Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 571
Filter
1.
Redox Biol ; 76: 103304, 2024 Aug 10.
Article in English | MEDLINE | ID: mdl-39153252

ABSTRACT

Cyclin-dependent kinase 4 and 6 inhibitors (CDK4/6 inhibitors) can significantly extend tumor response in patients with metastatic luminal A breast cancer, yet intrinsic and acquired resistance remains a prevalent issue. Understanding the molecular features of CDK4/6 inhibitor sensitivity and the potential efficacy of their combination with novel targeted cell death inducers may lead to improved patient outcomes. Herein, we demonstrate that ferroptosis, a form of regulated cell death driven by iron-dependent phospholipid peroxidation, partly underpins the efficacy of CDK4/6 inhibitors. Mechanistically, CDK4/6 inhibitors downregulate the cystine transporter SLC7A11 by inhibiting SP1 binding to the SLC7A11 promoter region. Furthermore, SLC7A11 is identified as critical for the intrinsic sensitivity of luminal A breast cancer to CDK4/6 inhibitors. Both genetic and pharmacological inhibition of SP1 or SLC7A11 enhances cell sensitivity to CDK4/6 inhibitors and synergistically inhibits luminal A breast cancer growth when combined with CDK4/6 inhibitors in vitro and in vivo. Our data highlight the potential of targeting SLC7A11 in combination with CDK4/6 inhibitors, supporting further investigation of combination therapy in luminal A breast cancer.

2.
Front Nutr ; 11: 1410196, 2024.
Article in English | MEDLINE | ID: mdl-39114122

ABSTRACT

Background: Hypoalbuminemia and cognitive impairment (CI) each independently increase the mortality risk in older adults. However, these two geriatric syndromes can occur simultaneously. In community-dwelling older adults, is the combination of hypoalbuminemia and CI linked to a higher mortality risk than either condition alone? Objective: We aimed to investigate the association between plasma albumin, cognitive function, and their synergistic effect on mortality in Chinese community-dwelling older adults. Methods: Data from the Chinese Longitudinal Healthy Longevity Survey (2012) included 1,858 participants aged ≥65. Baseline assessments comprised albumin levels and cognitive status. All-cause mortality was confirmed through 2014-2018 surveys. Cox proportional hazards models assessed associations, and restricted cubic splines explored albumin-mortality relationship. Results: During a median follow-up of 48.85 months, 921 deaths. Albumin≥35 g/L vs < 35g/L [HR: 1.33 (95%CI, 1.10, 1.62)] and CI vs normal cognition [HR: 1.69 (95%CI, 1.43, 1.99)] independently predicted mortality. A dose-response relationship with mortality was observed for albumin quartiles (p < 0.001). Each SD increase in MMSE or albumin correlated with 22% and 15% lower mortality risk, respectively. Combined hypoproteinemia and CI increased the mortality risk by 155%, with a notably higher risk in males, those aged <85 years, and individuals living in rural areas. Interaction effects of albumin and CI on mortality were observed (p < 0.001). In the single CI group, older adults had a 61% increased risk of mortality in the hypoproteinaemia group compared with the albumin-normal group. Restricted cubic spline revealed a reverse J-shaped association, particularly for participants without CI. For individuals with CI, albumin levels were inversely associated with mortality risk. Conclusion: Hypoproteinemia and CI, individually and combined, increased all-cause mortality risk in Chinese older adults, with stronger effects observed in males, younger older adults, and those living in rural areas. These findings emphasize the importance of targeted adjustments and early nutrition programs in health prevention and clinical care for older adults.

3.
Talanta ; 279: 126676, 2024 Aug 06.
Article in English | MEDLINE | ID: mdl-39121550

ABSTRACT

The abuse of kanamycin (KAN) poses an increasing threat to human health by contaminating agricultural and animal husbandry products, drinking water, and more. Therefore, the sensitive detection of trace KAN residues in real samples is crucial for monitoring agricultural pollution, ensuring food safety, and diagnosing diseases. However, traditional assay techniques for KAN rely on bulky instruments and complicated operations with unsatisfactory detection limits. Herein, we developed a novel label-free aptasensor to achieve ultrasensitive detection of KAN by constructing mesoporous DNA-cobalt@carbon nanofibers (DNA-Co@C-NFs) as the recognizer. Leveraging the extended π-conjugation structure, prominent surface area, and abundant pores, the Co@C-NFs can effectively load aptamer strands via π-π stacking interactions, serving as KAN capturer and reporter. Due to the change in DNA configuration upon binding KAN, this aptasensor presented an ultralow detection limit and ultra-wide linear range, along with favorable precision and selectivity. Using real tap water, milk, and human serum samples, the aptasensor accurately reported trace KAN levels. As a result, this convenient and rapid autosensing technique holds promise for onsite testing of other antibiotic residues in agriculture, food safety, and clinical diagnosis.

