1.00 to 1.81; As the unit weight of soil increases from 13kN/m3 to 21kN/m3, the safety factor of soil slope decreases approximately linearly from 1.50 to 1.21. The influencing factors affecting the safety factor of soil slope in descending order are slope height, slope angle, soil internal friction angle, soil cohesion, and soil unit weight. The research has reference significance for studying the stability and failure laws of soil slopes and conducting landslide control on soil slopes.


Landslides , Soil , Soil/chemistry , China , Models, Theoretical , Research Design
6.
Article En | MEDLINE | ID: mdl-38730553

OBJECTIVES: Mycophenolic acid (MPA) is recommended for lupus nephritis (LN) treatment, but with large inter-individual variability in pharmacokinetics (PK). The aim of this study is to reveal the relationship between MPA exposure and disease response and adverse drug reactions in pediatric LN patients. METHOD: This was a population-based observational cohort study. A total of 86 pediatric LN patients treated with mycophenolate mofetil (MMF) for induction therapy were enrolled. The area-under the concentration-time curve (AUC) was calculated using MPA concentrations according to a limited sampling strategy. Receiver operating characteristic analysis was performed to assess the MPA-AUC threshold values. The cumulative incidence of renal remission and inactive SLE over time was evaluated by Kaplan-Meier's analysis. RESULTS: MPA-AUC was identified as an independent factor associated with renal remission and lupus activity at 6 and 12 months after MMF treatment, and the improved renal remission rates was correlated with higher MPA-AUC, with thresholds of 29.81 and 30.63 µg·h·mL - 1 at 6 and 12 months, respectively. Furthermore, the thresholds for maintaining the hypoactive state of LN were 30.96 and 31.19 µg·h·mL - 1at 6 months and 12 months, respectively. Patients reaching target thresholds for MPA-AUC achieved renal response or stable disease earlier. In addition, the MPA-AUC threshold for decreasing MMF-related adverse reactions was 50.80 µg·h·mL - 1. CONCLUSION: The initial and long-term treatments of pediatric LN patients with MMF should be individualized according to the MPA-AUC, and the recommended MPA exposure is 31.19-50.80 µg·h·mL - 1.

8.
Eur J Pharmacol ; 974: 176631, 2024 Jul 05.
Article En | MEDLINE | ID: mdl-38692425

OBJECTIVE: Dasatinib and quercetin (D & Q) have demonstrated promise in improving aged-related pathophysiological dysfunctions in humans and mice. Herein we aimed to ascertain whether the heat stress (HS)-induced cognitive deficits in aged or even young adult male mice can be reduced by D & Q therapy. METHODS: Before the onset of HS, animals were pre-treated with D & Q or placebo for 3 consecutive days every 2 weeks over a 10-week period. Cognitive function, intestinal barrier permeability, and blood-brain barrier permeability were assessed. RESULTS: Compared to the non-HS young adult male mice, the HS young adult male mice or the aged male mice had significantly lesser extents of the exacerbated stress reactions, intestinal barrier disruption, endotoxemia, systemic inflammation and oxidative stress, blood-brain barrier disruption, hippocampal inflammation and oxidative stress, and cognitive deficits evaluated at 7 days post-HS. All the cognitive deficits and other syndromes that occurred in young adult HS mice or in aged HS mice were significantly attenuated by D & Q therapy (P < 0.01). Compared to the young adult HS mice, the aged HS mice had significantly (P < 0.01) higher severity of cognitive deficits and other related syndromes. CONCLUSIONS: First, our data show that aged male mice are more vulnerable to HS-induced cognitive deficits than those of the young adult male mice. Second, we demonstrate that a combination of D and Q therapy attenuates cognitive deficits in heat stressed aged or young adult male mice via broad normalization of the brain-gut-endotoxin axis function.


