Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 482
Filter
1.
Cancer Lett ; : 217153, 2024 Aug 03.
Article in English | MEDLINE | ID: mdl-39102940

ABSTRACT

The transforming growth factor-ß (TGF-ß) signaling pathway is pivotal in inducing epithelial-mesenchymal transition (EMT) and promoting cancer metastasis. Long non-coding RNAs (lncRNAs) have emerged as significant players in these processes, yet their precise mechanisms remain elusive. Here, we demonstrate that TGF-ß-upregulated lncRNA 1 (TBUR1) is significantly activated by TGF-ß via Smad3/4 signaling in lung adenocarcinoma (LUAD) cells. Functionally, TBUR1 triggers EMT, enhances LUAD cell migration and invasion in vitro, and promotes metastasis in nude mice. Mechanistically, TBUR1 interacts with heterogeneous nuclear ribonucleoproteins C (hnRNPC) to stabilize GRB2 mRNA in an m6A-dependent manner. Clinically, TBUR1 is upregulated in LUAD tissues and correlates with poor prognosis, highlighting its potential as a prognostic biomarker and therapeutic target for LUAD. Taken together, our findings underscore the crucial role of TBUR1 in mediating TGF-ß-induced EMT and metastasis in LUAD, providing insights for future therapeutic interventions.

2.
Article in Chinese | MEDLINE | ID: mdl-38973044

ABSTRACT

Objective:To study the clinical anatomy of the sphenopalatine foramina by dissecting the sphenopalatine foramina during Vidian nerve branch neurotomy. The anatomy and CBCT images of sphenopalatine foramen were analyzed to facilitate the navigational of clinical operation using CBCT images. Methods:From October 2017 to September 2023, 84 cases(168 sides) of Vidian nerve branch neurotomy in our department were collected. The clinical summary was made according to the anatomy of sphenopalatine foramen during the operation. Preoperative CBCT imaging findings of the sphenopalatine foramina were also studied. Results:The clinical anatomy of sphenopalatine foramen could be divided into four types: middle meatus type(1.19%), trans-meatus type(62.29%), superior meatus type(33.33%) and double foramen type(1.19%). The incidence of ethmoidal ridge was 98.81%. The distance from sphenopalatine foramina to posterior nasal canal were(14.63±2.66) mm to left and(14.65±2.63) mm to right, The position Angle ∠a of lower margin of sphenopalatine foramina were(62.36±10.05)° to left and(61.51±11.82)° to right, respectively. Axial CT images can be used to divide the sphenopalatine foramen into five levels: the upper edge of the sphenopalatine foramen level, the Vidian nerve level, the basal plate interaction level, the lower edge of the sphenopalatine foramen level and the pterygopalatine canal level. The agreement between endoscopic anatomy of sphenopalatine foramen and imaging navigation was 100%. Conclusion:The sphenopalatine foramina exhibit various anatomical types. The preoperative navigational CBCT reading can effectively identify the type of sphenopalatine foramina, guide the choice of surgical method, and help avoid serious complications. This has significant clinical application value.


Subject(s)
Cone-Beam Computed Tomography , Endoscopy , Humans , Cone-Beam Computed Tomography/methods , Endoscopy/methods , Male , Female , Middle Aged , Sphenoid Bone/diagnostic imaging , Sphenoid Bone/anatomy & histology , Adult , Nasal Cavity/diagnostic imaging , Nasal Cavity/anatomy & histology
3.
Conserv Physiol ; 12(1): coae044, 2024.
Article in English | MEDLINE | ID: mdl-38962510