4.
Food Res Int ; 193: 114767, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39160035

ABSTRACT

In recent years, foodborne diseases have posed a serious threat to human health, and rapid detection of foodborne pathogens is particularly crucial for the prevention and control of such diseases. This article offers a detailed overview of the development of detection techniques for foodborne pathogens, transitioning from traditional microbiological culture methods to the current array of techniques, including immunological, molecular biological, and biosensor-based methods. It summarizes the technical principles, advantages, disadvantages, and research progress of these diverse methods. Furthermore, the article demonstrates that the combination of different methods enhances the efficiency and accuracy of pathogens detection. Specifically, the article focuses on the application and advantages of combining CRISPR/Cas systems with other detection methods in the detection of foodborne pathogens. CRISPR/Cas systems, with their high specificity, sensitivity, and ease of operation, show great potential in the field of foodborne pathogens detection. When integrated with other detection techniques such as immunological detection techniques, molecular biology detection techniques, and biosensors, the accuracy and efficiency of detection can be further improved. By fully utilizing these tools, early detection and control of foodborne diseases can be achieved, enhancing public health and preventing disease outbreaks. This article serves as a valuable reference for exploring more convenient, accurate, and sensitive field detection methods for foodborne pathogens, promoting the application of rapid detection techniques, and ensuring food safety and human health.


Subject(s)
Biosensing Techniques , Food Microbiology , Food Safety , Foodborne Diseases , Foodborne Diseases/microbiology , Foodborne Diseases/prevention & control , Food Microbiology/methods , Food Safety/methods , Humans , Biosensing Techniques/methods , CRISPR-Cas Systems , Food Contamination/analysis
5.
Int J Biol Macromol ; 275(Pt 1): 133623, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38969037

ABSTRACT

Enzyme-triggered oral colon-specific drug delivery system (EtOCDDS1) can withstand the harsh stomach and small intestine environments, releasing encapsulated drugs selectively in the colon in response to colonic microflora, exerting local or systematic therapeutic effects. EtOCDDS boasts high colon targetability, enhanced drug bioavailability, and reduced systemic side effects. Polysaccharides are extensively used in enzyme-triggered oral colon-specific drug delivery systems, and its colon targetability has been widely confirmed, as their properties meet the demand of EtOCDDS. Polysaccharides, known for their high safety and excellent biocompatibility, feature modifiable structures. Some remain undigested in the stomach and small intestine, whether in their natural state or after modifications, and are exclusively broken down by colon-resident microbiota. Such characteristics make them ideal materials for EtOCDDS. This article reviews the design principles of EtOCDDS as well as commonly used polysaccharides and their characteristics, modifications, applications and specific mechanism for colon targeting. The article concludes by summarizing the limitations and potential of ETOCDDS to stimulate the development of innovative design approaches.


Subject(s)
Colon , Drug Delivery Systems , Polysaccharides , Polysaccharides/chemistry , Colon/metabolism , Colon/drug effects , Humans , Drug Delivery Systems/methods , Administration, Oral , Animals , Drug Carriers/chemistry , Enzymes/chemistry , Enzymes/metabolism
6.
Histol Histopathol ; : 18788, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-39041213

ABSTRACT

Gallbladder neuroendocrine carcinomas (GB-NECs) are a rare subtype of malignant gallbladder cancer (GBC). The genetic and molecular characteristics of GB-NECs are rarely reported. This study aims to assess the frequency of microsatellite instability (MSI) in GB-NECs and characterize their clinicopathologic and molecular features in comparison with gallbladder adenocarcinomas (GB-ADCs). Data from six patients with primary GB-NECs and 13 with GB-ADCs were collected and reevaluated. MSI assay, immunohistochemistry for mismatch repair proteins (MLH1, MSH2, MSH6, and PMS2), comprehensive genomic profiling (CGP) via next-generation sequencing (NGS), and evaluation of tumor mutation burden (TMB) were conducted on these samples. The six GB-NEC cases were all female, with a mean age of 62.0±9.2 years. Of these, two cases were diagnosed as large cell neuroendocrine carcinomas (LCNECs), while the remaining four were small cell neuroendocrine carcinomas (SCNECs). Microsatellite states observed in both GB-NECs and GB-ADCs were consistently microsatellite stable (MSS). Notably, TP53 (100%, 6/6) and RB1 (100%, 6/6) exhibited the highest mutation frequency in GB-NECs, followed by SMAD4 (50%, 3/6), GNAS (50%, 3/6), and RICTOR (33%, 2/6), with RB1, GNAS, and RICTOR specifically present in GB-NECs. Immunohistochemical (IHC) assays of p53 and Rb in the six GB-NECs were highly consistent with genetic mutations detected by targeted NGS. Moreover, no statistical difference was observed in TMB between GB-NECs and GB-ADCs (P=0.864). Although overall survival in GB-NEC patients tended to be worse than in GB-ADC patients, this difference did not reach statistical significance (P=0.119). This study has identified the microsatellite states and molecular mutation features of GB-NECs, suggesting that co-mutations in TP53 and RB1 may signify a neuroendocrine inclination in GB-NECs. The IHC assay provides an effective complement to targeted NGS for determining the functional status of p53 and Rb in clinical practice.