Blood-Brain Barrier , Dasatinib , Oxidative Stress , Quercetin , Animals , Male , Dasatinib/pharmacology , Dasatinib/therapeutic use , Quercetin/pharmacology , Quercetin/therapeutic use , Mice , Blood-Brain Barrier/drug effects , Blood-Brain Barrier/metabolism , Oxidative Stress/drug effects , Aging/drug effects , Cognitive Dysfunction/drug therapy , Cognitive Dysfunction/etiology , Heat-Shock Response/drug effects , Permeability/drug effects , Drug Therapy, Combination , Hippocampus/drug effects , Hippocampus/metabolism , Cognition/drug effects
9.
Cureus ; 16(5): e60511, 2024 May.
Article En | MEDLINE | ID: mdl-38764704

Background Frailty, within the context of heart failure (HF), is strongly linked to poor patient outcomes. Investigating the vulnerable condition of individuals with HF is crucial, not only for medical reasons but also as a significant public health challenge, especially among the elderly population where both HF and frailty are common. Therefore, it is essential to prioritize HF patients with frailty over those without such symptoms. To begin, promptly assessing the impact of academic research in this area is crucial, considering factors such as geographical regions, authors, journals, and institutions. Additionally, it is important to explore current topics and identify potential areas that could inspire future researchers to conduct further studies to advance public health. Methodology We conducted a search in the Web of Science Core Collection database to identify articles and reviews in the English language focusing on frailty and HF which were published from January 1, 2000, to December 31, 2023. To perform bibliometric analysis, VOSviewer (v.1.6.18) and CiteSpace (v.6.1.R2) were utilized. Results A total of 1,381 original English-language articles were gathered, comprising 1,162 articles and 219 reviews. The quantity of research publications in this area has experienced significant growth since 2013. Among all countries, the United States has contributed the largest number of publications, accounting for 409 articles (29.62% of the total). Additionally, the United States has received the highest number of citations, being cited a total of 13,329 times, as well as boasting the greatest total link strength. Duke University stands out as the institution with the highest number of research papers, having published 40 articles (2.90% of the total). It has also received the most citations, with a total of 2,455 times, and possesses the highest total link strength, which amounts to 212. Within the realm of prolific authors, Kentaro Kamiya from Kitasato University emerges as the most productive, having authored 28 articles (2.03% of the total). When considering scholarly journals, "Esc Heart Failure" contains the highest number of articles pertaining to frailty and HF, publishing a noteworthy 36 articles (2.61% of the total). Noteworthy keywords within this field encompass frailty, heart failure, elderly, mortality, and cardiovascular disease. Over the past five years, the most popular keywords have centered around "frailty syndrome," "sarcopenia," and "therapeutic interventions." Conclusions Research on frailty and HF at a global scale has experienced substantial growth between 2000 and 2023, demonstrating a prospective field for further exploration with potential advantages from ongoing progress. Prospective studies could prioritize the enhancement of cardiac rehabilitation for patients coping with HF and frailty while ensuring the preservation of their overall quality of life.

10.
PLoS Pathog ; 20(4): e1012136, 2024 Apr.
Article En | MEDLINE | ID: mdl-38620034

African swine fever (ASF) is an acute, hemorrhagic, and severe infectious disease caused by the ASF virus (ASFV). ASFV has evolved multiple strategies to escape host antiviral immune responses. Here, we reported that ASFV pB318L, a trans-geranylgeranyl-diphosphate synthase, reduced the expression of type I interferon (IFN-I) and IFN-stimulated genes (ISGs). Mechanically, pB318L not only interacted with STING to reduce the translocation of STING from the endoplasmic reticulum to the Golgi apparatus but also interacted with IFN receptors to reduce the interaction of IFNAR1/TYK2 and IFNAR2/JAK1. Of note, ASFV with interruption of B318L gene (ASFV-intB318L) infected PAMs produces more IFN-I and ISGs than that in PAMs infected with its parental ASFV HLJ/18 at the late stage of infection. Consistently, the pathogenicity of ASFV-intB318L is attenuated in piglets compared with its parental virus. Taken together, our data reveal that B318L gene may partially affect ASFV pathogenicity by reducing the production of IFN-I and ISGs. This study provides a clue to design antiviral agents or live attenuated vaccines to prevent and control ASF.


