Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 380
Filter
1.
Eur J Med Chem ; 277: 116708, 2024 Jul 27.
Article in English | MEDLINE | ID: mdl-39094273

ABSTRACT

The rapid emergence of drug resistance severely reduces the clinical response of human immunodeficiency virus-1 (HIV-1) to non-nucleoside reverse transcriptase inhibitors (NNRTIs). Herein, a series of 2,4,6-trisubstituted pyrimidine derivatives was designed and synthesized, with the aim to identify novel anti-HIV-1 agents with improved drug resistance profiles. The antiviral activity results demonstrated that all compounds showed excellent potency to wild-type (WT) HIV-1 strain (EC50 = 3.61-15.5 nM). Moreover, 13c was proved to be the most potent inhibitor against the whole tested viral panel, with EC50 ranging from 4.68 to 229 nM. In addition, 13c yielded moderate HIV-1 RT inhibition with IC50 value of 0.231 µM, which demonstrated it was a classical NNRTI. Molecular docking was further conducted to illustrate its binding mode with HIV-1 RT. These encouraging results indicated that 13c can be used as a lead compound for further study.

2.
Int J Mol Sci ; 25(13)2024 Jul 06.
Article in English | MEDLINE | ID: mdl-39000520

ABSTRACT

A vast and painful price has been paid in the battle against viruses in global health [...].


Subject(s)
Antiviral Agents , Drug Discovery , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Drug Discovery/methods , Humans , Virus Diseases/drug therapy , Viruses/drug effects
3.
Acta Pharm Sin B ; 14(7): 3110-3124, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39027243

ABSTRACT

HIV-1 reverse transcriptase (RT) has received great attention as an attractive therapeutic target for acquired immune deficiency syndrome (AIDS), but the inevitable drug resistance and side effects have always been major challenges faced by non-nucleoside reverse transcriptase inhibitors (NNRTIs). This work aimed to identify novel chemotypes of anti-HIV-1 agents with improved drug-resistance profiles, reduced toxicity, and excellent druggability. A series of diarylpyrimidine (DAPY) derivatives were prepared via structural modifications of the leads K-5a2 and 25a. Among them, 15a with dimethylphosphine oxide moiety showed the most prominent antiviral potency against all of the tested viral panel, being 1.6-fold (WT, EC50 = 1.75 nmol/L), 3.0-fold (L100I, EC50 = 2.84 nmol/L), 2.4-fold (K103N, EC50 = 1.27 nmol/L), 3.3-fold (Y181C, EC50 = 5.38 nmol/L), 2.9-fold (Y188L, EC50 = 7.96 nmol/L), 2.5-fold (E138K, EC50 = 4.28 nmol/L), 4.8-fold (F227L/V106A, EC50 = 3.76 nmol/L) and 5.3-fold (RES056, EC50 = 15.8 nmol/L) more effective than that of the marketed drug ETR. Molecular docking results illustrated the detailed interactions formed by compound 15a and WT, F227L/V106A, and RES056 RT. Moreover, 15a·HCl carried outstanding pharmacokinetic (t 1/2 = 1.32 h, F = 40.8%) and safety profiles (LD50 > 2000 mg/kg), which demonstrated that 15a HCl is a potential anti-HIV-1 drug candidate.

4.
J Med Virol ; 96(8): e29830, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39072764

ABSTRACT

In the current antiretroviral landscape, continuous efforts are still needed to search for novel chemotypes of human immunodeficiency virus type 1 (HIV-1) inhibitors with improved drug resistance profiles and favorable drug-like properties. Herein, we report the design, synthesis, biological characterization, and druggability evaluation of a class of non-nucleoside reverse transcriptase inhibitors. Guided by the available crystallographic information, a series of novel indolylarylsulfone derivatives were rationally discovered via the substituent decorating strategy to fully explore the chemical space of the entrance channel. Among them, compound 11h bearing the cyano-substituted benzyl moiety proved to be the most effective inhibitor against HIV-1 wild-type and mutant strains (EC50 = 0.0039-0.338 µM), being far more potent than or comparable to etravirine and doravirine. Besides, 11h did not exhibit cytotoxicity at the maximum test concentration. Meanwhile, the binding target of 11h was further confirmed to be reverse transcriptase (IC50 = 0.055 µM). Preliminary structure-activity relationship were discussed to guide further optimization work. Molecular docking and dynamics simulation studies were investigated in detail to rationalize the biological evaluation results. Further drug-likeness assessment indicated that 11h possessed excellent physicochemical properties. Moreover, no apparent hERG blockade liability and cytochrome P450 inhibition were observed for 11h. Notably, 11h was characterized by favorable in vitro metabolic stability with moderate clearance rates and long half-lives in human plasma and liver microsomes. Overall, 11h holds great promise as an ideal Anti-HIV-1 lead compound due to its potent antiviral efficacy, low toxicity, and favorable drug-like profiles.