7.
ACS Omega ; 9(29): 31384-31392, 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-39072131

ABSTRACT

Porous media combustion has the advantages of high combustion efficiency and low pollutant emissions. However, there are few studies on the combustion characteristics and pollutant emissions of high-power porous media combustion chambers and fire tubes. Based on the computational fluid dynamics method, the stable combustion characteristics and pollutant emission rules of methane-air were explored in a high-power porous media combustion chamber of 800-1200 kW. The results show that the combustion of the porous media combustor is stabilized at an inlet velocity of 0.8-1.6 m/s with an equivalence ratio of Φ = 0.5-0.9. The high-power porous medium combustor has the highest limiting temperature at Φ = 0.7. Temperature increases gradually with increasing porosity within the -2.5 to 1 m axial center interval. The outlet radial temperature distribution tends to be uniform with the increase of porosity, and the outlet temperature is highest for porous media with a thickness of 400 mm. NO emission was lowest at an inlet velocity of 1.2 m/s. A significant reduction in NO emissions was observed with increasing equivalence ratio. NO generation increases with increasing porosity at porosities between 0.75 and 0.85. NO generation increases with the thickness of the porous media and increases sharply at 600 mm. The results above can provide guidelines for the design of a high-efficiency high-power porous combustor.

8.
Front Microbiol ; 15: 1401373, 2024.
Article in English | MEDLINE | ID: mdl-39077746

ABSTRACT

Insufficient density of red deer has affected the stability of forest ecosystems and the recovery of large carnivores (represented by Amur tiger). Conservation translocations from captivity to the wild has become an important way to restore the red deer populations. However, the difference in gut microbes between pre-release and wild red deer may affect the feeding adaptability of red deer after release. In this study, we clarified the differences in gut microbes between pre-released and wild red deer and screened the key gut microbes of the red deer involved in feeding by using metagenomic sequencing and feeding analysis. The results showed that the microbial difference between pre-released and wild red deer was mainly related to Firmicutes represented by Eubacteriales and Clostridia, and Firmicutes abundance in pre-released red deer (68.23%) was significantly lower than that of wild red deer (74.91%, p < 0.05). The expression of microbial metabolic pathways in pre-released red deer were significantly lower than those in wild red deer (p < 0.05), including carbohydrate metabolism, amino acid metabolism, glycan biosynthesis and metabolism, etc. The combinations of Firmicutes were significantly positively correlated with the intake of plant fiber and carbohydrate (p < 0.05), and were key microbes to help red deer deal with wild plant resources. Additionally, the combinations of Firmicutes represented by Eubacteriales and Clostridia lacking in pre-released red deer contributed the most to expression of microbial metabolic pathways (importance > 1), showing a significant positive correlation (p < 0.05). This study indicates that high abundance of Firmicutes is an important guarantee for red deer to adapt to the wild feeding environment, which provides critical implications for the recovery of red deer populations and the protection of endangered ungulates.

9.
Adv Healthc Mater ; : e2401704, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39011795

ABSTRACT

A bio-hydrogel is prepared via a low-cost and time-saving strategy and is studied as a self-powered wound dressing for precision medicine and health monitoring. Promoted by a dual self-catalytic pair composed of Fe3+ and catechol, gelation time is dramatically accelerated to 15 s and the hydrogel can be freely modeled at -18 °C without losing flexibility. As smart wound dressing, the required properties such as self-healing, self-adhesion, antibacterial, and sensing stability, are integrated into one hydrogel. TA@CNC offers abundant hydrogen bond and metal-ligand coordination which facilitate the hydrogel with a self-healing efficiency of 91.6%. Owing to the catechol in TA@CNC, hydrogel can adhere to multiple substrates including skin, and show good antibacterial activity. Inspired by a fruit battery, a self-powered wound dressing is fabricated, which exhibits excellent correlation and efficiency in real-time monitoring of body activity and drug release. In vivo experiments prove that efficient drug release of hydrogel dressing significantly accelerate wound healing. Additionally, the dressing exhibits excellent biocompatibility and has no negative impacts on organs. Herein, a smart wound dressing that is different from the traditional way is proposed. As a self-powered device, it can be integrated with wireless devices and is expected to participate in promising applications.