ABSTRACT

Concerted conservation efforts have brought the giant panda (Ailuropoda melanoleuca) back from the brink of extinction, but pandas continue to face anthropogenic threats in the wild and breeding success in captivity remains low. Because stress can have detrimental impacts on reproduction, monitoring stress- and sex-steroid levels would help assess the effectiveness of conservation mitigation measures in panda populations as well as monitor the welfare and reproductive health of captive animals. In this proof-of-concept study, we used faecal sex steroid and cortisol concentrations (n = 867 samples collected from five males and five females at Beijing Zoo every 4 days over the course of 12 months) as a reference to investigate if testosterone, estradiol, progesterone and cortisol can be meaningfully measured in panda hair (n = 10) using radio-immuno-assays. Additionally, we calculated the ratio of testosterone to cortisol (T:C ratio) for each male, which can provide a biomarker of stress and physical performance. Our findings revealed distinct monthly variations in faecal sex-steroid and cortisol concentrations, reflecting reproductive seasonality and visitor-related stress among individual pandas. Notably, the oldest male had a significantly lower T:C ratio than other males. Our results confirm that the level of sex steroids and cortisol can be assayed by panda hair, and the hair cortisol concentrations correlate significantly with that in faeces with one month lag behind (r = 0.68, P = 0.03). However, the concentrations of hormones detected in saliva are lower than those in faeces by two orders of magnitude, making it difficult to ensure accuracy. By assessing the applicability of hair, faecal and salivary sampling, we can infer their utility in monitoring the reproductive status and acute and chronic stress levels of giant pandas, thereby providing a means to gauge the success of ongoing habitat restoration efforts and to discuss the feasibility of sample collection from wild populations.

4.
ChemSusChem ; : e202301961, 2024 Jul 27.
Article in English | MEDLINE | ID: mdl-39073232

ABSTRACT

How to retrieve and reuse surfactants efficiently from surfactant-based microemulsions (MEs) has long been a problem, which is full of challenges and needs to be solved urgently. To this end, a pH-triggered precipitation-dissolution (PTPD) strategy is developed. The surfactant sodium 3-(laurylamino)propane-1-sulfonate (LMPS) transforms into an insoluble precipitate (the inner salt of LMPS, LMP) after reaction with HCl, by which the monophasic LMPS-based MEs demulsified entirely, giving a separable mixture of oil, water and LMP. LMP can be retrieved efficiently (~95.3%) regardless of the ME type, and can then be conveniently restored to LMPS via reactions with NaOH. Conceptually, the retrieval of LMPS (~96.6%), toxic benzo[a]pyrene (BaP, ~99.5%) and a mixture of co-surfactant n-butanol and the oil phase n-heptane (~97.1%) from the sufficiently emulsified soil eluents is achievable by respectively using the PTPD strategy and distillation, wherein the soil eluents were generated from the remediation of BaP-contaminated soil using an oil-in-water LMPS-based ME as washing agent. It reveals a promising future for the PTPD strategy in the post-processing of soil eluents containing toxic hydrophobic organic contaminants and excessive surfactants.

5.
Med Rev (2021) ; 4(3): 244-256, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38919397

ABSTRACT

Objectives: The majority of esophageal squamous dysplasia (ESD) patients progress slowly, while a subset of patients can undergo recurrence rapidly or progress to invasive cancer even after proper treatment. However, the molecular mechanisms underlying these clinical observations are still largely unknown. Methods: By sequencing the genomic data of 160 clinical samples from 49 tumor-free ESD patients and 88 esophageal squamous cell carcinoma (ESCC) patients, we demonstrated lower somatic mutation and copy number alteration (CNA) burden in ESD compared with ESCC. Results: Cross-species screening and functional assays identified ACSM5 as a novel driver gene for ESD progression. Furthermore, we revealed that miR-4292 promoted ESD progression and could serve as a non-invasive diagnostic marker for ESD. Conclusions: These findings largely expanded our understanding of ESD genetics and tumorigenesis, which possessed promising significance for improving early diagnosis, reducing overtreatment, and identifying high-risk ESD patients.

7.
Opt Express ; 32(10): 18150-18160, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38858978

ABSTRACT

Perineuronal nets (PNNs) are important functional structures on the surface of nerve cells. Observation of PNNs usually requires dyeing or fluorescent labeling. As a network structure with a micron grid and sub-wavelength thickness but no special optical properties, quantitative phase imaging (QPI) is the only purely optical method for high-resolution imaging of PNNs. We proposed a Scattering Quantitative Interference Imaging (SQII) method which measures the geometric rather than transmission or reflection phase during the scattering process to visualize PNNs. Different from QIP methods, SQII method is sensitive to scattering and not affected by wavelength changes. Via geometric phase shifting method, we simplify the phase shift operation. The SQII method not only focuses on interference phase, but also on the interference contrast. The singularity points and phase lines of the scattering geometric phase depict the edges of the network structure and can be found at the valley area of the interference contrast parameter SINDR under different wavelengths. Our SQII method has its unique imaging properties, is very simple and easy to implement and has more worth for promotion.