Subject(s)
Anti-HIV Agents , Drug Design , HIV-1 , Molecular Docking Simulation , Reverse Transcriptase Inhibitors , Sulfones , HIV-1/drug effects , Humans , Anti-HIV Agents/pharmacology , Anti-HIV Agents/chemical synthesis , Anti-HIV Agents/chemistry , Structure-Activity Relationship , Sulfones/pharmacology , Sulfones/chemical synthesis , Sulfones/chemistry , Reverse Transcriptase Inhibitors/pharmacology , Reverse Transcriptase Inhibitors/chemical synthesis , Reverse Transcriptase Inhibitors/chemistry , HIV Reverse Transcriptase/antagonists & inhibitors , HIV Reverse Transcriptase/metabolism
5.
Drug Discov Today ; 29(8): 104074, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38950729

ABSTRACT

Pathogenic viruses are a profound threat to global public health, underscoring the urgent need for the development of efficacious antiviral therapeutics. The advent of RNA-targeting antiviral strategies has marked a significant paradigm shift in the management of viral infections, offering a potent means of control and potential cure. In this review, we delve into the cutting-edge progress in RNA-targeting antiviral agents, encompassing antisense oligonucleotides (ASOs), small interfering RNAs (siRNAs), small and bifunctional molecules. We provide an in-depth examination of their strategic molecular design and elucidate the underlying mechanisms of action that confer their antiviral efficacy. By synthesizing recent findings, we shed light on the innovative potential of RNA-targeting approaches and their pivotal role in advancing the frontiers of antiviral drug discovery.


Subject(s)
Antiviral Agents , Drug Design , Oligonucleotides, Antisense , RNA, Small Interfering , RNA, Viral , Virus Diseases , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Humans , Oligonucleotides, Antisense/therapeutic use , Oligonucleotides, Antisense/pharmacology , Virus Diseases/drug therapy , Virus Diseases/virology , Animals , Drug Discovery/methods
6.
Expert Opin Drug Discov ; 19(7): 799-813, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38825802

ABSTRACT

INTRODUCTION: Hydrophobic tagging (HyT) technology presents a distinct therapeutic strategy diverging from conventional small molecule drugs, providing an innovative approach to drug design. This review aims to provide an overview of the HyT literature and future outlook to offer guidance for drug design. AREAS COVERED: In this review, the authors introduce the composition, mechanisms and advantages of HyT technology, as well as summarize the detailed applications of HyT technology in anti-cancer, neurodegenerative diseases (NDs), autoimmune disorders, cardiovascular diseases (CVDs), and other fields. Furthermore, this review discusses key aspects of the future development of HyT molecules. EXPERT OPINION: HyT emerges as a highly promising targeted protein degradation (TPD) strategy, following the successful development of proteolysis targeting chimeras (PROTAC) and molecular glue. Based on exploring new avenues, modification of the HyT molecule itself potentially enhances the technology. Improved synthetic pathways and emphasis on pharmacokinetic (PK) properties will facilitate the development of HyT. Furthermore, elucidating the biochemical basis by which the compound's hydrophobic moiety recruits the protein homeostasis network will enable the development of more precise assays that can guide the optimization of the linker and hydrophobic moiety.


Subject(s)
Drug Design , Drug Development , Hydrophobic and Hydrophilic Interactions , Small Molecule Libraries , Humans , Animals , Drug Design/methods , Small Molecule Libraries/pharmacology , Drug Development/methods , Proteolysis
7.
Acta Pharm Sin B ; 14(5): 1987-2005, 2024 May.
Article in English | MEDLINE | ID: mdl-38799621

ABSTRACT

The N-methyl-d-aspartate (NMDA) receptors, which belong to the ionotropic Glutamate receptors, constitute a family of ligand-gated ion channels. Within the various subtypes of NMDA receptors, the GluN1/2A subtype plays a significant role in central nervous system (CNS) disorders. The present article aims to provide a comprehensive review of ligands targeting GluN2A-containing NMDA receptors, encompassing negative allosteric modulators (NAMs), positive allosteric modulators (PAMs) and competitive antagonists. Moreover, the ligands' structure-activity relationships (SARs) and the binding models of representative ligands are also discussed, providing valuable insights for the clinical rational design of effective drugs targeting CNS diseases.