10.
Angew Chem Int Ed Engl ; : e202407135, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-39018249

ABSTRACT

Herein we report on circularly polarized luminescence (CPL) emission originating from supramolecular chirality of organic microcrystals with a |glum| value up to 0.11. The microcrystals were prepared from highly emissive difluoroboron ß-diketonate (BF2dbk) dyes R-1 or S-1 with chiral binaphthol (BINOL) skeletons. R-1 and S-1 exhibit undetectable CPL signals in solution but manifest intense CPL emission in their chiral microcrystals. The chiral superstructures induced by BINOL skeletons were confirmed by XRD analysis. Spectral analysis and theoretical calculations indicate that intermolecular electronic coupling, mediated by the asymmetric stacking in the chiral superstructures, effectively alters excited-state electronic structures and facilitates electron transitions perpendicular to BF2bdk planes. The coupling increases cosθµ,m from 0.05 (monomer) to 0.86 (tetramer) and triggers intense optical activity of BF2bdk. The results demonstrate that optical activity of chromophores within assemblies can be regulated by both orientation and extent of intermolecular electronic couplings.

11.
Phytomedicine ; 132: 155864, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39032281

ABSTRACT

BACKGROUND: Atherosclerosis is a long-lasting inflammatory condition affecting the walls of arteries, marked by the buildup of fats, plaque formation, and vascular remodeling. Recent findings highlight the significance of cholesterol removal pathways in influencing atherosclerosis, yet the connection between cholesterol removal and regulation of macrophage inflammation remains poorly understood. RBAP could serve as an anti-inflammatory agent; however, its role in atherosclerosis and the mechanism behind it are still not well understood. PURPOSE: The objective of this research is to explore how RBAP impacts cholesterol efflux, which is a considerable element in the advancement of atherosclerosis. METHODS: An atherosclerosis mouse model was established by using an ApoE KO strain mouse on a high-fat diet (HFD) to assess the effects of RBAP, conducted either orally or through injection. Additionally, in vitro experiments were conducted where the induction of THP-1 cells was conducted for the differentiation towards macrophages, and along with mouse RAW264.7 cells, were challenged with ox-LDL to evaluate the impact of RBAP. RESULTS: In this study, RBAP was found to reduce the production and downregulate TNF-α, IL-1ß, and IL-6 levels and inhibited the activation of the TLR4/MyD88/NF-κB signaling in atherosclerosis model mice, as well as in ox-LDL-challenged THP-1 cells and mouse RAW264.7 macrophages. RBAP's effectiveness also improved the enhancement of reverse cholesterol transport (RCT) and cholesterol removal to HDL and apoA1 by increasing the activity of genes related to cholesterol removal PPARγ/LXRα/ABCA1/ABCG1, both in ApoE-/- mice and in THP-1 cells and mouse RAW264.7 macrophages. Notably, RBAP exerted similar effects on atherosclerosis model mice and macrophages to those of TAK-242, an inhibitor of the TLR4 signaling. When RBAP and TAK-242 were applied simultaneously, the improvement was not enhanced compared with either RBAP or TAK-242 treatment alone. CONCLUSION: These findings suggest that RBAP, as a TLR4 inhibitor, has anti-atherosclerotic effects by improving inflammation and promoting cholesterol effection, indicating its therapeutic potential in intervening atherosclerosis.


Subject(s)
Atherosclerosis , Cell Differentiation , Cholesterol , Foam Cells , Macrophages , Oryza , Toll-Like Receptor 4 , Animals , Atherosclerosis/drug therapy , Mice , Cholesterol/metabolism , Foam Cells/drug effects , Foam Cells/metabolism , RAW 264.7 Cells , Cell Differentiation/drug effects , Humans , Toll-Like Receptor 4/metabolism , Macrophages/drug effects , Macrophages/metabolism , Disease Models, Animal , THP-1 Cells , Male , Diet, High-Fat , ATP Binding Cassette Transporter 1/metabolism , Lipoproteins, LDL/metabolism , Mice, Inbred C57BL , Peptides/pharmacology , ATP Binding Cassette Transporter, Subfamily G, Member 1/metabolism , Mice, Knockout, ApoE , NF-kappa B/metabolism , Apolipoproteins E , Anti-Inflammatory Agents/pharmacology
12.
Avian Pathol ; : 1-10, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-38922304

ABSTRACT

RESEARCH HIGHLIGHTS: First confirmation of AOAV-16 in domestic and wild birds in China.AOAV-16 are low virulent viruses for chickens.Co-circulation/co-infection of AOAV-16 and H9N2 subtype AIV enhanced pathogenicity.Different intergenic sequences and recombination events exist within AOAV-16.