African Swine Fever Virus , African Swine Fever , Interferon Type I , Animals , Swine , Farnesyltranstransferase/metabolism , Viral Proteins/metabolism , Nucleotidyltransferases/genetics , Nucleotidyltransferases/metabolism , Interferon Type I/genetics , Interferon Type I/metabolism , Signal Transduction
11.
J Ethnopharmacol ; 330: 118102, 2024 Aug 10.
Article En | MEDLINE | ID: mdl-38561057

ETHNOPHARMACOLOGICAL RELEVANCE: Xiaoqinglong Decotion (XQLD) is a commonly used Chinese herbal formula in clinical practice, especially for allergic diseases such as asthma. However, its intrinsic mechanism for the treatment of neutrophilic asthma (NA) remains unclear. AIM OF THE STUDY: The aim of this study was to evaluate the efficacy and potential mechanisms of XQLD on NA using network pharmacology and in vivo experiments. MATERIALS AND METHODS: First, the active compounds, potential targets and mechanisms of XQLD against NA were initially elucidated by network pharmacology. Then, OVA/CFA-induced NA mice were treated with XQLD to assess its efficacy. Proteins were then analyzed and quantified using a Tandem Mass Tags approach for differentially expressed proteins (DEPs) to further reveal the mechanisms of NA treatment by XQLD. Finally, the hub genes, critical DEPs and potential pathways were validated. RESULTS: 176 active compounds and 180 targets against NA were identified in XQLD. Protein-protein interaction (PPI) network revealed CXCL10, CX3CR1, TLR7, NCF1 and FABP4 as hub genes. In vivo experiments showed that XQLD attenuated inflammatory infiltrates, airway mucus secretion and remodeling in the lungs of NA mice. Moreover, XQLD significantly alleviated airway neutrophil inflammation in NA mice by decreasing the expression of IL-8, MPO and NE. XQLD also reduced the levels of CXCL10, CX3CR1, TLR7, NCF1 and FABP4, which are closely associated with neutrophil inflammation. Proteomics analysis identified 28 overlapping DEPs in the control, NA and XQLD groups, and we found that XQLD inhibited ferroptosis signal pathway (elevated GPX4 and decreased ASCL3) as well as the expression of ARG1, MMP12 and SPP1, while activating the Rap1 signaling pathway. CONCLUSION: This study revealed that inhibition of ARG1, MMP12 and SPP1 expression as well as ferroptosis pathways, and activation of the Rap1 signaling pathway contribute to the therapeutic effect of XQLD on NA.


Asthma , Drugs, Chinese Herbal , Network Pharmacology , Proteomics , Animals , Asthma/drug therapy , Drugs, Chinese Herbal/pharmacology , Mice , Protein Interaction Maps , Female , Neutrophils/drug effects , Neutrophils/metabolism , Mice, Inbred BALB C , Lung/drug effects , Lung/metabolism , Lung/pathology , Anti-Asthmatic Agents/pharmacology , Disease Models, Animal , Ovalbumin , Male
12.
J Transl Med ; 22(1): 393, 2024 Apr 29.
Article En | MEDLINE | ID: mdl-38685045

BACKGROUND: Pancreatic ductal adenocarcinoma (PDAC) is a lethal malignancy with high probability of recurrence and distant metastasis. Liver metastasis is the predominant metastatic mode developed in most pancreatic cancer cases, which seriously affects the overall survival rate of patients. Abnormally activated endoplasmic reticulum stress and lipid metabolism reprogramming are closely related to tumor growth and metastasis. This study aims to construct a prognostic model based on endoplasmic reticulum stress and lipid metabolism for pancreatic cancer, and further explore its correlation with tumor immunity and the possibility of immunotherapy. METHODS: Transcriptomic and clinical data are acquired from TCGA, ICGC, and GEO databases. Potential prognostic genes were screened by consistent clustering and WGCNA methods, and the whole cohort was randomly divided into training and testing groups. The prognostic model was constructed by machine learning method in the training cohort and verified in the test, TCGA and ICGC cohorts. The clinical application of this model and its relationship with tumor immunity were analyzed, and the relationship between endoplasmic reticulum stress and intercellular communication was further explored. RESULTS: A total of 92 characteristic genes related to endoplasmic reticulum stress, lipid metabolism and liver metastasis were identified in pancreatic cancer. We established and validated a prognostic model for pancreatic cancer with 7 signatures, including ADH1C, APOE, RAP1GAP, NPC1L1, P4HB, SOD2, and TNFSF10. This model is considered to be an independent prognosticator and is a more accurate predictor of overall survival than age, gender, and stage. TIDE score was increased in high-risk group, while the infiltration levels of CD8+ T cells and M1 macrophages were decreased. The number and intensity of intercellular communication were increased in the high ER stress group. CONCLUSIONS: We constructed and validated a novel prognostic model for pancreatic cancer, which can also be used as an instrumental variable to predict the prognosis and immune microenvironment. In addition, this study revealed the effect of ER stress on cell-cell communication in the tumor microenvironment.