8.
J Med Chem ; 67(8): 6570-6584, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38613773

ABSTRACT

NNRTI is an important component of the highly active antiretroviral therapy (HAART), but the rapid emergence of drug resistance and poor pharmacokinetics limited their clinical application. Herein, a series of novel aryl triazolone dihydropyridines (ATDPs) were designed by structure-guided design with the aim of improving drug resistance profiles and pharmacokinetic profiles. Compound 10n (EC50 = 0.009-17.7 µM) exhibited the most active potency, being superior to or comparable to that of doravirine (DOR) against the whole tested viral panel. Molecular docking was performed to clarify the reason for its higher resistance profiles. Moreover, 10n demonstrated excellent pharmacokinetic profile (T1/2 = 5.09 h, F = 108.96%) compared that of DOR (T1/2 = 4.4 h, F = 57%). Additionally, 10n was also verified to have no in vivo acute or subacute toxicity (LD50 > 2000 mg/kg), suggesting that 10n is worth further investigation as a novel oral NNRTIs for HIV-1 therapy.


Subject(s)
Anti-HIV Agents , Dihydropyridines , HIV-1 , Molecular Docking Simulation , Reverse Transcriptase Inhibitors , Triazoles , HIV-1/drug effects , Triazoles/chemistry , Triazoles/pharmacology , Triazoles/pharmacokinetics , Humans , Anti-HIV Agents/pharmacology , Anti-HIV Agents/chemistry , Anti-HIV Agents/chemical synthesis , Anti-HIV Agents/pharmacokinetics , Reverse Transcriptase Inhibitors/pharmacology , Reverse Transcriptase Inhibitors/chemistry , Reverse Transcriptase Inhibitors/chemical synthesis , Reverse Transcriptase Inhibitors/pharmacokinetics , Dihydropyridines/chemistry , Dihydropyridines/pharmacology , Dihydropyridines/pharmacokinetics , Structure-Activity Relationship , HIV Reverse Transcriptase/antagonists & inhibitors , HIV Reverse Transcriptase/metabolism , Animals , Male , Drug Discovery , Molecular Structure , Mice
9.
Front Immunol ; 15: 1356869, 2024.
Article in English | MEDLINE | ID: mdl-38558800

ABSTRACT

Sepsis is a multi-organ dysfunction characterized by an unregulated host response to infection. It is associated with high morbidity, rapid disease progression, and high mortality. Current therapies mainly focus on symptomatic treatment, such as blood volume supplementation and antibiotic use, but their effectiveness is limited. Th17/Treg balance, based on its inflammatory property, plays a crucial role in determining the direction of the inflammatory response and the regression of organ damage in sepsis patients. This review provides a summary of the changes in T-helper (Th) 17 cell and regulatory T (Treg) cell differentiation and function during sepsis, the heterogeneity of Th17/Treg balance in the inflammatory response, and the relationship between Th17/Treg balance and organ damage. Th17/Treg balance exerts significant control over the bloom and wanes in host inflammatory response throughout sepsis.


Subject(s)
Sepsis , T-Lymphocytes, Regulatory , Humans , Th17 Cells , Disease Progression , Sepsis/therapy
10.
J Med Virol ; 96(4): e29594, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38576317

ABSTRACT

The HIV capsid (CA) protein is a promising target for anti-AIDS treatment due to its critical involvement in viral replication. Herein, we utilized the well-documented CA inhibitor PF74 as our lead compound and designed a series of low-molecular-weight phenylalanine derivatives. Among them, compound 7t exhibited remarkable antiviral activity with a high selection index (EC50 = 0.040 µM, SI = 2815), surpassing that of PF74 (EC50 = 0.50 µM, SI = 258). Furthermore, when evaluated against the HIV-2 strain, 7t (EC50 = 0.13 µM) demonstrated approximately 14-fold higher potency than that of PF74 (EC50 = 1.76 µM). Insights obtained from surface plasmon resonance (SPR) revealed that 7t exhibited stronger target affinity to the CA hexamer and monomer in comparison to PF74. The potential interactions between 7t and the HIV-1 CA were further elucidated using molecular docking and molecular dynamics simulations, providing a plausible explanation for the enhanced target affinity with 7t over PF74. Moreover, the metabolic stability assay demonstrated that 7t (T1/2 = 77.0 min) significantly outperforms PF74 (T1/2 = 0.7 min) in human liver microsome, exhibiting an improvement factor of 110-fold. In conclusion, 7t emerges as a promising drug candidate warranting further investigation.