13.
Int J Biol Macromol ; 273(Pt 2): 133206, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38885853

ABSTRACT

The crude polysaccharide of Bletilla striata in this study was extracted by water extraction and alcohol precipitation and further purified by gel column to yield the purified component Bletilla striata polysaccharide (BSP). Its structure and innate immune regulation activity were studied. BSP mainly comprises mannose and glucose, with a monosaccharide molar ratio of 2.9:1 and a weight-average molecular weight of 28,365 Da. It is a new low-molecular-weight water-soluble neutral glucomannan. BSP contains a â†’ 6)-ß-Manp-(1→, →4)-ß-Glcp-(1→, →4)-ß-Manp-(1 â†’ and →3)-α-Manp-(1 â†’ linear main chain, containing ß-Glcp-(1 â†’ and ß-Manp-(1 â†’ two branched chain fragments were connected to the Man residue at position 4. BSP can enhance the anti-infection ability of Caenorhabditis elegans against Pseudomonas aeruginosa, significantly improve the phagocytic ability of RAW264.7 macrophages, stimulate the secretion of NO and TNF-α, and have good innate immune regulation activity. These findings guide the use of Bletilla striata polysaccharides with immunomodulatory action.


Subject(s)
Immunity, Innate , Mannans , Orchidaceae , Animals , Mannans/chemistry , Mannans/pharmacology , Mannans/isolation & purification , Mice , Orchidaceae/chemistry , RAW 264.7 Cells , Immunity, Innate/drug effects , Phagocytosis/drug effects , Caenorhabditis elegans/drug effects , Caenorhabditis elegans/immunology , Molecular Weight , Pseudomonas aeruginosa/drug effects , Immunologic Factors/pharmacology , Immunologic Factors/chemistry , Macrophages/drug effects , Macrophages/immunology , Tumor Necrosis Factor-alpha/metabolism , Nitric Oxide/metabolism , Polysaccharides/pharmacology , Polysaccharides/chemistry , Polysaccharides/isolation & purification , Immunomodulating Agents/pharmacology , Immunomodulating Agents/chemistry , Immunomodulating Agents/isolation & purification
14.
J Environ Manage ; 362: 121340, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38824889

ABSTRACT

Co-pyrolysis of biomass with phosphogypsum (PG) presents an effective strategy for facilitating the recycling of PG resources. However, it is crucial to note the environmental threats arising from the presence of Pb, Cr, Ni, and F in PG. This study investigated the effect of immobilization and transformation of four elements during co-pyrolysis with biomass and its components. The co-pyrolysis experiments were carried out in a tube furnace with a mixture of PG and corn stover (CS), cellulose (C), lignin (L), glucose (G). Co-pyrolysis occurred at varying temperatures (600 °C, 700 °C, 800 °C, and 900 °C) and different addition ratios (10%, 15%, and 20%). The results indicated that an increase in co-pyrolysis temperature was more conducive to the immobilization and transformation of harmful elements in PG, demonstrating significant efficacy in controlling F. Additionally, the addition of biomass components exerts a significant impact on inhibiting product toxicity, with small molecules such as glucose playing a prominent role in this process. The mechanism underlying the control of harmful elements during co-pyrolysis of PG and biomass was characterized by three main aspects. Firstly, biomass components have the potential to melt-encapsulate the harmful elements in PG, leading to precipitation. Secondly, the pyrolysis gas produced during the co-pyrolysis process contributes to the formation of a rich pore structure in the product. Finally, this process aids in transforming hazardous substances into less harmful forms and stabilizing these elements. The findings of this study are instrumental in optimizing the biomass and PG blend to mitigate the environmental impact of their co-pyrolysis products.