Endoplasmic Reticulum Stress , Gene Expression Regulation, Neoplastic , Lipid Metabolism , Liver Neoplasms , Pancreatic Neoplasms , Single-Cell Analysis , Transcriptome , Humans , Endoplasmic Reticulum Stress/genetics , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/pathology , Lipid Metabolism/genetics , Liver Neoplasms/genetics , Liver Neoplasms/secondary , Liver Neoplasms/pathology , Transcriptome/genetics , Prognosis , Male , Female , Middle Aged , Gene Expression Profiling , Reproducibility of Results , Cohort Studies
13.
J Inflamm Res ; 17: 2547-2561, 2024.
Article En | MEDLINE | ID: mdl-38686360

Introduction: Neutrophil predominant airway inflammation is associated with severe and steroid-resistant asthma clusters. Previously, we reported efficacy of ASHMI, a three-herb TCM asthma formula in a steroid-resistant neutrophil-dominant murine asthma model and further identified Ganoderic Acid C1 (GAC1) as a key ASHMI active compound in vitro. The objective of this study is to investigate GAC1 effect on neutrophil-dominant, steroid-resistant asthma in a murine model. Methods: In this study, Balb/c mice were systematically sensitized with ragweed (RW) and alum and intranasally challenged with ragweed. Unsensitized/PBS challenged mice served as normal controls. Post sensitization, mice were given 4 weeks of oral treatment with GAC1 or acute dexamethasone (Dex) treatment at 48 hours prior to challenge. Pulmonary cytokines were measured by ELISA, and lung sections were processed for histology by H&E staining. Furthermore, GAC1 effect on MUC5AC expression and on reactive oxygen species (ROS) production in human lung epithelial cell line (NCI-H292) was determined by qRT-PCR and ROS assay kit, respectively. Computational analysis was applied to select potential targets of GAC1 in steroid-resistant neutrophil-dominant asthma. Molecular docking was performed to predict binding modes between GAC1 and Dex with TNF-α. Results: The result of the study showed that chronic GAC1 treatment, significantly reduced pulmonary inflammation (P < 0.01-0.001 vs Sham) and airway neutrophilia (P < 0.01 vs Sham), inhibited TNF-α, IL-4 and IL-5 levels (P < 0.05-0.001 vs Sham). Acute Dex treatment reduced eosinophilic inflammation and IL-4, IL-5 levels, but had no effect on neutrophilia and TNF-α production. GAC1 treated H292 cells showed decreased MUC5AC gene expression and production of ROS (P < 0.001 vs stimulated/untreated cells). Molecular docking results showed binding energy of complex GAC1-TNF was -10.8 kcal/mol. Discussion: GAC1 may be a promising anti-asthma botanical drug for treatment of steroid-resistant asthma.

14.
Theriogenology ; 222: 54-65, 2024 Jul 01.
Article En | MEDLINE | ID: mdl-38621344

Coat colour largely determines the market demand for several cat breeds. The KIT proto-oncogene (KIT) gene is a key gene controlling melanoblast differentiation and melanogenesis. KIT mutations usually cause varied changes in coat colour in mammalian species. In this study, we used a pair of single-guide RNAs (sgRNAs) to delete exon 17 of KIT in somatic cells isolated from two different Chinese Li Hua feline foetuses. Edited cells were used as donor nuclei for somatic cell nuclear transfer (SCNT) to generate cloned embryos presenting an average cleavage rate exceeding 85%, and an average blastocyst formation rate exceeding 9.5%. 131 cloned embryos were transplanted into four surrogates, and all surrogates carried their pregnancies to term, and delivered 4.58% (6/131) alive cloned kittens, with 1.53% (2/131) being KIT-edited heterozygotes (KITD17/+). The KITD17/+ cats presented an obvious darkness reduction in the mackerel tabby coat. Immunohistochemical analysis (IHC) of skin tissues indicated impaired proliferation and differentiation of melanoblasts caused by the lack of exon17 in feline KIT. To our knowledge, this is the first report on coat colour modification of cats through gene editing. The findings could facilitate further understanding of the regulatory role of KIT on feline coat colour and provide a basis for the breeding of cats with commercially desired coat colour.