Subject(s)
Anti-HIV Agents , HIV Seropositivity , Humans , Capsid/metabolism , Phenylalanine/pharmacology , Phenylalanine/metabolism , Molecular Docking Simulation , Anti-HIV Agents/pharmacology , Capsid Proteins/metabolism , Anti-Retroviral Agents
11.
Plants (Basel) ; 13(8)2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38674540

ABSTRACT

Anther length is the critical floral trait determining hybrid rice seed production and is controlled by many quantitative trait loci (QTL). However, the cloning of genes specifically controlling anther size has yet to be reported. Here, we report the fine mapping of qAL5.2 for anther size using backcross inbred lines (BILs) in the genetic background of Oryza sativa indica Huazhan (HZ). Gene chip analysis on the BC4F2 and BC5F1 population identified effective loci on Chr1, Chr5, and Chr8 and two genomic regions on Chr5, named qAL5.1 and qAL5.2. qAL5.2 was identified in both populations with LOD values of 17.54 and 10.19, which explained 35.73% and 25.1% of the phenotypic variances, respectively. Ultimately qAL5.2 was localized to a 73 kb region between HK139 and HK140 on chromosome 5. And we constructed two near-isogenic lines (NILs) for RNA-seq analysis, named NIL-qAL5.2HZ and NIL-qAL5.2KLY, respectively. The result of the GO enrichment analysis revealed that differential genes were significantly enriched in the carbohydrate metabolic process, extracellular region, and nucleic acid binding transcription, and KEGG enrichment analysis revealed that alpha-linolenic acid metabolism was significantly enriched. Meanwhile, candidate genes of qAL5.2 were analyzed in RNA-seq, and it was found that ORF8 is differentially expressed between NIL-qAL5.2HZ and NIL-qAL5.2KLY. The fine mapping of qAL5.2 conferring anther length will promote the breed improvement of the restorer line and understanding of the mechanisms driving crop mating patterns.

12.
Chem Biol Drug Des ; 103(3): e14510, 2024 03.
Article in English | MEDLINE | ID: mdl-38519265

ABSTRACT

In this study, a novel series of diarylpyrimidine derivatives with Fsp3-enriched spirocycles were designed and synthesized to further explore the chemical space of the hydrophobic channel of the NNRTI-binding pocket. The biological evaluation results showed that most of the compounds displayed effective inhibitory potency against the HIV-1 wild-type strain, with EC50 values ranging from micromolar to submicromolar levels. Among them, TT6 turned out to be the most effective inhibitor with an EC50 value of 0.17 µM, demonstrating up to 47 times more active than that of reference drug 3TC (EC50 = 8.01 µM). More encouragingly, TT6 was found to potently inhibit the HIV-1 mutant strain K103N with an EC50 value of 0.69 µM, being about 6-fold more potent than 3TC (EC50 = 3.68 µM) and NVP (EC50 = 4.62 µM). Furthermore, TT6 exhibited the most potent inhibitory activity toward HIV-1 reverse transcriptase with an IC50 value of 0.33 µM. Additionally, molecular simulation studies were conducted to investigate the binding modes between TT6 and NNRTI-binding pocket, which may provide valuable clues for the follow-up structural optimizations.


Subject(s)
Anti-HIV Agents , HIV-1 , Anti-HIV Agents/chemistry , Structure-Activity Relationship , Drug Design , Reverse Transcriptase Inhibitors/chemistry , Molecular Docking Simulation , HIV Reverse Transcriptase/metabolism
13.
Burns Trauma ; 12: tkad025, 2024.
Article in English | MEDLINE | ID: mdl-38425412