Subject(s)
Biomass , Calcium Sulfate , Chromium , Fluorine , Lead , Nickel , Nickel/chemistry , Chromium/chemistry , Lead/chemistry , Fluorine/chemistry , Calcium Sulfate/chemistry , Phosphorus/chemistry , Zea mays
15.
Front Pharmacol ; 15: 1360932, 2024.
Article in English | MEDLINE | ID: mdl-38881880

ABSTRACT

Background: Dl-3-n-Butylphthalide (NBP) has emerged as a potential therapeutic agent for cerebral hemorrhage, despite not being included in current guideline recommendations. Investigating the underlying physiological and pathological mechanisms of Dl-3-n-Butylphthalide in cerebral hemorrhage treatment remains a critical area of research. Objective: This review aims to evaluate the efficacy of Dl-3-n-Butylphthalide in cerebral hemorrhage treatment and elucidate its potential biological mechanisms, thereby providing evidence to support treatment optimization. Methods: A comprehensive search of seven electronic databases (PubMed, Web of Science, Embase, Cochrane Library, China National Knowledge Infrastructure, VIP, and Wanfang Database) was conducted for studies published up to September 2023. Screening and data extraction were performed by a team of researchers. The Cochrane collaboration tool was utilized for risk bias assessment, and Revman 5.3 along with Stata 17.0 were employed for statistical analysis. Outcomes: We searched 254 literature, and 19 were included in this meta-analysis. The results showed that Dl-3-n-Butylphthalide improved the clinical efficacy rate (RR = 1.25, 95% CI 1.19-1.31; p = 0.00), quality of life (MD = 13.93, 95% CI: 11.88-15.98; p = 0.000), increased cerebral blood flow and velocity, reduced cerebral edema volume, Hcy concentration, and did not have obvious adverse reactions (RR = 0.68, 95% CI: 0.39-1.18; p = 0.10). Conclusion: This meta-analysis is the first to demonstrate the potential of Dl-3-n-Butylphthalide in treating cerebral hemorrhage. It suggests that Dl-3-n-Butylphthalide may alleviate clinical symptoms by modulating neurological function and improving hemodynamics. Our findings provide robust evidence for incorporating Dl-3-n-Butylphthalide into cerebral hemorrhage treatment strategies, potentially guiding future clinical practice and research. Systematic Review Registration: https://www.crd.york.ac.uk/PROSPERO/ display_record.php?RecordID=355114, Identifier CRD42022355114.

16.
Plants (Basel) ; 13(12)2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38931083

ABSTRACT

Abiotic stress significantly affects plant growth and has devastating effects on crop production. Drought stress is one of the main abiotic stressors. Actin is a major component of the cytoskeleton, and actin-depolymerizing factors (ADFs) are conserved actin-binding proteins in eukaryotes that play critical roles in plant responses to various stresses. In this study, we found that GmADF13, an ADF gene from the soybean Glycine max, showed drastic upregulation under drought stress. Subcellular localization experiments in tobacco epidermal cells and tobacco protoplasts showed that GmADF13 was localized in the nucleus and cytoplasm. We characterized its biological function in transgenic Arabidopsis and hairy root composite soybean plants. Arabidopsis plants transformed with GmADF13 displayed a more robust drought tolerance than wild-type plants, including having a higher seed germination rate, longer roots, and healthy leaves under drought conditions. Similarly, GmADF13-overexpressing (OE) soybean plants generated via the Agrobacterium rhizogenes-mediated transformation of the hairy roots showed an improved drought tolerance. Leaves from OE plants showed higher relative water, chlorophyll, and proline contents, had a higher antioxidant enzyme activity, and had decreased malondialdehyde, hydrogen peroxide, and superoxide anion levels compared to those of control plants. Furthermore, under drought stress, GmADF13 OE activated the transcription of several drought-stress-related genes, such as GmbZIP1, GmDREB1A, GmDREB2, GmWRKY13, and GmANK114. Thus, GmADF13 is a positive regulator of the drought stress response, and it may play an essential role in plant growth under drought stress conditions. These results provide new insights into the functional elucidation of soybean ADFs. They may be helpful for breeding new soybean cultivars with a strong drought tolerance and further understanding how ADFs help plants adapt to abiotic stress.

17.
Asian J Pharm Sci ; 19(3): 100912, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38903128

ABSTRACT

Bacterial-based antitumor immunity has become a promising strategy to activate the immune system for fighting cancer. However, the potential application of bacterial therapy is hindered by the presence of instability and susceptibility to infections within bacterial populations. Furthermore, monotherapy is ineffective in completely eliminating complex cancer with multiple contributing factors. In this study, based on our discovery that spore shell (SS) of Bacillus coagulans exhibits excellent tumor-targeting ability and adjuvant activity, we develop a biomimetic spore nanoplatform to boost bacteria-mediated antitumor therapy, chemodynamic therapy and antitumor immunity for synergistic cancer treatment. In detail, SS is separated from probiotic spores and then attached to the surface of liposome (Lipo) that was loaded with hemoglobin (Hb), glucose oxidase (GOx) and JQ1 to construct SS@Lipo/Hb/GOx/JQ1. In tumor tissue, highly toxic hydroxyl radicals (•OH) are generated via sequential catalytic reactions: GOx catalyzing glucose into H2O2 and Fe2+ in Hb decomposing H2O2 into •OH. The combination of •OH and SS adjuvant can improve tumor immunogenicity and activate immune system. Meanwhile, JQ1-mediated down-regulation of PD-L1 and Hb-induced hypoxia alleviation synergistically reshape immunosuppressive tumor microenvironment and potentiate immune response. In this manner, SS@Lipo/Hb/GOx/JQ1 significantly suppresses tumor growth and metastasis. To summarize, the nanoplatform represents an optimum strategy to potentiate bacteria-based cancer immunotherapy.

