Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Main subject
Language
Publication year range
1.
Hortic Res ; 11(3): uhae016, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38495032

ABSTRACT

Artificially enhancing photosynthesis is critical for improving crop yields and fruit qualities. Nanomaterials have demonstrated great potential to enhance photosynthetic efficiency; however, the mechanisms underlying their effects are poorly understood. This study revealed that the electron transfer pathway participated in nitrogen-doped carbon dots (N-CDs)-induced photosynthetic efficiency enhancement (24.29%), resulting in the improvements of apple fruit qualities (soluble sugar content: 11.43%) in the orchard. We also found that N-CDs alleviated mterf5 mutant-modulated photosystem II (PSII) defects, but not psa3 mutant-modulated photosystem I (PSI) defects, suggesting that the N-CDs-targeting sites were located between PSII and PSI. Measurements of chlorophyll fluorescence parameters suggested that plastoquinone (PQ), the mobile electron carrier in the photosynthesis electron transfer chain (PETC), was the photosynthesis component that N-CDs targeted. In vitro experiments demonstrated that plastoquinone-9 (PQ-9) could accept electrons from light-excited N-CDs to produce the reduced plastoquinone 9 (PQH2-9). These findings suggested that N-CDs, as electron donors, offer a PQ-9-involved complement of PETC to improve photosynthesis and thereby fruit quality. Our study uncovered a mechanism by which nanomaterials enhanced plant photosynthesis and provided some insights that will be useful in the design of efficient nanomaterials for agricultural/horticultural applications.

2.
J Plant Physiol ; 287: 154037, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37354701

ABSTRACT

Reactive oxygen species (ROS) play an essential role as both signaling molecule and damage agent during salt stress. As a signaling molecule, proper accumulation of H2O2 is crucial to trigger stress response and enhance stress tolerance. However, the dynamic regulation mechanism of H2O2 remains unclear. Here, we show that MhCAT2 (catalase 2 in Malus hupehensis) undergoes oxidative modification in an O2•--dependent manner and that oxidation at His225 residue reduces the MhCAT2 activity. Furthermore, the substitution of His225 with Tyr weakens the activity of MhCAT2. The oxidation modification provides a post-translational brake mechanism for the excessive scavenging of H2O2 caused by salt stress-induced catalase (CAT) over-expression. Overall, this finding provides mechanistic insights on stress tolerance augmentation by an O2•--mediated switch that regulates H2O2 homeostasis in Malus hupehensis.


Subject(s)
Malus , Catalase/metabolism , Malus/metabolism , Hydrogen Peroxide/pharmacology , Reactive Oxygen Species , Salt Tolerance , Oxidative Stress , Homeostasis
3.
RSC Adv ; 13(18): 12114-12122, 2023 Apr 17.
Article in English | MEDLINE | ID: mdl-37082373

ABSTRACT

Numerous nanomaterials with optical properties have demonstrated excellent capacities to enhance plant growth and stress tolerance. However, the corresponding mechanisms have only been partially characterized, especially the excitation-light dependencies of different actions. Here, nitrogen-doped carbon dots (N-CDs) were developed to explore the excitation-light dependence in N-CD-induced growth enhancement and salt tolerance. Compared to the control, N-CDs induced significant enhancements in Arabidopsis thaliana growth under excitation light, including fresh/dry weight of shoot (21.07% and 16.87%), chlorophyll content (9.17%), soluble sugar content (23.41%), leaf area (28.68%), total root length (34.07%) and root tip number (46.69%). In the absence of excitation light, N-CD-treated seedlings exhibited little differences in these parameters, except the enhancements in root length (24.51%) and root tip number (10.24%). On the other hand, N-CD-treatment could improve seedling salt tolerance with or without excitation light. Under salt stress (150 mM NaCl), in the presence of excitation light, the N-CDs treatment significantly increased shoot/root fresh weight and chlorophyll content by 43.29%, 50.66% and 22.59%, and reduced malondialdehyde (MDA) content and relative conductivity by 17.59% and 32.58% compared to the control group. In the absence of excitation light, significant enhancements in shoot/root fresh weight (34.22%, 32.60%) and chlorophyll content (10.45%), and obvious decreases in MDA content (28.84%) and relative conductivity (16.13%) were also found. These results indicated that N-CDs only induced growth enhancement under excitation light, but they improved salt tolerance with and without excitation light, suggesting that the two effects occurred via distinct signaling pathways. This study revealed the excitation-light dependencies of nanomaterial-involved agriculture applications, providing insight into designing more efficient nanomaterials in the future.

SELECTION OF CITATIONS
SEARCH DETAIL
...