8.
J Colloid Interface Sci ; 672: 363-369, 2024 Oct 15.
Article in English | MEDLINE | ID: mdl-38850863

ABSTRACT

HYPOTHESIS: Switchable microemulsions (MEs) are those capable of adaptively responding to the action of internal or external stimuli. For redox-switchable MEs to obtain high-efficiency phase separation and surfactant recycling, it may be one of the keys to adequately turn off the interfacial activity of surfactants and reduce the solubility of the closed surfactants in the oil phase. EXPERIMENTS: Monophasic MEs consisting 11-butylselanyl-undecyl sulfate sodium (C4SeC11SO4Na), n-butanol, n-octane, and water were fabricated using the pseudo-ternary phase diagram method. Their structural features and droplets size were characterized by conductivity, dynamic light scattering (DLS) and cryogenic transmission electron microscopy (cryo-TEM), respectively. The redox response of MEs was studied using a combination of visual observations and DLS, cryo-TEM, nuclear magnetic resonance (NMR) and thin-layer tomography. The efficient recycling of C4SeC11SO4Na from a well-emulsified eluent is conceptually demonstrated. FINDINGS: The reversible transition between C4SeC11SO4Na and C4SeOC11SO4Na is achieved under the alternating action of H2O2 and N2H4, by which C4SeC11SO4Na-based monophasic MEs are able to efficiently demulsify and regenerate, respectively, regardless of their type. After H2O2-induced demulsification of the MEs, C4SeOC11SO4Na can be efficiently recycled with the water phase. We hope that such a redox-switching method may benefit some technological applications. For example, it offers exciting possibilities for simultaneous recycling C4SeC11SO4Na and removal of oil from a well-emulsified eluent. Around 97.1 ± 0.3 % of C4SeC11SO4Na could be recycled over five cycles with no apparent loss. After a simple and conventional treatment with anion-exchange resin and active carbon, the total organic carbon and chemical oxygen demand of the waste water were 17.4 ± 2.8 and 26.2 ± 1.4 mg/L, respectively.

9.
Cells ; 13(12)2024 Jun 08.
Article in English | MEDLINE | ID: mdl-38920635

ABSTRACT

Prostate cancer (PCa) remains a leading cause of mortality among American men, with metastatic and recurrent disease posing significant therapeutic challenges due to a limited comprehension of the underlying biological processes governing disease initiation, dormancy, and progression. The conventional use of PCa cell lines has proven inadequate in elucidating the intricate molecular mechanisms driving PCa carcinogenesis, hindering the development of effective treatments. To address this gap, patient-derived primary cell cultures have been developed and play a pivotal role in unraveling the pathophysiological intricacies unique to PCa in each individual, offering valuable insights for translational research. This review explores the applications of the conditional reprogramming (CR) cell culture approach, showcasing its capability to rapidly and effectively cultivate patient-derived normal and tumor cells. The CR strategy facilitates the acquisition of stem cell properties by primary cells, precisely recapitulating the human pathophysiology of PCa. This nuanced understanding enables the identification of novel therapeutics. Specifically, our discussion encompasses the utility of CR cells in elucidating PCa initiation and progression, unraveling the molecular pathogenesis of metastatic PCa, addressing health disparities, and advancing personalized medicine. Coupled with the tumor organoid approach and patient-derived xenografts (PDXs), CR cells present a promising avenue for comprehending cancer biology, exploring new treatment modalities, and advancing precision medicine in the context of PCa. These approaches have been used for two NCI initiatives (PDMR: patient-derived model repositories; HCMI: human cancer models initiatives).