18.
J Nanobiotechnology ; 22(1): 303, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38822376

ABSTRACT

Radiation-induced intestinal injury is the most common side effect during radiotherapy of abdominal or pelvic solid tumors, significantly impacting patients' quality of life and even resulting in poor prognosis. Until now, oral application of conventional formulations for intestinal radioprotection remains challenging with no preferred method available to mitigate radiation toxicity in small intestine. Our previous study revealed that nanomaterials derived from spore coat of probiotics exhibit superior anti-inflammatory effect and even prevent the progression of cancer. The aim of this work is to determine the radioprotective effect of spore coat (denoted as spore ghosts, SGs) from three clinically approved probiotics (B.coagulans, B.subtilis and B.licheniformis). All the three SGs exhibit outstanding reactive oxygen species (ROS) scavenging ability and excellent anti-inflammatory effect. Moreover, these SGs can reverse the balance of intestinal flora by inhibiting harmful bacteria and increasing the abundance of Lactobacillus. Consequently, administration of SGs significantly reduce radiation-induced intestinal injury by alleviating diarrhea, preventing X-ray induced apoptosis of small intestinal epithelial cells and promoting restoration of barrier integrity in a prophylactic study. Notably, SGs markedly improve weight gain and survival of mice received total abdominal X-ray radiation. This work may provide promising radioprotectants for efficiently attenuating radiation-induced gastrointestinal syndrome and promote the development of new intestinal predilection.


Subject(s)
Probiotics , Radiation-Protective Agents , Spores, Bacterial , Animals , Probiotics/pharmacology , Mice , Administration, Oral , Radiation-Protective Agents/pharmacology , Radiation-Protective Agents/therapeutic use , Radiation-Protective Agents/chemistry , Spores, Bacterial/radiation effects , Radiation Injuries/drug therapy , Reactive Oxygen Species/metabolism , Intestine, Small/microbiology , Intestine, Small/radiation effects , Intestine, Small/pathology , Humans , Apoptosis/drug effects , Male , Gastrointestinal Microbiome/drug effects , Intestines/radiation effects , Intestines/microbiology , Intestines/pathology , Radiation Injuries, Experimental/pathology
19.
Phytomedicine ; 130: 155704, 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-38759316

ABSTRACT

BACKGROUND: Dysregulation of vascular smooth muscle cell (VSMC) function leads to a variety of diseases such as atherosclerosis and hyperplasia after injury. However, antiproliferative drug targeting VSMC exhibits poor specificity. Therefore, there is an urgent to develop highly specific antiproliferative drugs to prevention and treatment VSMC dedifferentiation associated arteriosclerosis. Kanglexin (KLX), a new anthraquinone compound designed by our team, has potential to regulate VSMC phenotype according to the physicochemical properties. PURPOSE: This project aims to evaluate the therapeutic role of KLX in VSMC dedifferentiation and atherosclerosis, neointimal formation and illustrates the underlying molecular mechanism. METHODS: In vivo, the ApoE-/- mice were fed with high-fat diet (HFD) for a duration of 13 weeks to establish the atherosclerotic model. And rat carotid artery injury model was performed to establish the neointimal formation model. In vitro, PDGF-BB was used to induce VSMC dedifferentiation. RESULTS: We found that KLX ameliorated the atherosclerotic progression including atherosclerotic lesion formation, lipid deposition and collagen deposition in aorta and aortic sinus in atherosclerotic mouse model. In addition, The administration of KLX effectively ameliorated neointimal formation in the carotid artery following balloon injury in SD rats. The findings derived from molecular docking and surface plasmon resonance (SPR) experiments unequivocally demonstrate that KLX had potential to bind PDGFR-ß. Mechanism research work proved that KLX prevented VSMC proliferation, migration and dedifferentiation via activating the PDGFR-ß-MEK -ERK-ELK-1/KLF4 signaling pathway. CONCLUSION: Collectively, we demonstrated that KLX effectively attenuated the progression of atherosclerosis in ApoE-/- mice and carotid arterial neointimal formation in SD rats by inhibiting VSMC phenotypic conversion via PDGFR-ß-MEK-ERK-ELK-1/KLF4 signaling. KLX exhibits promising potential as a viable therapeutic agent for the treatment of VSMC phenotype conversion associated arteriosclerosis.