Cloning, Organism , Gene Editing , Proto-Oncogene Proteins c-kit , Animals , Cats , Proto-Oncogene Proteins c-kit/genetics , Proto-Oncogene Proteins c-kit/metabolism , Gene Editing/veterinary , Gene Editing/methods , Cloning, Organism/veterinary , Cloning, Organism/methods , Hair Color/genetics , Nuclear Transfer Techniques/veterinary , Female
15.
J Virol ; 98(5): e0006024, 2024 May 14.
Article En | MEDLINE | ID: mdl-38557170

As obligate parasites, viruses have evolved multiple strategies to evade the host immune defense. Manipulation of the host proteasome system to degrade specific detrimental factors is a common viral countermeasure. To identify host proteins targeted for proteasomal degradation by porcine reproductive and respiratory syndrome virus (PRRSV), we conducted a quantitative proteomics screen of PRRSV-infected Marc-145 cells under the treatment with proteasome inhibitor MG132. The data revealed that the expression levels of programmed cell death 4 (PDCD4) were strongly downregulated by PRRSV and significantly rescued by MG132. Further investigation confirmed that PRRSV infection induced the translocation of PDCD4 from the nucleus to the cytoplasm, and the viral nonstructural protein 9 (Nsp9) promoted PDCD4 proteasomal degradation in the cytoplasm by activating the Akt-mTOR-S6K1 pathway. The C-terminal domain of Nsp9 was responsible for PDCD4 degradation. As for the role of PDCD4 during PRRSV infection, we demonstrated that PDCD4 knockdown favored viral replication, while its overexpression significantly attenuated replication, suggesting that PDCD4 acts as a restriction factor for PRRSV. Mechanistically, we discovered eukaryotic translation initiation factor 4A (eIF4A) was required for PRRSV. PDCD4 interacted with eIF4A through four sites (E249, D253, D414, and D418) within its two MA3 domains, disrupting eIF4A-mediated translation initiation in the 5'-untranslated region of PRRSV, thereby inhibiting PRRSV infection. Together, our study reveals the antiviral function of PDCD4 and the viral strategy to antagonize PDCD4. These results will contribute to our understanding of the immune evasion strategies employed by PRRSV and offer valuable insights for developing new antiviral targets.IMPORTANCEPorcine reproductive and respiratory syndrome virus (PRRSV) infection results in major economic losses in the global swine industry and is difficult to control effectively. Here, using a quantitative proteomics screen, we identified programmed cell death 4 (PDCD4) as a host protein targeted for proteasomal degradation by PRRSV. We demonstrated that PDCD4 restricts PRRSV replication by interacting with eukaryotic translation initiation factor 4A, which is required for translation initiation in the viral 5'-untranslated region. Additionally, four sites within two MA3 domains of PDCD4 are identified to be responsible for its antiviral function. Conversely, PRRSV nonstructural protein 9 promotes PDCD4 proteasomal degradation in the cytoplasm by activating the Akt-mTOR-S6K1 pathway, thus weakening the anti-PRRSV function. Our work unveils PDCD4 as a previously unrecognized host restriction factor for PRRSV and reveals that PRRSV develops countermeasures to overcome PDCD4. This will provide new insights into virus-host interactions and the development of new antiviral targets.


Apoptosis Regulatory Proteins , Eukaryotic Initiation Factor-4A , Porcine respiratory and reproductive syndrome virus , RNA-Binding Proteins , Viral Nonstructural Proteins , Virus Replication , Porcine respiratory and reproductive syndrome virus/physiology , Animals , Viral Nonstructural Proteins/metabolism , Viral Nonstructural Proteins/genetics , Eukaryotic Initiation Factor-4A/metabolism , Eukaryotic Initiation Factor-4A/genetics , Apoptosis Regulatory Proteins/metabolism , Apoptosis Regulatory Proteins/genetics , Swine , Cell Line , RNA-Binding Proteins/metabolism , RNA-Binding Proteins/genetics , Proteasome Endopeptidase Complex/metabolism , Host-Pathogen Interactions , Proteolysis , Humans , Porcine Reproductive and Respiratory Syndrome/metabolism , Porcine Reproductive and Respiratory Syndrome/virology , TOR Serine-Threonine Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction
16.
Int J Biol Macromol ; 267(Pt 1): 131417, 2024 May.
Article En | MEDLINE | ID: mdl-38582457