ABSTRACT

Background: Tolerogenic dendritic cells (DCs) are associated with poor prognosis of sepsis. Matrix metalloproteinases (MMPs) have been shown to have immunomodulatory effects. However, whether MMPs are involved in the functional reprogramming of DCs is unknown. The study aims to investigate the role of MMPs in sepsis-induced DCs tolerance and the potential mechanisms. Methods: A murine model of late sepsis was induced by cecal ligation and puncture (CLP). The expression levels of members of the MMP family were detected in sepsis-induced tolerogenic DCs by using microarray assessment. The potential roles and mechanisms underlying MMP8 in the differentiation, maturation and functional reprogramming of DCs during late sepsis were assessed both in vitro and in vivo. Results: DCs from late septic mice expressed higher levels of MMP8, MMP9, MMP14, MMP19, MMP25 and MMP27, and MMP8 levels were the highest. MMP8 deficiency significantly alleviated sepsis-induced immune tolerance of DCs both in vivo and in vitro. Adoptive transfer of MMP8 knockdown post-septic bone marrow-derived DCs protected mice against sepsis-associated lethality and organ dysfunction, inhibited regulatory T-cell expansion and enhanced Th1 response. Furthermore, the effect of MMP8 on DC tolerance was found to be associated with the nuclear factor kappa-B p65/ß-catenin pathway. Conclusions: Increased MMP8 levels in septic DCs might serve as a negative feedback loop, thereby suppressing the proinflammatory response and inducing DC tolerance.

14.
J Med Chem ; 67(6): 5032-5052, 2024 Mar 28.
Article in English | MEDLINE | ID: mdl-38482820

ABSTRACT

Gout and hyperuricemia are metabolic diseases characterized with high serum uric acid (SUA) levels that significantly impact human health. Lesinurad, a uricosuric agent, is limited to concurrent use with xanthine oxidase inhibitors (XOIs) in clinical practice due to its restricted efficacy and potential nephrotoxicity. Herein, extensive structural modifications of lesinurad were conducted through scaffold hopping and substituent modification strategies, affording 54 novel derivatives containing pyrimidine-fused cyclic structures. Notably, the thienopyrimidine compound 29 demonstrated a remarkable 2-fold increase in SUA-lowering in vivo activity compared to lesinurad, while exhibiting potent inhibitory activity against the urate transporter 1 (URAT1, IC50 = 2.01 µM) and glucose transporter 9 (GLUT9, IC50 = 18.21 µM). Furthermore, it possessed a lower effective dosage of 0.5 mg/kg, favorable safety profile without any apparent acute toxicity at doses of 1000 mg/kg, and improved pharmacokinetic properties. Overall, we have discovered an efficacious URAT1/GLUT9 dual inhibitor for inhibiting urate reabsorption with favorable pharmacokinetic profiles.


Subject(s)
Gout , Hyperuricemia , Organic Anion Transporters , Thioglycolates , Triazoles , Humans , Uric Acid/therapeutic use , Gout/drug therapy , Hyperuricemia/drug therapy , Uricosuric Agents/therapeutic use , Pyrimidines/toxicity , Pyrimidines/therapeutic use , Glucose Transport Proteins, Facilitative , Organic Cation Transport Proteins
15.
Acta Pharm Sin B ; 14(3): 1257-1282, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38486991

ABSTRACT

With our continuous endeavors in seeking potent anti-HIV-1 agents, we reported here the discovery, biological characterization, and druggability evaluation of a class of nonnucleoside reverse transcriptase inhibitors. To fully explore the chemical space of the NNRTI-binding pocket, novel series of dihydrothiopyrano [3,2-d]pyrimidines were developed by employing the structure-based design strategy. Most of the derivatives were endowed with prominent antiviral activities against HIV-1 wild-type and resistant strains at nanomolar levels. Among them, compound 23h featuring the aminopiperidine moiety was identified as the most potent inhibitor, with EC50 values ranging from 3.43 to 21.4 nmol/L. Especially, for the challenging double-mutants F227L + V106A and K103N + Y181C, 23h exhibited 2.3- to 14.5-fold more potent activity than the first-line drugs efavirenz and etravirine. Besides, the resistance profiles of 23h achieved remarkable improvement compared to efavirenz and etravirine. The binding target of 23h was further confirmed to be HIV-1 reverse transcriptase. Molecular modeling studies were also performed to elucidate the biological evaluation results and give guidance for the optimization campaign. Furthermore, no apparent inhibition of the major CYP450 enzymes and hERG channel was observed for 23h. Most importantly, 23h was characterized by good pharmacokinetic properties and excellent safety in vivo. Collectively, 23h holds great promise as a potential candidate for its effective antiviral efficacy and favorable drug-like profiles.