Subject(s)
Anthraquinones , Cell Dedifferentiation , Kruppel-Like Factor 4 , Muscle, Smooth, Vascular , Neointima , Animals , Male , Mice , Rats , Anthraquinones/pharmacology , Arteriosclerosis/drug therapy , Arteriosclerosis/prevention & control , Atherosclerosis/drug therapy , Becaplermin/pharmacology , Carotid Artery Injuries/drug therapy , Cell Dedifferentiation/drug effects , Cell Proliferation/drug effects , Diet, High-Fat , Disease Models, Animal , Kruppel-Like Transcription Factors/metabolism , Mice, Inbred C57BL , Molecular Docking Simulation , Muscle, Smooth, Vascular/drug effects , Myocytes, Smooth Muscle/drug effects , Neointima/drug therapy , Rats, Sprague-Dawley , Receptors, Platelet-Derived Growth Factor/metabolism , Signal Transduction/drug effects
20.
Pharmacol Res ; 205: 107224, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38777113

ABSTRACT

INTRODUCTION: Current anti-rheumatic drugs are primarily modulating immune cell activation, yet their effectiveness remained suboptimal. Therefore, novel therapeutics targeting alternative mechanisms, such as synovial activation, is urgently needed. OBJECTIVES: To explore the role of Midline-1 (Mid1) in synovial activation. METHODS: NOD.Cg-Prkdcscid Il2rgtm1Wjl/SzJ (NSG) mice were used to establish a subcutaneous xenograft model. Wild-type C57BL/6, Mid1-/-, Dpp4-/-, and Mid1-/-Dpp4-/- mice were used to establish a collagen-induced arthritis model. Cell viability, cell cycle, qPCR and western blotting analysis were used to detect MH7A proliferation, dipeptidyl peptidase-4 (DPP4) and Mid1 levels. Co-immunoprecipitation and proteomic analysis identified the candidate protein of Mid1 substrates. Ubiquitination assays were used to determine DPP4 ubiquitination status. RESULTS: An increase in Mid1, an E3 ubiquitin ligase, was observed in human RA synovial tissue by GEO dataset analysis, and this elevation was confirmed in a collagen-induced mouse arthritis model. Notably, deletion of Mid1 in a collagen-induced arthritis model completely protected mice from developing arthritis. Subsequent overexpression and knockdown experiments on MH7A, a human synoviocyte cell line, unveiled a previously unrecognized role of Mid1 in synoviocyte proliferation and migration, the key aspects of synovial activation. Co-immunoprecipitation and proteomic analysis identified DPP4 as the most significant candidate of Mid1 substrates. Mechanistically, Mid1 promoted synoviocyte proliferation and migration by inducing ubiquitin-mediated proteasomal degradation of DPP4. DPP4 deficiency led to increased proliferation, migration, and inflammatory cytokine production in MH7A, while reconstitution of DPP4 significantly abolished Mid1-induced augmentation of cell proliferation and activation. Additionally, double knockout model showed that DPP4 deficiency abolished the protective effect of Mid1 defect on arthritis. CONCLUSION: Overall, our findings suggest that the ubiquitination of DPP4 by Mid1 promotes synovial cell proliferation and invasion, exacerbating synovitis in RA. These results reveal a novel mechanism that controls synovial activation, positioning Mid1 as a promising target for therapeutic intervention in RA.


Subject(s)
Arthritis, Experimental , Arthritis, Rheumatoid , Dipeptidyl Peptidase 4 , Mice, Inbred C57BL , Protein Processing, Post-Translational , Synovitis , Ubiquitin-Protein Ligases , Animals , Humans , Male , Mice , Arthritis, Experimental/metabolism , Arthritis, Experimental/pathology , Arthritis, Rheumatoid/metabolism , Cell Proliferation , Dipeptidyl Peptidase 4/metabolism , Dipeptidyl Peptidase 4/genetics , Mice, Inbred NOD , Mice, Knockout , Synovial Membrane/metabolism , Synovial Membrane/pathology , Synoviocytes/metabolism , Synoviocytes/pathology , Synovitis/metabolism , Synovitis/pathology , Transcription Factors/metabolism , Transcription Factors/genetics , Ubiquitin/metabolism , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/genetics , Ubiquitination
SELECTION OF CITATIONS
SEARCH DETAIL