Subject(s)
Cellular Reprogramming , Prostatic Neoplasms , Humans , Prostatic Neoplasms/pathology , Male , Cellular Reprogramming/genetics , Animals
10.
Gland Surg ; 13(5): 654-662, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38845840

ABSTRACT

Background: In the past few years, the combination of trastuzumab and paclitaxel has become an important option for human epidermal growth factor receptor-2 (HER2)-positive breast cancer. Small molecule tyrosine kinase inhibitors (TKIs) can bring clinical benefit to HER2-positive breast cancer patients. However, the efficacy and safety of these two regimens have not been compared. This study explored the efficacy and safety of pyrotinib combined with trastuzumab and albumin-bound paclitaxel (nab-paclitaxel). Methods: Patients with newly diagnosed HER2-positive early or locally advanced breast cancer treated at The Tumor Hospital of Mudanjiang City from November 2020 to June 2022 were included. The control group received pertuzumab in combination with nab-paclitaxel, whereas the pyrotinib group received pyrotinib in combination with pertuzumab and nab-paclitaxel as treatment, in a 3-week cycle for 4 cycles. The primary endpoints of this study were total pathological complete response (tpCR) rate, breast pathological complete response (bpCR) rate, and the secondary endpoints included progression-free survival (PFS), objective response rate (ORR), and the occurrence of adverse events (AEs). Results: A total of 72 patients were enrolled in the study and completed the study treatment. Baseline characteristics were well balanced between these two arms. In the control group, the tPCR rate was 23.68%, and the bpCR rate was 47.36%. In the pyrotinib group, the tPCR rate was 47.06%, and the bpCR rate was 64.71%. The tPCR rate in the pyrotinib group was significantly higher than that in the control group (P=0.049). The ORR in the pyrotinib group (67.65%) was significantly higher than that in the control group (42.11%, P=0.04 ). The median PFS (mPFS) for the control group was 9.24 months, with a mean PFS of 10.01±0.44 months [95% confidence interval (CI): 9.14-10.88 months]. In the pyrotinib group, mPFS was 9.74 months, with a mean PFS of 11.25±0.29 months (95% CI: 10.67-11.82 months). The PFS in the pyrotinib group was significantly longer than that in the control group (P=0.045). Safety results showed that the overall incidence of AEs in the control group was 68.42%, with a 3-grade adverse reaction rate of 21.05%. In the pyrotinib group, the overall incidence of AEs was 79.41%, with a 3-grade adverse reaction rate of 29.41%. The difference between the two groups was not statistically significant (P>0.05). Conclusions: Pyrotinib group in neoadjuvant treatment for HER2 positive breast cancer has obvious short-term efficacy advantages over control group. This treatment regimen can prolong PFS for 1 year, and the safety during medication is controllable. This study still has some limitations, with the relatively small sample size and relatively short follow-up period, and a further large-scale, multicenter, randomized controlled trial is necessary to verify the clinical value of this dual-target treatment regimen.

11.
J Med Virol ; 96(5): e29665, 2024 May.
Article in English | MEDLINE | ID: mdl-38738582

ABSTRACT

The cause of cancer is attributed to the uncontrolled growth and proliferation of cells resulting from genetic changes and alterations in cell behavior, a phenomenon known as epigenetics. Telomeres, protective caps on the ends of chromosomes, regulate both cellular aging and cancer formation. In most cancers, telomerase is upregulated, with the telomerase reverse transcriptase (TERT) enzyme and telomerase RNA component (TERC) RNA element contributing to the maintenance of telomere length. Additionally, it is noteworthy that two viruses, human papillomavirus (HPV) and Epstein-Barr virus (EBV), utilize telomerase for their replication or persistence in infected cells. Also, TERT and TERC may play major roles in cancer not related to telomere biology. They are involved in the regulation of gene expression, signal transduction pathways, cellular metabolism, or even immune response modulation. Furthermore, the crosstalk between TERT, TERC, RNA-binding proteins, and microRNAs contributes to a greater extent to cancer biology. To understand the multifaceted roles played by TERT and TERC in cancer and viral life cycles, and then to develop effective therapeutic strategies against these diseases, are fundamental for this goal. By investigating deeply, the complicated mechanisms and relationships between TERT and TERC, scientists will open the doors to new therapies. In its analysis, the review emphasizes the significance of gaining insight into the multifaceted roles that TERT and TERC play in cancer pathogenesis, as well as their involvement in the viral life cycle for designing effective anticancer therapy approaches.