16.
J Med Virol ; 96(3): e29502, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38450817

ABSTRACT

Non-nucleoside reverse transcriptase inhibitors (NNRTIs) are an important component of anti-acquired immunodeficiency syndrome treatment regimen. In the present work, with the previously reported compound K-16c as lead, a series of novel 2,4,5-trisubstituted pyrimidine derivatives were designed based on the cocrystal structure of K-16c/RT, with the aim to improve the anti-human immunodeficiency virus type-1 (HIV-1) activities and metabolic stability properties. Compound 11b1 exhibited the most potent antiviral activity against wild-type (WT) and a panel of single mutant HIV-1 strains (EC50 = 2.4-12.4 nM), being superior to or comparable to those of the approved drug etravirine. Meanwhile, 11b1 exhibited moderate cytotoxicity (CC50 = 4.96 µM) and high selectivity index (SI = 1189) toward HIV-1 WT strain. As for HIV-1 RT inhibition test, 11b1 possessed excellent inhibitory potency (IC50 = 0.04 µM) and confirmed its target was RT. Moreover, the molecular dynamics simulation was performed to elucidate the improved drug resistance profiles. Moreover, 11b1 was demonstrated with favorable safety profiles and pharmacokinetic properties in vivo, indicating that 11b1 is a potential anti-HIV-1 drug candidate worthy of further development.


Subject(s)
Acquired Immunodeficiency Syndrome , HIV-1 , Humans , Antihypertensive Agents , Molecular Dynamics Simulation , Nucleosides
17.
J Hepatol ; 80(5): 792-804, 2024 May.
Article in English | MEDLINE | ID: mdl-38331327

ABSTRACT

BACKGROUND & AIMS: Natural killer (NK) cell-based anti-hepatocellular carcinoma (HCC) therapy is an increasingly attractive approach that warrants further study. Siglec-9 interacts with its ligand (Siglec-9L) and restrains NK cell functions, suggesting it is a potential therapeutic target. However, in situ Siglec-9/Siglec-9L interactions in HCC have not been reported, and a relevant interventional strategy is lacking. Herein, we aim to illustrate Siglec-9/Siglec-9L-mediated cell sociology and identify small-molecule inhibitors targeting Siglec-9 that could improve the efficacy of NK cell-based immunotherapy for HCC. METHODS: Multiplexed immunofluorescence staining was performed to analyze the expression pattern of Siglec-7, -9 and their ligands in HCC tissues. Then we conducted docking-based virtual screening combined with bio-layer interferometry assays to identify a potent small-molecule Siglec-9 inhibitor. The therapeutic potential was further evaluated in vitro and in hepatoma-bearing NCG mice. RESULTS: Siglec-9 expression, rather than Siglec-7, was markedly upregulated on tumor-infiltrating NK cells, which correlated significantly with reduced survival of patients with HCC. Moreover, the number of Siglec-9L+ cells neighboring Siglec-9+ NK cells was increased in HCC tissues and was also associated with tumor recurrence and reduced survival, further suggesting that Siglec-9/Siglec-9L interactions are a potential therapeutic target in HCC. In addition, we identified a small-molecule Siglec-9 inhibitor MTX-3937 which inhibited phosphorylation of Siglec-9 and downstream SHP1 and SHP2. Accordingly, MTX-3937 led to considerable improvement in NK cell function. Notably, MTX-3937 enhanced cytotoxicity of both human peripheral and tumor-infiltrating NK cells. Furthermore, transfer of MTX-3937-treated NK92 cells greatly suppressed the growth of hepatoma xenografts in NCG mice. CONCLUSIONS: Our study provides the rationale for HCC treatment by targeting Siglec-9 on NK cells and identifies a promising small-molecule inhibitor against Siglec-9 that enhances NK cell-mediated HCC surveillance. IMPACT AND IMPLICATIONS: Herein, we found that Siglec-9 expression is markedly upregulated on tumor-infiltrating natural killer (TINK) cells and correlates with reduced survival in patients with hepatocellular carcinoma (HCC). Moreover, the number of Siglec-9L+ cells neighboring Siglec-9+ NK cells was increased in HCC tissues and was also associated with tumor recurrence and reduced survival. More importantly, we identified a small-molecule inhibitor targeting Siglec-9 that augments NK cell functions, revealing a novel immunotherapy strategy for liver cancer that warrants further clinical investigation.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Humans , Animals , Mice , Carcinoma, Hepatocellular/pathology , Liver Neoplasms/pathology , Neoplasm Recurrence, Local/metabolism , Killer Cells, Natural/pathology , Immunotherapy , Sialic Acid Binding Immunoglobulin-like Lectins/metabolism , Ligands , Prognosis
18.
Drug Resist Updat ; 73: 101053, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38301487