Bone morphogenetic protein 15 (BMP15) plays a crucial role in the porcine follicular development. However, its exact functions in the in vitro maturation (IVM) of porcine oocytes remain largely unknown. Here, through cytoplasmic injection of a preassembled crRNA-tracrRNA-Cas9 ribonucleoprotein complex, we achieved BMP15 disruption in approximately 54 % of the cultured porcine oocytes. Editing BMP15 impaired the IVM of porcine oocytes, as indicated by the significantly increased abnormal spindle assembly and reduced first polar body (PB1) extrusion. The editing also impaired cytoplasmic maturation of porcine oocytes, as reflected by reduced abundant of Golgi apparatus and impaired functions of mitochondria. The impaired IVM of porcine oocytes by editing BMP15 possibly was associated with the attenuated SMAD1/5 and EGFR-ERK1/2 signaling in the cumulus granulosa cells (CGCs) and the inhibited MOS/ERK1/2 signaling in oocytes. The attenuated MOS/ERK1/2 signaling may contribute to the inactivation of maturation promoting factor (MPF) and the increased abnormal spindle assembly, leading to reduced PB1 extrusion. It also may contribute to reduced Golgi apparatus formation, and impaired functions of mitochondria. These findings expand our understanding of the regulatory role of BMP15 in the IVM of porcine oocytes and provide a basis for manipulation of porcine reproductive performance.


Bone Morphogenetic Protein 15 , Oocytes , Spindle Apparatus , Animals , Oocytes/metabolism , Bone Morphogenetic Protein 15/genetics , Bone Morphogenetic Protein 15/metabolism , Swine , Female , Spindle Apparatus/metabolism , MAP Kinase Signaling System , Mitochondria/metabolism , In Vitro Oocyte Maturation Techniques , Golgi Apparatus/metabolism , Organelles/metabolism , Organelles/genetics , Signal Transduction
17.
World Neurosurg ; 2024 Apr 10.
Article En | MEDLINE | ID: mdl-38608808

OBJECTIVE: Due to the infiltrative nature and high local recurrence of gliomas, particularly high-grade gliomas, gross total resection (GTR) of a tumor is the first critical step in treatment. This study aimed to determine whether the integration of intraoperative contrast-enhanced ultrasound (CEUS) and fluorescein sodium can improve the identification of tumor boundaries and residuals, and increasethe extent of resection (EOR) to better protect neurological function. METHODS: We retrospectively analysed clinical data from 87 glioma surgeries and categorised the patients into 3 groups: CEUS plus fluorescein sodium, fluorescein sodium alone and microsurgery alone. RESULTS: In terms of EOR, GTR was achieved in 22 (91.7%) patients in the CEUS plus fluorescein sodium group, which was significantly higher than that in other groups. In the subgroup analysis of tumors with lobulated or satellite lesions and WHO grade III or IV gliomas, CEUS plus fluorescein sodium group showed the highest GTR (86.7% and 88.9% respectively) among the groups. Logistic regression analysis of factors that may affect the GTR of tumors showed that the functional areas involvement and the presence of lobulated or satellite lesions were risk factors, whereas CEUS plus fluorescein sodium group was a protective factor. However, CEUS plus fluorescein sodium group had the longest surgery time. CONCLUSIONS: Intraoperative CEUS with fluorescein sodium is a real-time, straightforward, safe, and effective approach to perform surgical resection of gliomas. This approach assists surgeons in identifying tumor boundaries, residual tumors, and normal brain parenchyma, which increases the EOR.