Subject(s)
Neoplasms , Telomerase , Telomere , Telomerase/metabolism , Telomerase/genetics , Humans , Neoplasms/virology , Neoplasms/genetics , Telomere/metabolism , Herpesvirus 4, Human/genetics , Herpesvirus 4, Human/pathogenicity , Herpesvirus 4, Human/physiology , RNA/metabolism , RNA/genetics
12.
Zhongguo Zhong Yao Za Zhi ; 49(10): 2575-2584, 2024 May.
Article in Chinese | MEDLINE | ID: mdl-38812158

ABSTRACT

Asari Radix et Rhizoma is a common drug for relieving exterior syndrome in clinics, but its toxicity limits its use. In this study, the mechanism of hepatic damage of Asari Radix et Rhizoma was studied by network pharmacology and metabolomics. The hepatic damage-related dataset, namely GSE54257 was downloaded from the GEO database. The Limma package was used to analyze the differentially expressed genes in the dataset GSE54257. Toxic components and target genes of Asari Radix et Rhizoma were screened by TCMSP, ECTM, and TOXNET. The hepatic damage target genes of Asari Radix et Rhizoma were obtained by mapping with the differentially expressed gene of GSE54257, and a PPI network was constructed. GO and KEGG enrichment analysis of target genes were performed, and a "miRNA-target gene-signal pathway" network was drawn with upstream miRNA information. Thirty rats were divided into a blank group, a high-dose Asari Radix et Rhizoma group, and a low-dose Asari Radix et Rhizoma group, which were administered once a day. After continuous administration for 28 days, liver function indexes and liver pathological changes were detected. Five liver tissue samples were randomly collected from the blank group and high-dose Asari Radix et Rhizoma group, and small molecule metabolites were analyzed by ultra-high performance liquid chromatography-mass spectrometry(UHPLC-MS). The orthogonal partial least squares-discriminant analysis(OPLS-DA) method was used to screen differential metabolites, and enrichment analysis, correlation analysis, and cluster analysis were conducted for differential metabolites. Finally, the MetaboAnalyst platform was used to conduct pathway enrichment analysis for differential metabolites. It was found that there were 14 toxic components in Asari Radix et Rhizoma, corresponding to 37 target genes, and 12 genes related to liver toxicity of Asari Radix et Rhizoma were obtained by mapping to differentially expressed genes of GSE54257. The animal test results showed that Asari Radix et Rhizoma could significantly increase the liver function index, reduce the activity of the free radical scavenging enzyme, change the liver oxidative stress level, and induce lipid peroxidation damage in rats. The results of untargeted metabolomics analysis showed that compared with the blank group, nine metabolites were up-regulated, and 16 metabolites were down-regulated in the liver tissue of the Asari Radix et Rhizoma group. These 25 metabolites had strong correlations and good clustering. Pathway enrichment analysis showed that these differential metabolites and the 12 hepatotoxic target genes of Asari Radix et Rhizoma were mainly involved in purine metabolism, as well as the biosynthesis and metabolism of valine, leucine, glycine, serine, and threonine. The study confirmed that the hepatica damage effect of Asari Radix et Rhizoma was the result of multi-component, multi-target, and multi-signaling pathways, and its mechanism may be related to inhibiting nucleotide synthesis and affecting protein metabolism.


Subject(s)
Drugs, Chinese Herbal , Liver , Metabolomics , Animals , Rats , Drugs, Chinese Herbal/administration & dosage , Liver/metabolism , Liver/drug effects , Male , Network Pharmacology , Rats, Sprague-Dawley , Asarum/chemistry , Asarum/genetics , Asarum/metabolism , Rhizome/chemistry , Humans , Chemical and Drug Induced Liver Injury/metabolism , Chemical and Drug Induced Liver Injury/genetics
13.
J Med Virol ; 96(4): e29566, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38572864

ABSTRACT

As the long-term consequences of coronavirus disease 2019 (COVID-19) have not been defined, it is necessary to explore persistent symptoms, long-term respiratory impairment, and impact on quality of life over time in COVID-19 survivors. In this prospective cohort study, convalescent individuals diagnosed with COVID-19 were followed-up 2 and 3 years after discharge from hospital. Participants completed an in-person interview to assess persistent symptoms and underwent blood tests, pulmonary function tests, chest high-resolution computed tomography, and the 6-min walking test. There were 762 patients at the 2-year follow-up and 613 patients at the 3-year follow-up. The mean age was 60 years and 415 (54.5%) were men. At 3 years, 39.80% of the participants had at least one symptom; most frequently, fatigue, difficulty sleeping, joint pain, shortness of breath, muscle aches, and cough. The participants experienced different degrees of pulmonary function impairment, with decreased carbon monoxide diffusion capacity being the main feature; results remained relatively stable over the 2-3 years. Multiple logistic regression analysis demonstrated that female sex and smoking were independently associated with impaired diffusion capacity. A subgroup analysis based on disease severity was performed, indicating that there was no difference in other parameters of lung function except forced vital capacity at 3-year follow-up. Persistent radiographic abnormalities, most commonly fibrotic-like changes, were observed at both timepoints. At 3 years, patients had a significantly improved Mental Component Score compared with that at 2 years, with a lower percentage with anxiety. Our study indicated that symptoms and pulmonary abnormalities persisted in COVID-19 survivors at 3 years. Further studies are warranted to explore the long-term effects of COVID-19 and develop appropriate rehabilitation strategies.