ABSTRACT

Viral infections have a major impact in human health. Ongoing viral transmission and escalating selective pressure have the potential to favor the emergence of vaccine- and antiviral drug-resistant viruses. Target-based approaches for the design of antiviral drugs can play a pivotal role in combating drug-resistant challenges. Drug design computational tools facilitate the discovery of novel drugs. This review provides a comprehensive overview of current drug design strategies employed in the field of antiviral drug resistance, illustrated through the description of a series of successful applications. These strategies include technologies that enhance compound-target affinity while minimizing interactions with mutated binding pockets. Furthermore, emerging approaches such as virtual screening, targeted protein/RNA degradation, and resistance analysis during drug design have been harnessed to curtail the emergence of drug resistance. Additionally, host targeting antiviral drugs offer a promising avenue for circumventing viral mutation. The widespread adoption of these refined drug design strategies will effectively address the prevailing challenge posed by antiviral drug resistance.


Subject(s)
Antiviral Agents , Drug Design , Humans , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Antiviral Agents/metabolism , Drug Resistance, Viral/genetics , Mutation
19.
J Med Chem ; 67(5): 4234-4249, 2024 Mar 14.
Article in English | MEDLINE | ID: mdl-38416116

ABSTRACT

The existing available antipsychotics have failed to manage the cognitive impairment of schizophrenia and induced a number of seriously undesirable effects. Trace amine-associated receptor 1 (TAAR1) has emerged as an ideal target for the design of antischizophrenia drugs, with the ability to mediate multiple psychological functions by sensing endogenous amine-containing metabolites without the side effects of catalepsy. In this work, a series of novel TAAR1 agonists were designed based on the structural analysis of the TAAR1 activation pocket. Among them, 6e displayed a potent TAAR1-Gs/Gq dual-pathway activation property, being different from that of the clinical drug candidate SEP-363856 with only TAAR1-Gs pathway activation. In rodent models, 6e significantly alleviated MK-801-induced schizophrenia-like cognitive phenotypes without inducing catalepsy. Furthermore, 6e·HCl exhibited favorable pharmacokinetic (T1/2 = 2.31 h, F = 39%) and safety properties. All these demonstrated that 6e·HCl may be used as a novel drug candidate for schizophrenia treatment.


Subject(s)
Antipsychotic Agents , Schizophrenia , Humans , Antipsychotic Agents/pharmacology , Antipsychotic Agents/therapeutic use , Catalepsy , Receptors, G-Protein-Coupled/metabolism , Schizophrenia/drug therapy
20.
Small ; 20(26): e2307215, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38258390

ABSTRACT

The development of miniaturized high-throughput in situ screening platforms capable of handling the entire process of drug synthesis to final screening is essential for advancing drug discovery in the future. In this study, an approach based on combinatorial solid-phase synthesis, enabling the efficient synthesis of libraries of proteolysis targeting chimeras (PROTACs) in an array format is presented. This on-chip platform allows direct biological screening without the need for transfer steps.  UV-induced release of target molecules into individual droplets facilitates further on-chip experimentation. Utilizing a mitogen-activated protein kinase kinases (MEK1/2) degrader as a template, a series of 132 novel PROTAC-like molecules is synthesized using solid-phase Ugi reaction. These compounds are further characterized using various methods, including matrix-assisted laser desorption ionization mass spectrometry (MALDI-MS) imaging, while consuming only a few milligrams of starting materials in total. Furthermore, the feasibility of culturing cancer cells on the modified spots and quantifying the effect of MEK suppression is demonstrated. The miniaturized synthesis platform lays a foundation for high-throughput in situ biological screening of potent PROTACs for potential anticancer activity and offers the potential for accelerating the drug discovery process by integrating miniaturized synthesis and biological steps on the same array.


Subject(s)
High-Throughput Screening Assays , Proteolysis , Humans , High-Throughput Screening Assays/methods , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Cell Line, Tumor , Miniaturization
SELECTION OF CITATIONS
SEARCH DETAIL