18.
Eur Heart J Open ; 4(2): oeae021, 2024 Mar.
Article En | MEDLINE | ID: mdl-38572088

Aims: The prevalence of atrial fibrillation (AF) is positively correlated with prior cardiovascular diseases (CVD) and CVD risk factors but is lower in Chinese than Europeans despite their higher burden of CVD. We examined the prevalence and prognosis of AF and other electrocardiogram (ECG) abnormalities in the China Kadoorie Biobank. Methods and results: A random sample of 25 239 adults (mean age 59.5 years, 62% women) had a 12-lead ECG recorded and interpreted using a Mortara VERITAS™ algorithm in 2013-14. Participants were followed up for 5 years for incident stroke, ischaemic heart disease, heart failure (HF), and all CVD, overall and by CHA2DS2-VASc scores, age, sex, and area. Overall, 1.2% had AF, 13.6% had left ventricular hypertrophy (LVH), and 28.1% had ischaemia (two-thirds of AF cases also had ischaemia or LVH). The prevalence of AF increased with age, prior CVD, and levels of CHA2DS2-VASc scores (0.5%, 1.3%, 2.1%, 2.9%, and 4.4% for scores <2, 2, 3, 4, and ≥5, respectively). Atrial fibrillation was associated with two-fold higher hazard ratios (HR) for CVD (2.15; 95% CI, 1.71-2.69) and stroke (1.88; 1.44-2.47) and a four-fold higher HR for HF (3.79; 2.21-6.49). The 5-year cumulative incidence of CVD was comparable for AF, prior CVD, and CHA2DS2-VASc scores ≥ 2 (36.7% vs. 36.2% vs. 37.7%, respectively) but was two-fold greater than for ischaemia (19.4%), LVH (18.0%), or normal ECG (14.1%), respectively. Conclusion: The findings highlight the importance of screening for AF together with estimation of CHA2DS2-VASc scores for prevention of CVD in Chinese adults.

19.
J Agric Food Chem ; 2024 Apr 10.
Article En | MEDLINE | ID: mdl-38598771

Intramuscular fat (IMF) plays a crucial role in enhancing meat quality, enriching meat flavor, and overall improving palatability. In this study, Single-cell RNA sequencing was employed to analyze the longissimus dorsi (LD) obtained from Guangdong small-ear spotted pigs (GDSS, with high IMF) and Yorkshire pigs (YK, with low IMF). GDSS had significantly more Fibro/Adipogenic Progenitor (FAPs), in which the CD9 negative FAPs (FAPCD9-) having adipogenic potential, as demonstrated by in vitro assays using cells originated from mouse muscle. On the other hand, Yorkshire had more fibro-inflammatory progenitors (FIPs, marked with FAPCD9+), presenting higher expression of the FBN1-Integrin α5ß1. FBN1-Integrin α5ß1 could inhibit insulin signaling in FAPCD9-, suppressing adipogenic differentiation. Our results demonstrated that fat-type pigs possess a greater number of FAPCD9-, which are the exclusive cells in muscle capable of differentiating into adipocytes. Moreover, lean-type pigs exhibit higher expression of FBN1-Integrin α5ß1 axis, which inhibits adipocyte differentiation. These results appropriately explain the observed higher IMF content in fat-type pigs.

20.
Asian J Pharm Sci ; 19(2): 100891, 2024 Apr.
Article En | MEDLINE | ID: mdl-38584690

Anti-tumor angiogenesis therapy, targeting the suppression of blood vessel growth in tumors, presents a potent approach in the battle against cancer. Traditional therapies have primarily concentrated on single-target techniques, with a specific emphasis on targeting the vascular endothelial growth factor, but have not reached ideal therapeutic efficacy. In response to this issue, our study introduced a novel nanoparticle system known as CS-siRNA/PEITC&L-cRGD NPs. These chitosan-based nanoparticles have been recognized for their excellent biocompatibility and ability to deliver genes. To enhance their targeted delivery capability, they were combined with a cyclic RGD peptide (cRGD). Targeted co-delivery of gene and chemotherapeutic agents was achieved through the use of a negatively charged lipid shell and cRGD, which possesses high affinity for integrin αvß3 overexpressed in tumor cells and neovasculature. In this multifaceted approach, co-delivery of VEGF siRNA and phenethyl isothiocyanate (PEITC) was employed to target both tumor vascular endothelial cells and tumor cells simultaneously. The co-delivery of VEGF siRNA and PEITC could achieve precise silencing of VEGF, inhibit the accumulation of HIF-1α under hypoxic conditions, and induce apoptosis in tumor cells. In summary, we have successfully developed a nanoparticle delivery platform that utilizes a dual mechanism of action of anti-tumor angiogenesis and pro-tumor apoptosis, which provides a robust and potent strategy for the delivery of anti-cancer therapeutics.

...