Subject(s)
COVID-19 , Male , Humans , Female , Middle Aged , COVID-19/therapy , Prospective Studies , Quality of Life , Anxiety , Arthralgia
14.
Nanomaterials (Basel) ; 14(6)2024 Mar 14.
Article in English | MEDLINE | ID: mdl-38535668

ABSTRACT

Carbon nanotube (CNT)-based networks are promising reinforcements for polymer nanocomposites without the issue of CNT agglomeration. In this study, the CNT junction, a vital and representative structure of CNT-based networks, was applied as the reinforcement of the polyethylene (PE) matrix. The tensile properties of the CNT-junction/PE nanocomposite were investigated via molecular dynamics (MD) simulations and compared with those of pure PE matrix and conventional CNT/PE nanocomposites. The CNT junction was found to significantly increase the mechanical properties of the PE matrix. The Young's modulus, yield strength, and toughness rose by 500%, 100%, and 200%, respectively. This mechanism is related to the enhanced interfacial energy, which makes the polymer matrix denser and stimulates the bond and angle deformations of the polymer chains. Furthermore, the CNT junction demonstrated a more profitable reinforcement efficiency compared to conventional straight CNTs in the PE matrix. Compared to the ordinary CNT/PE model, the improvements in the Young's modulus and toughness induced by the CNT junction were up to 60% and 25%. This is attributed to the reduced mobility induced by the geometry of the CNT junction and stronger interfacial interactions provided by the Stone-Wales defects of the CNT junction, slowing down the void propagation of the nanocomposite. With the understanding of the beneficial reinforcing effect of the CNT junction, this study provides valuable insights for the design and application of CNT-based networks in polymer nanocomposites.

15.
Nanomaterials (Basel) ; 14(5)2024 Feb 25.
Article in English | MEDLINE | ID: mdl-38470752

ABSTRACT

A high-performance resonant metasurface is rather promising for diverse application areas such as optical sensing and filtering. Herein, a metal-insulator-metal (MIM) optical sensor with merits of a high quality-factor (Q-factor), multiple operating bands, and high spectrum contrast is proposed using plasmonic square bracket dimer metasurface. Due to the complex square bracket itself, a dimer structure of two oppositely placed square brackets, and metasurface array configuration, multiple kinds of mode coupling can be devised in the inner and outer elements within the metasurface, enabling four sensing channels with the sensitivities higher than 200 nm/RIU for refractive index sensing. Among them, the special sensing channel based on the reflection-type surface lattice resonance (SLR) mechanism has a full width at half maximum (FWHM) of only 2 nm, a high peak-to-dip signal contrast of 0.82, a high Q-factor of 548, and it can also behave as a good sensing channel for the thickness measurement of the deposition layer. The multi-band sensor can work normally in a large refractive index or thickness range, and the number of resonant channels can be further increased by simply breaking the structural symmetry or changing the polarization angle of incident light. Equipped with unique advantages, the suggested plasmonic metasurface has great potential in sensing, monitoring, filtering, and other applications.

16.
ACS Appl Mater Interfaces ; 16(11): 13611-13621, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38456377

ABSTRACT

Cellulose foams are considered an effective alternative to plastic foam, because of their advantages of low density, high porosity, low thermal conductivity, and renewable nature. However, they still suffer from complex processing, poor mechanical properties, and flammability. As an agricultural waste, bagasse is rich in cellulose, which has attracted much attention. Inspired by the fact that borate ions can effectively enhance the strength of plant tissue by their cross-linking with polysaccharides, the present work designs and fabricates a series of multifunctional bagasse foams with robust strength and improved thermal insulation and flame retardancy via a unique borax-induced self-assembly and atmospheric pressure drying route using bagasse as a raw material, borate as a cross-linking agent, and chitosan as an additive. As a result, the optimized foam exhibits a high porosity (93.5%), a high hydrophobic water contact angle (150.4°), a low thermal conductivity (63.4 mW/(m·K) at 25 °C), and an outstanding flame retardancy. The present study provides a novel and inspiring idea for large-scale production of cellulose foams through an environmentally friendly and cost-effective approach.

17.
Adv Mater ; 36(19): e2312583, 2024 May.
Article in English | MEDLINE | ID: mdl-38302690

ABSTRACT

Hollow multishelled structures (HoMSs) are attracting great interest in lithium-ion batteries as the conversion anodes, owing to their superior buffering effect and mechanical stability. Given the synthetic challenges, especially elemental diffusion barrier in the multimetal combinations, this complex structure design has been realized in low- and medium-entropy compounds so far. It means that poor reaction reversibility and low intrinsic conductivity remain largely unresolved. Here, a hollow multishelled (LiFeZnNiCoMn)3O4 high entropy oxide (HEO) is developed through integrating molecule and microstructure engineering. As expected, the HoMS design exhibits significant targeting functionality, yielding satisfactory structure and cycling stability. Meanwhile, the abundant oxygen defects and optimized electronic structure of HEO accelerate the lithiation kinetics, while the retention of the parent lattice matrix enables reversible lithium storage, which is validated by rigorous in situ tests and theoretical simulations. Benefiting from these combined properties, such hollow multishelled HEO anode can deliver a specific capacity of 967 mAh g-1 (89% capacity retention) after 500 cycles at 0.5 A g-1. The synergistic lattice and volume stability showcased in this work holds great promise in guiding the material innovations for the next-generation energy storage devices.

19.
Nat Commun ; 15(1): 513, 2024 Jan 13.
Article in English | MEDLINE | ID: mdl-38218871

ABSTRACT

Among today's nonvolatile memories, ferroelectric-based capacitors, tunnel junctions and field-effect transistors (FET) are already industrially integrated and/or intensively investigated to improve their performances. Concurrently, because of the tremendous development of artificial intelligence and big-data issues, there is an urgent need to realize high-density crossbar arrays, a prerequisite for the future of memories and emerging computing algorithms. Here, a two-terminal ferroelectric fin diode (FFD) in which a ferroelectric capacitor and a fin-like semiconductor channel are combined to share both top and bottom electrodes is designed. Such a device not only shows both digital and analog memory functionalities but is also robust and universal as it works using two very different ferroelectric materials. When compared to all current nonvolatile memories, it cumulatively demonstrates an endurance up to 1010 cycles, an ON/OFF ratio of ~102, a feature size of 30 nm, an operating energy of ~20 fJ and an operation speed of 100 ns. Beyond these superior performances, the simple two-terminal structure and their self-rectifying ratio of ~ 104 permit to consider them as new electronic building blocks for designing passive crossbar arrays which are crucial for the future in-memory computing.

20.
Appl Opt ; 63(3): 624-635, 2024 Jan 20.
Article in English | MEDLINE | ID: mdl-38294373

ABSTRACT

Light propagation wavefront and photon composition variations occur when the beam encounters acoustic waves, bringing mechanical and chemical inhomogeneity-induced light-intensity modulation, while phase variations, which carry more information about the acoustic-optical coupling in the medium, are often overlooked. This paper investigates the coupling of the light beam with the propagating ultrasound and the polarization aberration of the optical wave induced by the ultrasound. A model was developed to express the variation of the ultrasound-induced polarization aberration (UIPA). The ultrasound-induced refractive index variation of the sample was observed in both the simulation and experiments. The phase differences in various ultrasound states (valley dominant state, peak dominant state) are characterized in detail. The UIPA expressed in the phase space provides a way to quantify multidimensional polarization information of the ultrasound-tagged optical waves and allows refraction-sensitive polarization parametric imaging, which may be exploited for directional high-contrast photoacoustic imaging with ultrasound tagging.

SELECTION OF CITATIONS
SEARCH DETAIL